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Abstract

In this paper, a novel suspect-adaptive technique for robust
Bayesian forensic speaker recognition via Maximum A Posteri-
ori (MAP) estimation is presented, which addresses Likelihood
Ratio (�� ) computation in limited suspect speech data condi-
tions obtaining good calibration performance. Robustnessis
achieved by the use of speaker-independent information, adapt-
ing it to the specificities of the suspect involved in the process.
Thus, this procedure allows the system to weight the relevance
of the suspect specificities depending on the amount of sus-
pect data available via MAP estimation. Experimental results
show robustness to suspect data scarcity and stable performance
for any amount of suspect material. Also, the proposed tech-
nique outperforms other previously proposed non-adaptiveap-
proaches. Results are presented as discrimination capabilities
(DET plots), distributions of�� � (Tippett plots) and expected
cost of wrong decisions over any prior or decision cost (���� ).
The use of such evaluation metrics allows us to highlight the
importance of�� calibration in the performance of a forensic
system.

1. Introduction
In forensic speaker recognition, a court of law may ask for
an expert opinion about a questioned recording related to a
crime and a given suspect. The aim of a forensic scientist in
such a case is to report ameaningful valuewhich assesses the
strength of the forensic evidencein this context of identification
of sources [1]. In order to assist forensic experts in criminal
trials, the Bayesian framework for evidence evaluation [2,3]
can be applied to forensic speaker recognition by means of au-
tomatic systems [4, 5]. In this case, the forensic evidence can
be regarded as the human interpretation of all the information
that the speaker recognition system can automatically obtain,
typically the similarity score between the questioned recording
and the suspect speech material. Bayesian interpretation of the
forensic evidence using automatic systems has been accom-
plished both by generative statistical models [4] and discrimi-
native techniques [5]. In this sense, it has been shown in the
literature [4] that the the accuracy of�� computation is es-
pecially affected by small sample size effects due to suspect
data scarcity. Several approaches to achieve robustness against
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lack of suspect speech have been proposed [4, 6]. In this pa-
per we propose a novel technique which achieves robustness by
exploiting speaker-independent information and suspect speci-
ficities using an adaptive approach. The proposed technique
obtains better discrimination and calibration results compared
to other non-adaptive approaches. The paper is organized as
follows. Section 2 describes the methodology for�� compu-
tation using generative techniques and automatic systems and
the related work in the field. The proposed technique, namely
within-source distribution estimation via Maximum a Posteri-
ori (MAP) adaptation, is presented in Section 3. In section 4
some results are reported showing the robustness of the tech-
nique proposed. Conclusions are drawn in section 5.

2. Generative Likelihood Ratio
Computation Using Automatic Systems

2.1. Bayesian interpretation of forensic evidences

Likelihood Ratios (�� ) can be estimated from similarity sco-
res computed by an automatic system [4]. In order to obtain
such a value, a probabilistic model based on the odds form of
Bayes’ theorem and Likelihood Ratio (�� ) computation has
been shown to be an adequate tool for assisting experts in foren-
sic sciences to interpret evidence [2, 3]. This Bayesian frame-
work for interpretation of the evidence presents many advan-
tages in the forensic context. First, it allows the forensicsci-
entists to estimate and report a meaningful�� value to the
court [1], where the numerical�� value means a support to
one of the hypotheses involved (e. g.,�� � 	 means that
there is a 6 versus 1 support to one hypothesis respect its op-
posite). Therefore, this value allows not only to discriminate
between suspects, but also to infer posterior probabilities, or
confidences[5], in order to take decisions in a transparent and
scientific way. Second, the role of the scientist is clearly de-
fined, leaving to the court the task of using prior judgements
or costs in the decision process [7]. Third, probabilities can be
interpreted as degrees of belief [8], allowing the incorporation
of subjective opinions in the inference process. Finally, there
is an extensive work in the literature related to the evaluation
of posterior opinions and�� � as a degree of support of any of
the hypotheses involved in the Bayesian inferential process [9].
Moreover, useful evaluation measures of the�� with attrac-
tive information-theoretical interpretations can also befound in
[9]. There, the�� is evaluated through the���� metric in an
application-independent way, i. e., independently of the differ-
ent prior opinions and costs involved in the decision process [7].



