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ABSTRACT High performance computing clusters are increasingly operating under a shared/buy-in
paradigm. Under this paradigm, users choose between two tiers of services: shared services and buy-in
services. Shared services provide users with access to shared resources for free, while buy-in services
allow users to purchase additional buy-in resources in order to shorten job completion time. An impor-
tant feature of shared/buy-in computing systems consists of making unused buy-in resources available
to all other users of the system. Such a feature has been shown to enhance the utilization of resources.
Alongside, it creates strategic interactions among users, hence giving rise to a non-cooperative game at the
system level. Specifically, each user is faced with the questions of whether to purchase buy-in resources,
and if so, how much to pay for them. Under quite general conditions, we establish that a shared/buy-in
computing game yields a unique Nash equilibrium, which can be computed in polynomial time. We
provide an algorithm for this purpose, which can be implemented in a distributed manner. Moreover,
by establishing a connection to the theory of aggregative games, we prove that the game converges to
the Nash equilibrium through best response dynamics from any initial state. We justify the underlying
game-theoretic assumptions of our model using real data from a computing cluster, and conduct numerical
simulations to further explore convergence properties and the influence of system parameters on the Nash
equilibrium. In particular, we point out potential unfairness and abuse issues and discuss solution venues.

INDEX TERMS Computing clusters, dynamics, equilibrium analysis, pricing.

I. INTRODUCTION

IN ORDER to achieve economy of scale, major research
institutions are increasingly consolidating their IT services

into High Performance Computing (HPC) clusters. HPC
clusters make use of advanced parallel computing tools,
such as Apache Hadoop [1], to join the computational
powers of multiple computing nodes and provide a pow-
erful computing environment. For example, the Boston
University Shared Computing Cluster (BU SCC) is a
heterogeneous HPC cluster that supports hundreds of
research projects [2]. The size of the BU SCC has
grown rapidly, from 189 computing nodes in 2013 to 835
nodes in 2019, to support the high demand for computing
resources.

Many HPC clusters have adopted a shared/buy-in com-
puting paradigm for their services. In particular, universities
commonly provide free (shared) resources to staffs and stu-
dents for research. Yet, in several domains (e.g., biology,
medicine, and physics), researchers have additional compu-
tational needs. As a result, many universities implement a
shared/buy-in paradigm, which allows researchers to buy-in
additional resources. Examples of academic institutions
which have adopted this paradigm include the HPC clus-
ters at Boston University [2], Northeastern University [3],
the University of Wisconsin-Madison [4], the University of
Arizona [5], and the University of California, Berkeley [6].
A shared/buy-in computing system consists therefore of

shared and buy-in computing resources. All users can make
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use of shared resources for free, typically on a fair-share
allocation basis. In addition, users can elect to acquire buy-in
computing nodes for their research projects. Buy-in nodes
are operated under a semi-exclusive policy. Priority access
is given to owners of those nodes, but excess idle capacity
is made accessible to other users (both buy-in and shared
users). In other words, the buy-in resources of a user are not
fully exclusive to itself; rather, the advantage to the buyer
is in terms of priority access to these resources. This policy
has been shown to enhance the utilization of resources and
lower the total amount of resources needed for operating the
system [7].
Due to the semi-exclusive buy-in feature of shared/buy-

in computing systems, users will interact with each other
through their decisions. The strategic interaction exists in
the sense that if a user decides to buy a large amount of
resources, others have less motivation to buy since they can
access more resources thanks to that user. It is reasonable to
assume that users in such systems behave in a rational, selfish
manner to optimize their own objectives, thus giving rise to a
non-cooperative game among users, which is the main focus
of this study. We assume that each user needs to complete a
job using the resources of a shared/buy-in computing system.
A user needs to decide whether to purchase its own buy-in
nodes, and how much it is willing to pay in that case. We
propose a non-cooperative game-theoretic model to analyze
user behavior in such systems.
The first step is to find if such systems admit a Nash equi-

