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ABSTRACT 

 
In this study, we present a speech corpus of patients with chronic 

kidney disease (CKD) that will be used for research on pathological 

voice analysis, automatic illness identification, and severity 

prediction. This paper introduces the steps involved in creating this 

corpus, including the choice of speech-related parameters and 

speech lists as well as the recording technique. The speakers in this 

corpus, 289 CKD patients with varying degrees of severity who 

were categorized based on estimated glomerular filtration rate 

(eGFR), delivered sustained vowels, sentence, and paragraph 

stimuli. This study compared and analyzed the voice characteristics 

of CKD patients with those of the control group; the results revealed 

differences in voice quality, phoneme-level pronunciation, prosody, 

glottal source, and aerodynamic parameters. 

 

Index Terms— corpus development, chronic kidney disease, 

voice analysis, automatic classification 

 

1. INTRODUCTION 

 
A continuous decline in kidney function and structural damage to 

the kidneys are characteristics of chronic kidney disease (CKD) [1]. 

CKD is a serious condition with a high prevalence around the world 

that, if not detected and treated promptly, requires renal replacement 

therapy, such as dialysis. Although there may not be any symptoms 

in the early stages of the disease, blood and urine tests are still 

required to diagnose CKD, so awareness of the condition is still low 

[1][2]. Therefore, a new index that can both diagnose the disease and 

gauge its severity should be created. It should also be non-invasive 

and simple to repeat. 

CKD affects a variety of bodily systems, particularly the 

respiratory system, as well as the cardiovascular, neurological, 

musculoskeletal, immunological, endocrine, and metabolic systems 

[3]. The lungs and kidneys both contribute to maintaining the body's 

acid-base balance in both healthy and diseased states, therefore any 

changes to the renal system will affect the respiratory system and 

vice versa [4]. The strength and endurance of the respiratory muscles 

are significantly reduced in CKD patients compared to non-CKD 

persons, and the potency of the laryngeal and respiratory muscles is 

also severely compromised [3][5]. The characteristics of end-stage 

renal disease (ESRD), which include a buildup of uremic toxins, an 

acid-base imbalance, and volume overload, are also known to cause 

a change in voice due to 

 
diminished lung function and vocal fold edema [6]. As respiration is 

the primary source of speech [4], analyzing the voice characteristics 

of CKD patients and automatically detecting and predicting the 

severity of CKD through speech may be useful in the early diagnosis 

and effective treatment of CKD. 

Tables 1 and 2 show the parameters, stimuli, and participants 

of the previous studies, and analysis results of the CKD voice 

analysis. 

 

Table 1. Parameters, stimuli, and participants in previous 

studies 
 

Category Contents Papers 

 

 

 
Parameters 

 
Voice quality 

Jitter [3, 4, 5, 7] 

Shimmer [3, 4, 5, 7, 8] 

Harmonics-to-noise 

ratio (HNR) 
[3, 5, 7, 8] 

Pitch 
Fundamental 

frequency (F0) 
[3, 4, 5, 7, 8] 

Aerodynamic 
Maximum phonation 

time (MPT) 
[3, 4, 5, 8] 

 

Stimuli 

/ipipi/ [3] 

/a/ [3, 4, 8] 

/s/, /z/ [4] 

 

 
 

Participants 

Non-CKD vs. CKD 

stage 3-5 (without 

hemodialysis (HD)) 
vs. HD 

 
[5] 

Non-CKD vs. HD [3, 4, 7] 

Non-CKD vs. CKD 

without HD 
[8] 

 

Table 2. CKD voice analysis results 

 
Category Parameter Results 

 

 

Voice quality 

Jitter 
  ↑ [3, 4, 7] 

↓ [5] 

Shimmer ↑ [3, 4, 5, 7, 8] 

HNR 
  ↑ [7, 8] 

↓ [3, 5] 

Pitch F0 
  ↑ [3, 4, 5, 7] 

↓ [8] 

Aerodynamic MPT ↓ [3, 4, 5, 8] 

↑: CKD > non-CKD 

↓: CKD < non-CKD 



Previous research identified a voice difference between 

speakers with and without CKD, as demonstrated in the Tables. 