This evaluation metric has been recently proposed by NIST in
next 2006 Speaker Recognition Evaluation (SRE) [10] for the
evaluation of speaker recognition systems providing�� values
instead of scores. Moreover,���� can also be interpreted as in-
formation delivered from the forensic system to the user in the
context of Information Theory.

2.2. Generative Likelihood Ratio Computation

Following this approach for�� computation, we assume that
the evidence� is the similarity score between the questioned
speech and the suspect material computed with the speaker re-
cognition system at hand. Therefore:

�� �
� �� ��� � � �� �� ��	 � � � (1)

where�� (a given suspect is the author of the questioned re-
cording involved in the crime) and�	 (another individual is the
author of the questioned recording involved in the crime) are the
relevant hypotheses and� is the background information avail-
able in the case. The likelihoods

� � 
 ��� � � � and
� � 
 �� 	 � � �

are respectively known as the within- and between-source prob-
ability density functions (pdf). Between-source pdf is modelled
from scores assuming that�	 is true. Thesenon-targetor im-
postor scores are obtained comparing the questioned speech
under analysis with a population of individuals. On the other
hand, within-source distribution is estimated from scoresas-
suming that�� is true. These within-source scores are obtained
comparing different utterances from the suspect speech mate-
rial, and therefore they will be considered astarget or genuine
scores. See [4] for details.

One of the main problems in within-source estimation is re-
lated with the suspect speech data scarcity [4]. In [6], a frame-
work is proposed assuming that an accurate model of the within-
source distribution for a given suspect can be obtained using
target scores from different individuals in the same conditions.
However, it has been shown that, even in the same conditions,
the target scores coming from different speakers may present
different distributions [11]. Therefore, accuracy in within-
source estimation may be improved by exploiting suspect-
specific scores, because the�� condition claims that the sus-
pect and no other individualis the author of the questioned
recording. In [4] a different approach is proposed, namely
Within-source Degradation Prediction (WDP). This technique
combines suspect target scores with between-source distribu-
tion information to predict score variability not present in the
suspect data. Experiments presented in [4] show excellent per-
formance when limited suspect data is available. However, this
optimization technique, despite improving the discrimination
performance of the system, introduces errors in the posterior
probabilities inferred from the�� . This is because WDP aims
at fixing the within-source distribution without considering the
actual (and unknown) suspect data it claims to represent. There-
fore, the predicted within-source pdf will not represent the ac-
tual distributions, and thus the technique will incur a calibra-
tion loss. Then the information provided by the system is sub-
optimal. This effect is solved by the technique proposed below,
and is discussed in depth in another recent work from the au-
thors [12].
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Figure 1: MAP adaptation example with� � �. Global distri-
bution (dashed) representing speaker-independent information
is adapted to suspect data.

3. MAP Adaptation for Suspect-Adapted
Within-source estimation

In this work, a novel adaptive approach to within-source com-
putation is proposed, which exploits both general speaker-
independent variability and suspect specificities. Our strategy
is based on the adaptation of the speaker-independent target
score distribution to the suspect target scores via MAP esti-
mation [13]. Let
� � �
� � � � � � � 
�� � be a set ofglobal
target scores computed using speech from speakers other than
the suspect. Let
� � �
� � � � � � � 
 �� � be a set ofsuspect
target scores obtained from the suspect speech involved in the
trial. First, using Maximum Likelihood and assuming Gaussian
distributions, we estimate the pdfs

�� �
 � � � ��� � �� � and�� �
 � � � ��� � �� � from 
� and
� respectively.
�� �
 �

represents the variability of target scores between speakers. On
the other hand,

�� �
 � represents the suspect target scores vari-
ability. Assuming

� � 
 ��� � � � � �� �
 � � � ��� � �� � (see
Equation 1), we compute the within-source distribution param-
eters using MAP adaptation as follows [13]:

�� � � �� � �� � � � ��
� �� � � `� �� � � ��´ � �� � � � `� �� � � ��´ � ��� (2)

Theadaptation coefficient� is defined as

� �
�

� � � (3)

and depends on:i) the number of suspect scores
�

and ii) a
fixed relevance factor�. It is observed that when

�
is small, the

algorithm gives more importance to global data
� . As more
suspect scores are available, the adapted within-source distribu-
tion will be more adjusted to the suspect data
� . Note that if
� � � then

�� �
 � � �� �
 �. On the other hand, if� �  
then

�� �
� � �� �
 � and the resulting within-source will be
speaker-independent as in [6]. Figure 1 illustrates this technique
for � � � from 10 suspect scores and 20 global target scores.