librium. We establish that the game considered in this study
does admit a unique Nash equilibrium, and, furthermore, we
show that it can be computed in polynomial time.
Next, we investigate the dynamics of the game. By

establishing a connection to the theory of aggregative
games with strategic substitutes [8], [9], we manage to
prove convergence of best response dynamics from any
initial state in a general game with N players. We also
show that each player can compute its best response in
a distributed manner. This result implies that the unique
Nash equilibrium not only exists, but is also likely to be
reached. Through numerical simulations based on actual data
from the BU SCC, we confirm our theoretical model and
implied results and explore additional properties of the game.
Finally, we discuss how the system parameters influence
the game’s Nash equilibrium, and indicate the existence of
opportunities for users to abuse resources in shared/buy-
in computing systems along with guidelines for addressing
such problems.
The main contributions of this paper can be summarized

as follows:
• We formulate a new game-theoretic model to analyze
shared/buy-in computing systems.

• We establish the existence and uniqueness of the game’s
Nash equilibrium.

• We design and validate an efficient, polynomial-time
algorithm for calculating the Nash equilibrium of the
game in the general, N-player case.

• We establish convergence properties of best response
dynamics in the general, N-player case from an arbitrary
initial state.

• We investigate other convergence properties, such as
convergence speed, through numerical simulations.

• We confirm our modeling assumptions regarding the
rational behavior of users, using actual data from the
BU SCC.

• We investigate the influence of various parameters on
the Nash equilibrium and point out potential problems
in the investigated system as well as solution venues.

• Our results provide the following insights: (i) the Nash
equilibrium can be computed faster using best response
dynamics; (ii) increasing the amount of buy-in resources
that a user gets per currency unit may lead some users
to pay less and other users to pay more; (iii) users
with small workloads generally benefit more from the
system than users with larger workloads, which may
lead to the emergence of free-riders.

The rest of this paper is organized as follows. After review-
ing related work in Section II, we formalize our model for
shared/buy-in computing game in Section III. Next, we estab-
lish the existence and uniqueness of the Nash equilibrium
in Section IV. Convergence of best response dynamics is
studied in Section V. Then, in Section VI, we present numer-
ical results to illustrate, confirm and expand our theoretical
results. Conclusions are presented in Section VII.

II. RELATED WORK
Much work has been devoted to characterize the workload of
computing clusters, e.g., [10], [11]. While most of the work
does not involve shared/buy-in computing systems, a study
of workload characterization of the BU SCC is particularly
related to our work [7]. In that study, the typical behav-
ior and performance of a shared/buy-in computing system
is characterized using data traces from the BU SCC. It is
shown that, as expected, the semi-exclusive policy increases
the utilization of buy-in resources. Moreover, that study char-
acterizes several statistical patterns of the SCC. We leverage
these statistical characterizations in our simulations.
Game-theoretic approaches have been adopted widely in

areas that involve users’ strategic interaction, such as inter-
networking [12], wireless networks [13], shared spectrum
access [14], cybersecurity [15], distributed computing [16],
cloud co-location services [17], and advanced reserva-
tions [18]. The main goal in those studies has been to find
the Nash equilibrium of the respective games.
Pricing of cloud services is yet another interesting area

where game theory has proved useful. An overview of
pricing models in cloud networking with their applications
for resource management is presented in [19]. Specifically,
many pricing models are based on a game-theoretic per-
spective in order to study the strategic interaction between
cloud providers or cloud users. For example, two pricing
schemes for cloud services are discussed in [20], namely
fixed and spot-market-based pricing. It is shown that, when
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both pricing schemes are available, users employ a waiting
cost threshold to determine in which scheme to participate.
As a result, the provider’s expected revenue is lower than
when adopting only fixed pricing. In terms of shared/buy-in
computing systems, we investigate prices paid by users, and
determine that there exists a workload threshold that dictates
whether a user will elect to purchase buy-in resources.
Another study related to our work is [21], in which a