Finding out the characteristics of the CKD voice was challenging, 

though, because the results were varied. Additionally, they only 

looked at a small number of speech-related features using limited 

voice data. The results, however, can differ since the variables they 

looked at can be evaluated in sentences rather than only in 

continuous vowel sounds. Moreover, because CKD can alter various 

parts of speech, it is necessary to examine speech using a variety of 

metrics. It is also difficult to understand how CKD affects voice and 

how voice changes based on the stage of CKD because they did not 

identify the CKD group according to stage. Furthermore, no 

research used automatic detection or severity prediction methods for 

CKD, nor was there a corpus that gathered the voices of CKD 

patients. Therefore, a speech corpus containing different speech data 

and participants' information connected to their stage of CKD is 

needed to understand voice change in CKD patients and construct 

an appropriate index. 

With this goal, this paper introduces a corpus which is 

developed for studying CKD voice, automatically detecting disease, 

and predicting severity is introduced. This paper is organized as 

follows: Section 2 describes the corpus, including participants, 

metadata, reading script, and recording procedure. Section 3 

presents the parameters which are used to analyze the CKD voice, 

and results & discussion, which are followed by the conclusion in 

Section 4. 

 

2. CORPUS 

 

2.1. Participants and metadata 
In total, 289 CKD speakers and 14 non-CKD speakers were 

recruited by us. All of the speakers were chosen from the Bundang 

Hospital at Seoul National University. The ages of CKD speakers 

ranged from 23 to 91, with an average of 65 (standard deviation: 

14.1), and their severity levels were established according to the 

doctor's assessment based on eGFR (estimated glomerular filtration 

rate). The ages of non-CKD speakers ranged from 35 to 85, with an 

average of 64. (std: 13.7). Table 3 displays the number of speakers 

by severity and gender. Some speakers have been recorded multiple 

times (F: 11, M: 25), and the speech data from these speakers will 

be used in the longitudinal study to examine how a voice changes as 

the disease progresses. The exclusion criteria included smoking, 

asthma, and chronic obstructive pulmonary disease, as well as the 

presence of vocal cord disease and its history. After recruiting the 

speakers, we collected metadata of the participants. The following 

information is gathered as meta-data: language disorder presence, 

gender, birthdate, place of residence, presence and kind of 

comorbidities, medication usage, physical conditions at the time of 

recording. 

 

Table 3. Number of speakers 

2.2. Reading script 
First, as in previous studies, participants are required to sustain the 

vowel /a/. The vowel with the highest first formant, /a/, does not 

significantly increase the first or second harmonics [9]. Vowel 

speech can be used to extract voice quality features, pitch features, 

glottal source parameters, and maximum phonation time (MPT). 

Second, they are required to read a text made up entirely of vocal 

sounds. This sentence speech can be used to extract voice quality 

features and pitch features as in vowel speech because it only 

contains voiced sounds. We want to examine how these features are 

represented in sentences. Finally, they were required to read a 

paragraph made up of six phonetically balanced sentences that 

varied in length [10]. Spectral features, prosodic features, and 

phoneme- level pronunciation features are all extracted from the 

paragraph speech. 

 

2.3. Recording procedure 
The Seoul National University Bundang Hospital served as the site 

of the recording. For recording purposes, a Samsung Galaxy S series 

smartphone and an AKG C414 B-ULS microphone with an AKG 

PF80 pop filter were both used. The Scarlett Solo Audio Interface 

was utilized to convert the microphone signals into a computer-

readable format. To prevent air puffing, the smartphone and 

microphone were situated 20 cm from the speaker. A guide led the 

speaker through the process during each recording session, 

instructing them to wait for at least three seconds in between each 

sentence and to re-record any sentences that drastically varied from 

the prompt. All speakers were asked to speak naturally and to help 

them do so, they recorded a sample sentence that started with 

greetings and self-introductions. The speech was recorded as a 

WAV file with a 16kHz sampling rate. We segmented the utterances 

into separate WAV files when the recording was done, and Praat did 

this. 

 

3. ANALYSIS RESULTS 
 

3.1. Methods 
We examined the voices of speakers up to CKD stage 4 because the 

number of hemodialyses, renal transplantation, and CKD stage 

5 speakers was quite low in comparison to speakers at earlier stages. 

Additionally, there were fewer non-CKD speakers than CKD 

speakers, thus we created a new classification for speaker severity 

based on eGFR. Speakers with an eGFR of more than 60 were 

considered non- CKD speakers (127 participants, 67 females, 60 

males), whereas speakers with an eGFR of less than 60 were 

considered CKD speakers. For CKD speakers, stage 3 was defined 

as having an eGFR of 30 or more and less than 60 (108 participants, 

46 females, 62 males), and stage 4 as having an eGFR of 15 or more 

and less than 30 (47 subjects, 12 females, 35 males). 

