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Abstract

In recent years, studies on automatic speech recognition (ASR)
have shown outstanding results that reach human parity on short
speech segments. However, there are still difficulties in stan-
dardizing the output of ASR such as capitalization and punc-
tuation restoration for long-speech transcription. The problems
obstruct readers to understand the ASR output semantically and
also cause difficulties for natural language processing models
such as NER, POS and semantic parsing. In this paper, we pro-
pose a method to restore the punctuation and capitalization for
long-speech ASR transcription. The method is based on Trans-
former models and chunk merging that allows us to (1), build
a single model that performs punctuation and capitalization in
one go, and (2), perform decoding in parallel while improving
the prediction accuracy. Experiments on British National Cor-
pus showed that the proposed approach outperforms existing
methods in both accuracy and decoding speed.

Index Terms: speech recognition, capitalization and punctua-
tion insertion

1. Introduction

In a typical setup of an ASR system, punctuation and capital-
ization of words are removed because they do not affect the
pronunciation of words. As the result, the output of ASR con-
tains purely a sequence of words or alphabet characters depend-
ing on the model type. While this output is sufficient for many
applications, such as voice commands, virtual assistants, where
speech segments are usually short and independent, it is difficult
to be used in applications that transcribes long speech segments.
It would be easier for human to read a document with proper
punctuation and word capitalization. Moreover, when ASR re-
sults are fed into NLP models to perform machine translation
(MT) or name entity recognition (NER), punctuation and word
capitalization are crucial pieces of information that can help to
boost the performance [1} 2} 13].

Regarding studies on segmentation and punctuation inser-
tion for ASR, Cho et al. [1] proposed a method to use phrase-
based translation models that consider the punctuation insertion
as machine translation tasks. The model takes input is unpuc-
tuted text and translates into a punctuated one. Zelasko et al.
[4] and Tilk et al. [5] incoporate more information from speech
signal to improve the performance. In [6} [7], dynamic condi-
tional random fields (CRFs) [8] were used to predict punctua-
tion. The works proposed by Cho et al. [9] and Tilk et al. [5]
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[ In his first appearances, Superman was considered a vigilante. ]

Proposed Method

in his first appearances superman was considered a vigilante

Figure 1: The proposed method for performing both punctua-
tion and word capitalization in one go

made use of end-to-end translation model with LSTM to pre-
dict punctuation and segmentation. They successfully demon-
strated that the end-to-end models outperform conventional ap-
proaches. While existing works are capable of predicting punc-
tuation, they share similar limitation. First, the models only
handle one task which is punctuation insertion, however, out-
put from ASR is also typically uncapitalized. While adding just
punctuation might help speech translation to determine when to
translate, other NLP tasks such as NER and PoS tagging do not
get much help because one of the key feature of these models
is word capitalization. Second, long input sentences are usually
split into fix-length and non-overlapped chunks before feeding
into the model. Although this method helps to speedup the in-
ference by processing chunks independently and in parallel, it is
prone to bad prediction of words around the chunk’s boundary
because there isn’t enough both left and right context informa-
tion in the area.

In this paper, we proposed a method based on transformer
models and overlapped chunk-merging to restore both word
capitalization and punctuation in one go as illustrated in Fig-
ure[T] The system consists of 3 components (Figure[2]- b). The
first component is an overlapped chunk spliting that takes a long
input sequence and splits them into chunks with overlap. This
process make sure that the second component, which is the cap-
italization and punctuation model, always have enough left and
right context of words to make the prediction. The last com-
ponent is the chunk-merging where the overlapped output are
combined into a single sentence. This process decides which
part of the overlap area to be removed and to be kept. The
method allows us to (1), build a single model that performs
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(b) Proposed System Architecture for Capitalization and Punc-
tuation. Because of more context, it can add comma after “law”
and upper case “congress”

Figure 2: Capitalization and Punctuation System With and
Without Overlap-ping Segments. Ground truth of this exam-
ple is “The bill does not become law, unless Congress vote to
override the veto.”

punctuation and capitalization without the need of pipeline re-
sults from one system to another, and (2), perform decoding in
parallel while improving the prediction accuracy.