workload factoring game is investigated. In that model, users
can split their work between shared resources and private
resources. While shared resources cannot provide guaranteed
performance due to other players’ influence, they are more
powerful than private resources. Each user should choose a
strategy on how to split its workload between the private
and shared resources so as to minimize its job’s comple-
tion time. In a shared/buy-in computing system users split
their work between shared resources and buy-in resources,
which can also be seen as an instance of workload fac-
toring; however, in our framework a price is paid for the
buy-in resources, hence the primary consideration is how
to minimize the related cost. The work of [21] does not
incorporate any such economic considerations. Another dif-
ference is that our model is a continuous one, while the
model of [21] bears a discontinuity property. Hence, dif-
ferent analytical approaches are needed to investigate the
game’s equilibrium.
The dynamic behavior of the game is another important

property. If a game has a Nash equilibrium but cannot con-
verge to it in reasonable time, or cannot return to its Nash
equilibrium once deviating from it due to minor disturbance,
then the practical relevance of the Nash equilibrium may be
quite limited. In our study, we consider the dynamic behav-
ior of the game model both theoretically and numerically,
and show that the game will not only converge to its Nash
equilibrium, but also do so quite fast. It is also worth noting
that our theoretical results are confirmed through data from
a real-world system.
In the literature, some classes of non-cooperative games

have attracted particular attention due to their special con-
vergence properties; one such class is that of supermodular
games [22]. These games can be used to characterize strate-
gic complements, that is, when a player takes a higher
action in a game, other players tend to do the same [23].
Supermodular games have many interesting properties, such
as existence of a pure strategy Nash equilibrium, and they
often arise in networking contexts, for example, power
control schemes for wireless networks [24].
In contrast to supermodular games, submodular games

have received less attention. In these games, each player
maximizes a submodular function, and strategic substitutes
prevail instead of strategic complements. In general, much
less is known about this class of games. There have been
some attempts to generalize the supermodular model so
that it allows supermodular and submodular games to co-
exist, leading to the notion of S-modularity [25]. Indeed,
with S-modularity, several interesting results have been

established in the area of power control [26]. However,
S-modularity still requires supermodularity at some level.
In our context, namely of shared/buy-in computing systems,
supermodularity can only be achieved in the 2-player
case, after some transformation, but not in the general
N-player case.
Aggregative games represent another important class of

games closely related to our framework. In an aggrega-
tive game, a player’s payoff depends on the “aggregate”
of all players’ strategies rather than the opponents’ individ-
ual strategies [8]. One example is the Cournot oligopoly
model, where a player’s payoff is a function of the sum
of all player’s supply quantities. In [9], it is shown that,
in an aggregative game with strategic complements or sub-
stitutes, a pure strategy Nash equilibrium must exist (the
proof is not constructive, however, and the equilibrium may
not be unique). Under certain conditions, it is proven that an
aggregative game converges to a Nash equilibrium [9], [27].
Quasi-aggregative games are proposed in [28], which allows
the “aggregate” to take different forms other than a simple
sum. The work in [28] also extends relevant results about
Nash equilibrium and convergence using the notion of best-
response potential games [29]. In our paper, we prove that
our model is in fact an aggregative game with strategic sub-
stitutes, and thus it admits established properties of such
games.
The work in [30] analyzes a voluntary contribution model

of pure public good provision. In this aggregative game, each
player can make use of public good, and needs to decide
how much to contribute to it. This public good model is
quite general and has a wide range of applications, such as
in environmental problems [31]. While computing resources
are a type of public good, our model differs in that it captures
unique features of shared/buy-in computing systems. As a
result, we establish the existence and uniqueness of the Nash
equilibrium in a constructive manner, while the model of [30]
does so in a non-constructive manner. Moreover, the model
of [30] focuses on the comparative static properties of the
equilibrium as players’ incomes and unit cost of contribution
change, while our model focuses on aspects that are more
specific to shared/buy-in computing systems, such as how the
strategy of a user is influenced by its workload, other players’
workloads, and various system parameters (see Table 1).