The voices of CKD and non-CKD speakers were first 

compared and examined. On parameters that satisfied the 

requirements for data normality, the independent sample t-test was 

used, and the Mann-Whitney U test was used on parameters that did 

not. Second, the voices of these three groups—those without CKD, 

those in CKD stage 3, and CKD stage 4—were compared. On 

parameters that satisfied the requirements for data normality, one-

way ANOVA was used, and on parameters that did not, the Kruskal-

Wallis H test was used. The Bonferroni post hoc test was 

additionally conducted. Finally, correlation and regression  analyses 

were conducted to examine the relationship between 

Group Female Male 

 

 
 

CKD 

Stage 1 20 15 

Stage 2 38 41 

Stage 3 46 62 

Stage 4 12 35 

Stage 5 5 4 

Hemodialysis 2 2 

Transplant 2 5 

Non-CKD 9 4 

 



eGFR and each parameter. All statistical analysis was performed 

using IBM SPSS Statistics 26 [11]. 

 

3.2. Speech-related features 
Table 4 lists the parameters that were chosen to represent different 

characteristics of speech in the CKD speech analysis. With regard to 

the impact of CKD on speech, we utilized [12]'s feature set and 

added new features, such as aerodynamic and glottal source 

parameters. 

 

Table 4. Speech-related features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.2.1. MFCCs 
A representation of a sound's short-term power spectrum used in 

sound processing is called a Mel-frequency cepstrum (MFC), which 

is based on a linear cosine transform of a log power spectrum on a 

nonlinear Mel scale of frequency. An MFC is made up of 

coefficients known as mel-frequency cepstral coefficients (MFCCs). 

Applications for speaker identification and recognition have usually 

used MFCCs. Their applicability has been expanded to include 

speech quality evaluation for medical purposes [13]. Using the 

librosa [14] toolkit, we extract 12-dim MFCCs and log energy from 

each speech. 

 

3.2.2. Voice quality features 
Five voice quality features, jitter, shimmer, harmonic to noise ratio 

(HNR), number of voice breaks, and degree of voice breaks—were 

chosen for this investigation. While shimmer, which is very similar 

to jitter, represents changes in amplitude, jitter represents changes in 

F0 over time. The HNR is the proportion of harmonic to noise 

energy. It has been demonstrated that jitter, shimmer, and HNR can 

be used to describe vocal traits and provide a pathological voice 

diagnosis [15]. Voice break features reveal the vocal ability to 

maintain phonation. Using Praat [16], all voice quality features are 

extracted. The minimum and maximum pitches are respectively set 

to 70 Hz and 625 Hz for jitter, shimmer, and HNR [12]. The number 

of voice breaks is the first feature in terms of voice breaking features. 

Praat divided the pitch floor, which is set at 70 Hz, by the number of 

intervals between consecutive glottal pulses that are longer than 

1.25. The degree of voice breaks is then 

determined by dividing the sum of voice break duration by speech 

duration [17]. 

 

3.2.3. Prosody features 
Pitch, speech rate, and rhythm are the three prosody feature 

categories that are extracted. 

Using Praat, we calculate the median, minimum, maximum, 

mean, and standard deviation of F0 for pitch. 

For speech rate, we measure the total duration, speech duration, 

speaking  rate,  articulation  rate,  pause  duration,  and the number 

of pauses. Speaking rate is the ratio of syllables generated to total 

duration, and articulation rate is the ratio of syllables produced to 

speech duration. We include pause-related variables, such as the 

number of pauses and pause duration, because CKD decreases 

respiratory function. Parselmouth [18] is used to extract these 

features. 

We extract %V, deltas, Varcos, rPVIs, and nPVIs for rhythm. 

The proportion of vocalic utterance intervals is represented as %V. 

Consonantal and vocalic interval standard deviations are  referred to 

as deltas, and the normalized delta values by the average length of 

these intervals are called Varcos. The vocalic and consonantal 

intervals are ordered temporally in the pairwise variability index 

(PVI). The raw PVI is referred to as rPVI and the normalized PVI as 

nPVI [19]. Correlatore 2.3.4 [20] is used to extract these  features 

from the data. 
 

3.2.4. Phoneme-level pronunciation features 
Two categories of phoneme-level pronunciation features are the 

percentage of correct phonemes and the degree of vowel distortion. 