2. End-to-end Model for Punctuation and
Segmentation

End2end models for punctuation works in a similar way with
machine translation tasks [10, [11]] where it takes input is a se-
quence of of lowercase, unpunctuated words and outputs a se-
quence with truecase and punctuation inserted. Figure[2a]illus-
trates the use of end-to-end models for restoring capitalization
and punctuation proposed in [12]. First, a long input text from
ASR is split into small segments and then, they are fed into
a translation model to produce an output sequence. While the
approach can take advantages of LSTM models that it is able
to learn longer context information, it usually failed to predict
truecase or punctuation of words near the segment boundary.
Previous studies [13] has pointed out that Transformer per-
forms better than LSTM models by exploiting its self-attention
layer to capture context more efficiently and speedup the train-
ing process. Transformer is basically an encoder-decoder
model. It contains multiple identical encoders and identical
decoders stacked upon each other. Each encoder has a self-
attention layer that extract surrounding words information when
a word is being encoded. This layer is followed by a feed for-
ward neural network; the networks in different encoders do not
share weights. Each decoder also has a self-attention layer and
a feed forward neural network, but to enhance the relevant parts
of input, an attention layer (similar to attention in sequence-to-

sequence model) is added between the 2 sub-components.
Transformer’s architecture was hand-crafted manually,
Evolved Transformer (ET) was created to enhance Transformer.
The idea behind ET is using neural architecture search (NAS)
[[14] to look for the most promising setup among different al-
ternatives of neural networks. To modity Transformer model
configuration toward a better one, ET uses an evolution-based
algorithm with an innovative approach to expedite the process.

3. Proposed Method

Figure 2b]describes our system architecture. The system works
as follows, first, output from and ASR module (lowercase with-
out punctuation) is fed to the Overlapped-Chunk Split module
to produce overlapped segments. Second, the Capitalization and
Punctuation Model takes the split segments and processes them
in parallel to output a list of outputs. Finally, the outputs are
merged back to form a final sentence using the Overlapped-
Chunk Merging module. Details of each modules are described
in the following sections.

3.1. Capitalization and Punctuation Model

This section describes the architecture and hyperparameters of
our models. To be certain that our method of overlapping seg-
ments are efficient regardless of models, we preformed the ex-
periments on sequence-to-sequence LSTM model and Evolved
Transformer framework one by one. Our models are imple-
mented based on Tensor2Tensor[15] and OpenNMT|[10] frame-
work. Concatenating overlapped chunks is developed as a sep-
arated module and used only after the inferring process.

To replicate the same condition, both the models have 6
hidden layers, word embedding size of 256, batch size of 4096
and trained for 200 epochs; the number of head in transformer
model is 8. Their jobs is to convert from a sequence of lower-
case text without punctuation to another sequence of capitalized
text with punctuation. With 500 MB of text data for training,
each model took 20 hours to train on an NVIDIA 2080Ti GPU.

3.2. Algorithm for Overlapped-Chunk Split and Merging

From preliminary experiments, we observed that the model
often makes mistakes when processing words near the chunk
boundary. We hypothesize that there is not enough context in-
formation around the area, leading to the poor performance of
the model. To mitigate the problem, we proposed a method to
split long input sentences into chunks with a chunk size of k
words and a sliding window of k/2 words so that 2 consecu-
tive chunks are overlapped. Later, the output of the model are
merged in the way that we only keep predictions of the model
where there is enough context information (an example is illus-
trated in Figure[2b).