4. Experiments
Experiments have been performed using the evaluation proto-
col proposed in NIST 2005 SRE [14]. The database used in
this evaluation has been extracted from the MIXER corpus [15],



and includes different communication channels, handsets,mi-
crophones and languages. The evaluation protocol defines dif-
ferent training and testing conditions. We carry out our experi-
ments using the ATVS GMM-MAP-UBM system submitted to
NIST 2005 SRE. KL-Tnorm technique, an efficient and adap-
tive speaker- and test-dependent score normalization technique,
has been used to normalize scores [16]. Results are presented
for the 8 conversation side training and 1 conversation sidetes-
ting task (8c-1c). Each conversation side has an average du-
ration of 2.5 minutes of speech after silence removal. In this
condition, more than 250 speakers are involved, and more than
23000 trials are performed. Details can be found in the NIST
2005 SRE Evaluation Plan in [14]. In order to obtain each sus-
pect’s target score set
� , we have selected all the target scores
for each speaker from the whole score set in the evaluation, ex-
cept the score used as evidence in each�� computation. Thus,
there will be a variable number of within-source scores for each
speaker. We have only selected suspect vs. questioned speech
comparisons having more than four suspect target scores, i.e.,� � �

. A total number of 10.618 trials have been performed
in this sub-condition. All the process has been carried out in
a gender-dependent way, and no cross-gender trials have been
performed.

Before the evaluation, a development set consisting of the
NIST 2004 SRE database was selected. Trials performed using
this development set follow the NIST 2004 SRE protocol. The
global target score set
� consists of all the target scores in this
development set. As the database used in NIST 2004 was also
a different subcorpus of MIXER,
� is supposed to accurately
represent the global variability of all suspect scores in the test
set. The population used for�� computation consists of, res-
pectively, 224 female and 170 male speaker GMM models in the
development set. KL-Tnorm is performed in the following ex-
periments through adaptive selection of speaker-dependent 75-
models cohorts.
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Figure 2: DET plots of LR values for
� � � and speaker-

dependent (� � �), speaker-independent (� �  ) and speaker
adapted (� � �) with NIST 2005 SRE data in the selected subset
of 8c-1c condition.

4.1. Performance Evaluation

The performance of the system will be presented in three dif-
ferent ways:i) DET plots [17] are used to measure the discrim-
ination capabilities of the computed�� �; ii) Tippett plots [4],
as used in NFI/TNO 2003 Forensic SRE [18], present the dis-
tributions of the�� � of each system for target and non-target
trials, showing the actual values of the�� values and the rates
of misleading evidence for each hypothesis; andiii) ���� [9]
gives the expected cost of taking wrong decisions when using
the forensic system, averaged over a wide range of applications,
i.e., prior judgements and costs. Because of its interesting prop-
erties,���� has been selected in NIST 2006 SRE as an evalua-
tion metric for systems delivering�� � instead of scores [10].

DET curves measure the discrimination performance of the
speaker recognition system in all operating points. However, the
performance of the�� � not only depends on their capability of
discriminating among speakers, but in the actual values of the
posterior probabilities (orconfidences[5]) which are inferred,
as meaningful values are required (see Section 1). Tippett plots
illustrate these values as cumulative distributions of��� under
�� and�	 plotted together. Here, the rate of misleading evi-
dence, i. e., the proportion of�� � � � under�	 and�� � �
under�� , is highlighted as a performance measure, but a sin-
gle scalar value would be desirable in order to rank and compare
overall accuracy of systems. In this sense,���� is a scalar value
which is defined as:

���� � �
���

X

�� 	���
���

���
�
„

� � �
�� �

«

� �
���

X

� � 	���
���

���
�
�� � ��� � (4)

where��� and��� are respectively the number of�� � in the
evaluation set for�� or �	 true. As it can be seen in Equation
4, a hypothesis-dependent logarithmic cost function is applied
to ��� in the test set. Therefore,���� penalizes�� � � val-
ues when�	 is true and�� � � values when�� is true. Also,
high �� values when�� is true and low�� values when�	
is true will provide a lower���� , and therefore a better perfor-
mance.