The features of the percentage of correct phonemes include the  

percentage  of  correct consonants,   the   percentage   of correct 

vowels, and the percentage of total correct phonemes (PCT). A 

speech recognizer that has been trained on speakers without CKD is 

used to extract these features. The AI Hub corpus [21] is used to 

train the acoustic model, and the Kaldi toolkit [22] is used for ASR 

training. The number of matches between a phoneme sequence from 

an automatic speech recognition model and the canonical 

pronunciation sequence is used to calculate PCC, PCV, and PCT. 

Vowel Space Area (VSA), Vowel Articulatory Index (VAI), 

Formant Centralized Ratio (FCR), and F2-ratio are indicators of how 

distorted a vowel is. The region where the first and second formant 

frequency coordinates (F1, F2) of a vowel are connected by a line in 

a two-dimensional space is called VSA [23]. The indicators of vowel 

centralization are VAI and FCR, and they have an antagonistic 

connection. They have been used to describe changes in vowel 

articulation as substitute parameters. High FCR and low VAI values 

are seen when the vowel space is concentrated in relation to the 

standard coordinates [24][25]. By combining a speech recognizer 

and Praat with [12]'s methodology, these features are extracted. 

 

3.2.5. Aerodynamic feature 
The objective measurement of the effectiveness of the respiratory 

mechanism during phonation is the maximum phonation time 

(MPT), which is defined as the capacity to maximally sustain a 

vowel after having taken a maximal inspiration [26]. Praat is used to 

extract MPT. 

 

3.2.6. Glottal source parameters 
The term "glottal source" refers to glottal flow, which is air evicted 

from the lungs and modulated by the vocal folds as it passes down 

Category Features 

Spectral features MFCCs 

 
Voice quality features 

Jitter, shimmer, HNR, 

number of voice 

breaks, degree of 
voice breaks 

 

 

 
 

Prosody features 

Pitch 
F0 

mean/sd/med/min/max 

 
 

Speech rate 

Total duration, speech 

duration, speaking 

rate, articulation rate, 

number of pauses, 
pause duration 

Rhythm 
%V, deltas, varcos, 

rPIVs, nPVIs 

Phoneme-level 

pronunciation 

features 

Percentage of 
correct phonemes 

PCC, PCV, PCT 

Degree of vowel 
distortion 

VSA, VAI, FCR, F2- 
ratio 

Aerodynamic feature MPT 

Glottal source parameters 
H1-H2, H1-A1, H1- 

A2, H1-A3 

 



the trachea [27]. We suggest incorporating parameters relating to 

glottal flow because it is well known that CKD can affect respiration 

[3][4][5] and that it can result in vocal cord edema [6]. H1-H2, H1-

A1, H1-A2, and H1-A3 are the four glottal source parameters that 

are used [28][29]. The first and second harmonics of the Fourier 

spectrum are denoted by H1 and H2, respectively. The amplitudes 

of the first, second, and third formants are denoted by the A1, A2, 

and A3, respectively. Those parameters are known as acoustic 

measurements to characterize differences along the glottal 

constriction continuum [30]. The calculation of VoiceSauce [31], a 

software that automatically extracts voice measurements from audio 

recordings, is used to extract glottal source features by Praat. 

 

3.3. Results 
The statistically significant parameters are displayed in Tables 5, 6, 

7, and 8. The parameters measured in the sustained vowel and 

sentence are referred to as _v and _s, respectively. There were 

differences in voice quality, phoneme-level pronunciation, prosody, 

glottal source, and aerodynamic parameters when it was examined 

whether there was a difference in voice according to the existence 

and severity of the disease by group comparison. In terms of voice 

quality, the CKD groups showed lower jitter and shimmer values 

than the non-CKD group, and the lower the value as the severity of 

the CKD group increased. Similarly, the CKD groups showed higher 

values in HNR, and the value increased with increasing severity. 

According to the data, patients do not distort vowels at the phoneme 

level, although both vowels and consonants are frequently 

mispronounced in patients. Patients specifically exhibit greater 

consonant errors than vowel errors. The CKD groups showed higher 

pitch in males but lower pitch in females. Additionally, the CKD 

group showed longer speech duration and, as a result, lower 

articulation rate. 

To understand the impact of eGFR on each parameter, we 

performed correlation and regression analysis. First, we determine 

which parameter values rise or fall with eGFR by correlation 

analysis. There was a significant correlation between eGFR and 

parameters in the aerodynamic, glottal source, phoneme-level 

pronunciation, and prosody parameters, similar to the findings of 

group comparisons. There was a statistically significant positive 

correlation between eGFR and parameters, except Std F0 v, percent 

V, and delta-V. Then, using eGFR as an independent variable, we 

performed a regression analysis to see if eGFR has an impact on the 

dependent variables. Similar to the findings of the correlation 

analysis, the findings of the regression analysis demonstrated that 

eGFR significantly affected the aerodynamic, glottal source, 

phoneme-level pronunciation, and prosody parameters. 