While splitting input sentences into overlapped chunks is
straight-forward as we only need to decide the chunk and over-
lapped size, merging the overlapped results is more difficult.
Since the output of the overlapped region between 2 consecu-
tive chunks can be different, we need to decide which words
to keep and which word to remove to form a complete sen-
tence. According to the hypothesis above, we defined a pa-
rameter called min_words_cut that indicates the number of
words at the end the first chunk to be removed and also the
number of words to be kept at the end of overlapped words in
the second chunk. It ranges from O to the overlap size. With
the value of 0, the whole overlapped words in the first chunk
are kept while the overlapped words in the second chunk are
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Figure 3: Overlapped Chunk Concatenation

Original data:
The bill does not become law, unless houses of Congress vote
to override the veto.

Input data:
[the[bill[does[not[become[law unless[houses|of | congress|

[law[unless[houses[of | congress|vote[to[override|the[ veto. |

Plain text output:
[The[bill[does[not[become [law, |unless[houses|of| Congress|

[law,[unless[houses]| of [ Congress|vote[to[override[the| veto.

Encoded output:
U$ [L$ |L$ |L$ | LS | L, | LS| LS| LS| US
L, |[L$ [L$ |L$ |US | LS |L$ | L$ | L$ | L

Figure 4: Data samples with chunk size of 10

removed (illustrated in Figure[3). The same principle is applied
when min_words_cut equals to the overlapped size.

3.3. Data Preparation

To simulate the ASR output, we preprocess the dataset as fol-
lowed. First, the characters are cleaned up: only the alphabet
characters and three punctuation (comma, full stop and ques-
tion mark) are kept. Then, we make sure that the punctuation
belongs to the previous word, for instance, we use “laptop, mo-
bile” not “laptop , mobile”. Finally, we split data into chunks
according to the split algorithm described in the above section.
An example is shown in Figure[d]

We prepared 2 formats of training data: plain text and en-
coded text [9]. Both formats takes the lowercase text without
punctuation as input. The plain text model, as the name sug-
gest, provides output as plain text with punctuation and capi-
talization. The encoded text model, on the other hand, gives
the result in an encoded format that contains only 6 classes as
showed in Table [Tl It is obvious that the encoded format will
help the model to train and infer faster than the plain text since
its vocabulary size is fixed and very limited. However, due to
the limited vocabulary size, the decoder of the end-to-end model
does not have much information of the words and the context in-
formation. We are interested to see how this method affect the
quality in comparision with the plain text model.

4. Experiments and Results
4.1. Corpus Description

To train and evaluate the proposed method, we use the British
National Corpus (BNC) [16] that contains 100 million words in
both written and spoken language from a wide range of sources.
It is designed to represent a large cross-section of British En-

glish from late 20" century. We use the XML edition which
contains 4049 files with the size of 515 MB in total. The li-
brary NLTK [17] is used to extract 6M sentences from BNC
dataset. For the test set, we use 67 thousand sentences. The
number of label instances for each of the punctuation and cap-
italization classes available in our training and testing data set
are displayed in Table[T}

Table 1: BNC dataset detail. “U” and “L” respectively denote
uppercase and lowercase word (either first or all character);
“7, “ and “?” denotes full stop, comma, and question mark.
The dollar sign (“$”) indicates there are no punctuation coming

after the word.

Class Training Testing
U 13M 146 K

L 81 M 1M

. 4.6 M 54K

, 49M 57K

? 380K 5K

87T M M

4.2. Evaluation metric

The models (described in section 3.1) are evaluated using pre-
cision, recall, and F scores. For ease of representation, we
converted output words and punctuation to the 6-class encoded
format as illustrated in Table[Il The evaluation results indicate
how well the method can predict truecase of words and punctu-
ation restoration. Since prediction of lowercase and blank space
are good in every models, we ignore them in compare table.