���� can also be interpreted in an information-theoretical
way. Given a system which outputs�� �, � � ���� measures the
amount of actual information that is delivered from the system
to the user (in our case, the fact finder) assuming a maximum
entropy prior (in our binary case,� ��� � � � �� 	 � � ���).
So, the lower the���� value, the higher the information deliv-
ered from the system to the fact finder. Moreover,���� includes
two different measures:i) the loss in accuracy because of the
discrimination capabilities of the system (i. e., a badrefinement
[19]) andii) a penalty to�� values which would lead to unre-
liable or misleading confidences (which is known as a lack of
calibration [19, 9]). The reader may consult [9] for a detailed
description of the effects of calibration in automatic speaker re-
cognition systems and [12] for its application to forensic spea-
ker recognition.

4.2. Results

In order to simulate a lack in the suspect data in the selected
subset of the 8c-1c condition of NIST 2005 SRE, we randomly
select subsets of

�
scores from the total number of suspect

target scores in each�� computation, which is done for dif-
ferent values of

�
. Thus, we evaluate the effect of a lack of



target suspect scores maintaining the rest of conditions. Figure
2 shows the performance of the proposed technique in terms
of DET plots in suspect data scarcity conditions (

� � �). It
is observed that the speaker-adapted within-source estimation
technique outperforms discrimination capabilities of speaker-
dependent (� � �) and speaker-independent (� �  ) methods
for all operating points. However, this improvement is not so
significant for low False Alarm rates (and DCF as defined by
NIST [14]). But the performance of the�� � depends not only
in their discrimination performance, but also in their actual val-
ues. This fact is illustrated by comparing Figure 2 and Figure
3, where the performance of the suspect-adapted within-source
estimation technique in terms of Tippett plots is shown. We ob-
serve that suspect-adapted within-source computation (� � �)
presents lower rates of misleading evidence when�� is true,
having similar rate of misleading evidence when�	 is true.
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Figure 3: Tippett plots for
� � � and speaker-dependent (� �

�), speaker-independent (� �  ) and speaker adapted (� � �)
in the same experiment of Figure 2.
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ent amount of suspect scores

�
and different relevance factors

� for the selected subset of the 8c-1c condition in NIST 2005
SRE.

On the other hand, speaker-dependent within-source estimation
(� � �) when there is a lack of suspect data leads to seri-
ously misleading�� values under�� (Figure 3). This lack
of calibration [19, 9], which is not observable in a DET plot,
represents a critical issue in forensic speaker recognition sys-
tems. This important idea is out of the scope of this paper and
is deeply addressed in [12].

Performance of the system for different relevance factors�
(Equation 3) and different number of suspect target scores

�
is shown in Figure 4. We have computed the���� for different
values of

�
and �. As a result, it can be observed that, for� � �

, the system performance tends to its optimum value
for � � �. Thus, the proposed speaker-adapted technique out-
performs speaker-dependent (� � �) and speaker-independent
(� �  ) within-source estimation. Also, if

� � �
the best

results are obtained for� � �, although similar performance
is obtained for values of� close to�. In other words, the pro-
posed technique performs properly for any amount of suspect
scores, not only in data scarcity situations. It is also seenthat
the system performance is quite stable from� � � �� to � � �.

In order to complete the analysis, Tippett plots in Figure 5
show the performance of the system using MAP adaptation for
different values of

�
and for� � �. The claimed robustness

can be observed in Figure 4: as
�

decreases, the performance
of the system is similar, especially in the sense of misleading
�� values, i. e.,�� � � values when�	 is true and�� � �
values under�� .

5. Conclusions
This paper has presented a novel, robust adaptive generative
Likelihood Ratio (�� ) computation technique for addressing
Bayesian forensic speaker recognition using automatic systems.
The proposed method adapts within-source distribution from
a speaker-independent distribution to the suspect target sco-
res using MAP estimation. The presented technique has been
shown to be robust against data scarcity and to achieve stable
performance when the amount of suspect data grows, while out-
performing both speaker-dependent and speaker-independent
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non-adaptive approaches, both in terms of DET plots as a
measure of discrimination performance, in terms of Tippett
plots as a representation of the actual�� values and in terms
of application-independent expected cost of wrong decisions
(����). Finally, the need for calibration in the performance
analysis of forensic speaker recognition systems has also been
pointed out.
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