 

3.4. Discussion 
Due to the contradictory results of previous studies, as mentioned 

earlier, it was challenging to identify the characteristics of CKD 

voice. However, several metrics revealed different results from 

previous studies. Most previous studies reported larger values in the 

CKD group for jitter and shimmer, however the experimental results 

revealed lower values. In terms of fundamental frequency, 

regardless of gender, [4] reported higher F0 and [8] reported lower 

F0 in CKD groups. However, the results of the experiment revealed 

that while the F0 was lower in the CKD group for females, it was 

higher for males. It suggests that when examining CKD voice, 

gender should be considered. 

Table 5. Non-CKD vs. CKD voice analysis 

Category Parameter 
Non- 

CKD 
CKD Statistic 

p- 

value 

 

 
 

Voice 

quality 

 

Jitter_s 

 

1.83 

 

1.72 

Mann- 

Whitney 
U=9355.0 

 

0.09 

 

Shimmer_s 

 

8.73 

 

7.97 

Mann- 

Whitney 

U=9131.5 

 

0.004 

HNR_s 14.58 15.39 
t(303)=- 

2.997 
0.003 

 

 
Phoneme- 

level 

pronunciat 

ion 

 

PCT 

 

88.19 

 

85.28 
Mann- 

Whitney 

U=9078.0 

 

0.003 

 

PCC 
 

86.93 
 

84.18 
Mann- 

Whitney 
U=9342.0 

 

0.009 

 

PCV 

 

90.21 

 

87.00 
Mann- 

Whitney 

U=8809.0 

 

0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Prosody 

 
 

Med 

F0_v 

 

F 
 

206.72 
 

187.38 
Mann- 

Whitney 
U=1633.0 

 

0.007 

 

M 

 

125.58 

 

136.34 

Mann- 

Whitney 
U=2475.0 

 

0.002 

 
 

Mean 

F0_v 

 

F 

 

203.51 

 

182.03 

Mann- 

Whitney 

U=1500.0 

 

0.001 

 

M 
 

124.65 
 

134.22 
Mann- 

Whitney 
U=2474.0 

 

0.002 

Std 

F0_v 

 

F 

 

21.01 

 

29.10 

Mann- 

Whitney 
U=1614.0 

 

0.041 

Min 

F0_v 

 

F 

 

104.45 

 

82.57 

Mann- 

Whitney 

U=1778.0 

 

0.041 

Med 

F0_s 

 

M 
 

125.01 
 

136.03 
Mann- 

Whitney 
U=2302.0 

 

0.000 

 
Mean 

F0_s 

F 195.58 185.52 
t(132)=2.4 

85 
0.014 

 

M 

 

126.28 

 

137.01 

Mann- 

Whitney 
U=2374.0 

 

0.001 

Min 

F0_s 

 
M 

 
70.39 

 
75.23 

Mann- 

Whitney 

U=2802.0 

 
0.041 

Speech 

duration 

 

4.47 

 

4.61 

Mann- 

Whitney 
U=9575.5 

 

0.021 

Articulatio 

n rate 
6.33 6.13 

t(303)=2.3 

69 
0.018 

%V 73.40 73.92 
t(303)=- 

2.049 
0.041 

 

Delta-V 

 

176.30 

 

180.73 

Mann- 

Whitney 
U=9760.0 

 

0.039 

Glottal 

source 

 

H1-A3 

 

32.85 

 

30.64 

Mann- 

Whitney 
U=9526.0 

 

0.018 

 



It is interesting to observe that while there were no differences 

in a sustained vowel between groups, there were differences in the 

sentence utterance. This indicates the need to investigate CKD 

patients' voices using a range of utterances. There were differences 

between the groups even in parameters that had not been examined 

in previous studies, such as phoneme-level pronunciation, speech 

speed, rhythm, and glottal source parameters. As a result, employing 

various speech-related parameters, we should examine different 

features of CKD speech. 