4.3. Evaluation of chunk-merging

Table 2: Comparison Seq2seq LSTM with and without using
Chunk Merging for plain text format

Model Class Precision Recall F1-score

U 0.74 0.53 0.62

Chunk Merging . 0.43 0.41 0.42
Seq2seq LSTM R 0.10 0.87 0.19

? 0.49 0.22 0.30

U 0.70 0.53 0.61

Non-Chunk Merging . 0.40 0.41 0.41
Seq2seq LSTM s 0.10 0.85 0.18

? 0.45 0.20 0.28

Table [2| shows the result of the seq2seq LSTM model with
and without chunk-merging. As we can see, with the help of
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Figure 5: Fli-score on different min_-word_cut. It peak in the
middle range of overlap size (4-10). Predicting uppercase and
lowercase are stable and independent from min_word_cut, ques-
tion mark is quite sensitive with this hyper-parameter.

Table 3: Comparison Evolved Transformer with and without
using Chunk Merging for plain text format

Model Class Precision Recall F1-score

U 0.90 0.84 0.87

Chunk Merging . 0.74 0.72 0.73
Evolved Transformer s 0.61 0.51 0.56
? 0.82 0.63 0.71

U 0.84 0.79 0.81

Non-Chunk Merging . 056  0.66 0.61
Evolved Transformer R 0.40 0.42 0.41
? 0.70 0.46 0.56

chunk merging, F score on all classes are improved consis-
tently by 1%. The result indicates that the overlapped words
give the model more information to make better prediction, and
that our chunk-merging method can select good portion of the
overlap area.

The chunk-merging method even shows superior perfor-
mance over non-chunk-merging when it is used with Evolved
Transformer models. Results on Table [3]shows that the predic-
tion accuracy of the question mark raises from 56% to 71%, this
is a margin of 15% improvement and the minimum improve-
ment of the system is 6% for the uppercase class. Figure[6]dis-
plays the confusion matrix of the model. The matrix shows that
the comma is the most difficult class to predict and it is often
mis-predicted as blank characters. In addition, the matrix also
indicates that the model always predict a word (either lowercase
or uppercase) when the input is word.

The results prove our hypothesis that there is not enough
context for model to predict efficiently at the beginning and
the end of each sample and that drawback can be overcome
by adding more context with chunk overlapping and chunk-
merging method.

4.4. Evaluation on plain-text model and encoded-text
model

We further compare the result on models using plain text and
encoded text. The ones with plain text outperform the ones with
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Figure 6: Confusion matrix of Evolved Transformer model with
plain text and overlapping format

encoded text, however the model using encoded text has smaller
model size and is faster for inference. The details are in Table 4]

Table 4: Comparison of results encoded text and plain text using
Evolved Transformer

Model Class Precision Recall F1-score
Encoded Text U ggg 822 82‘;
Chunk Merging 0'50 0’40 0'44
Evolved Transformer 9 076 0.55 0.63
. U 0.90 0.84 0.87

Plain Text
Chunk Merging 0.74 0.72 0.73
Evolved Transformer i 0.61 051 0.56
? 0.82 0.63 0.71

To explore the impact of min_words_cut value to the
quality of the result, we performed the experiment on sequence-
to-sequence LSTM model with the overlapping of 15 words
and min_words_cut ranges from O to 15. The outcome
shown in Figure [3] indicates that fl-scores peak in the mid-
dle range of chunk size (4-10). It demonstrate that predictions
of uppercase and lowercase are stable and independent from
min_words_cut.

As processing chunks is paralleled and the concatenation
algorithm has O(n), this approach is fast and proved to be su-
perior to conventional methods.

5. Conclusion

In this research, we have proposed an end-to-end model that
restores both punctuation and capitalization in one go. With
chunk-split-merging, the method can splits and processes sen-
tences in parallel and merges outputs to form the final sentence
output. Experiments shows that the approach outperform exist-
ing methods that do not utilize chunk-merging by a significant
margin, especially when combining with Evolved Transformer.
In the future, we will integrate this solution with ASR model to
form an end-to-end model that can transform speech to a well
format text document.
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