 

Table 6. Non-CKD vs. CKD stage 3 vs. CKD stage 4 

publications. We'll conduct a classification experiment using a range 

of deep learning and machine learning models to detect diseases and 

predict their severity. The support vector machine (SVM) with those 

statistically significant parameters will be used initially. The SVM 

classifier is the most used classifier for automatically detecting voice 

disorders because it works better with small datasets and high-

dimensional data [32]. Because the corpus size is small in 

comparison to other classification tasks, such as image 

classification, we will explore a variety of deep learning models that 

excel on small-sized datasets, such as ResNet [33]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 

 
In this paper, a speech corpus of CKD patients has been provided. It 

is a tool for analyzing pathological voice analysis, automatically 

diagnosing diseases, and estimating disease severity. Totaling 289 

CKD speakers and 14 non-CKD speakers, we collected and 

analyzed their data. The findings revealed that the two groups 

significantly differed between voice quality, phoneme-level 

pronunciation, prosody, glottal source, and aerodynamic 

parameters. Aerodynamic, glottal source, phoneme-level 

pronunciation, and prosody parameters were significantly correlated 

with eGFR, and eGFR substantially impacted those parameters. 

In this study, only the findings for significant parameters were 

reported because the purpose of this study is to introduce the corpus 

we developed and suggest a means to use the corpus. We will 

examine CKD patients' voices in greater depth in upcoming 
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Table 7. Correlation analysis between eGFR and parameters 

 
 

Category 

 

Parameter 

Pearson 

correlation 

coefficient 

 

p-value 

aerodynamic MPT .191 0.001 

 

Glottal source 

H1-H2 .126 0.036 

H1-A1 .145 0.016 

H1-A3 .153 0.011 

Phoneme-level 

pronunciation 

PCT .215 0.000 

PCC .202 0.001 

PCV .232 0.000 

 

 

 
Prosody 

Med F0_v (F) .285 0.002 

Mean F0_v (F) .289 0.002 

Std F0_v (F) -.194 0.036 

Mean F0_s (F) .231 0.012 

Articulation 
rate 

.118 0.049 

%V -.122 0.043 

Delta-V -.136 0.024 

 
Table 8. Regression analysis between eGFR and parameters 

 
Category Parameter β p-value 

Aerodynamic MPT 0.191 0.001 

 

Glottal source 

H1-H2 0.126 0.036 

H1-A1 0.145 0.016 

H1-A3 0.153 0.011 

Phoneme-level 

pronunciation 

PCT 0.215 0.000 

PCC 0.202 0.001 

PCV 0.232 0.000 

 

 

 

 

 

 
Prosody 

Med 

F0_v 

F 0.285 0.002 

M -0.217 0.006 

Mean 
F0_v 

F 0.289 0.002 

M -0.202 0.010 

Std F0_v F -0.194 0.036 

Max 

F0_v 
M 0.166 0.036 

Med F0_s M -0.275 0.000 

Mean 

F0_s 

F 0.231 0.012- 

M -0.233 0.003 

Min F0_s M -0.185 0.020 

Articulation rate 0.118 0.049 

%V -0.122 0.043 

Delta-V -0.136 0.024 

 

Category 

 

Parameter 

CKD 

stage 

3 

CKD 

stage 

4 

 

Statistic 
p- 

value 

 
 

Voice 

quality 

Jitter_s 1.78 1.60 
H(2)= 

11.380 
0.003 

Shimmer_s 8.00 7.91 
H(2)= 
8.477 

0.014 

HNR_s 15.25 15.69 
F(2, 302)= 

5.475 
0.005 

 

Phoneme- 

level 

pronunciat 

ion 

PCT 86.18 83.39 
H(2)= 
13.539 

0.001 

PCC 85.04 82.37 
H(2)= 

10.967 
0.004 

PCV 87.98 84.94 
H(2)= 
15.351 

0.000 

 

 

 

 

 

 

 
Prosody 

 

Med 

F0_v 

F 192.15 169.58 
H(2)= 
11.028 

0.004 

M 134.35 139.38 
H(2)= 

10.724 
0.005 

 

Mean 

F0_v 

F 185.70 168.33 
F(2, 131)= 

8.305 
0.000 

M 131.84 137.85 
H(2)= 

11.589 
0.003 

Std 
F0_v 

F 28.92 29.77 
H(2)= 
7.733 

0.021 

Med 

F0_s 
M 134.02 139.09 

H(2)= 

15.004 
0.001 

 

Mean 

F0_s 

F 186.65 181.30 
F(2, 131)= 

3.238 
0.042 

M 135.76 138.91 
H(2)= 

12.928 
0.002 

Aerodyna 
mic 

MPT 11.48 9.08 
H(2)= 
12.623 

0.002 
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