III. SYSTEM MODEL
In this section, we introduce our system model and param-
eters. We illustrate practical settings of the parameters in
Section VI. The notations are summarized in Table 1.
We consider a strategic game in the form of
〈�, {Pi}i∈�,, {Ui}i∈�〉, where � is the finite set of players,
Pi is the non-empty strategy set of player i to which its
strategy pi belongs, and Ui : P→ R is the payoff of player
i given a strategy profile of all players from the joint set
P =∏i∈� Pi.

In our setting of shared/buy-in computing (SBC) games,
there are N players in total, and each player is a user that has
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TABLE 1. Notation summary.

a certain amount of work (workload) to complete (e.g., in
units of CPU-hours). Note that in real-world shared/buy-in
computing systems, a “user” may not necessarily be a single
individual. For instance, the SCC at Boston University is
managed by “projects”. In that case, each project corresponds
to a player.
Each player i has an average workload ωi and a strat-

egy pi ≥ 0, which corresponds to the price that it pays for
buy-in resources. The average workload of players is esti-
mated based on the aggregate workload measured over a long
time period. Thus, when we validate our results using BU
SCC data in Section VI, the average workload is estimated
based on the aggregate workload measured over a period of
seven months. Note that by using pi to denote the price paid
by player i, we capture the player’s decision on two levels:
(a) it will pay pi > 0 if it decides to buy resources or pi = 0
if not, and (b) how much to buy is reflected by the value of
pi. Let p = [p1, p2, . . . , pN]ᵀ denote the strategy profile of
all players. Even though prices are discrete in practice, we
make here the common assumption that they assume con-
tinuous values. In the rest of this paper, we assume without
loss of generality that players are labelled such that

ω1 ≥ ω2 ≥ · · · ≥ ωN .

Note that one can always relabel the players to satisfy this
property.
We assume that the SBC game is “fair” in the sense

that each player gets the same computing rate μ out of the
shared resources. For instance, in the BU SCC, it is the case
that each user gets by default the same allocation of shared
resources.
When a player buys in resources at a price pi, it gets an

additional computing rate of kbpi. Alongside, it provides each
of the other players with an additional computing rate kspi,
since idle buy-in resources are available to other players.
In other words, kb and ks are coefficients that convert the
price paid by player i into the corresponding computing rate

provided to player i itself and another player, respectively.
We make the reasonable assumption that kb > (N − 1)ks,
that is, for a price pi, player i gets a computing rate kbpi
that is larger than the aggregate computing rate (N − 1)kspi
provided to all other players. For instance, in the BU SCC,
the aggregate workload of buy-in resources utilized by their
owners is about twice larger than the aggregate workload of
buy-in resources utilized by other users [7].
As a result, the total computing rate of a player i is

μ + kbpi +∑j �=i kspj and its expected job completion time
for a given workload ωi is

Ti(p) = ωi

μ+ kbpi +∑j �=i kspj
, (1)

where i, j ∈ {1, 2, . . . ,N}. Note that different players do not
have to start their jobs at the same time, because we only
consider average behavior (i.e., our model suggests that a
player always provides an additional computing rate kspi to
each of the other players.)
Each player contemplates two types of costs, namely,

the job completion time and the price it pays for
buy-in resources. Specifically, the total cost of a player i
is defined as

Ci(p) = Ti(p)+ αpi

= ωi

μ+ kbpi +∑j �=i kspj
+ αpi (2)

where i, j ∈ {1, 2, . . . ,N}, and α is a coefficient that reflects
the user’s sensitivity to price versus job completion time.
Thus, the objective of each player i is to choose a proper
price pi in order to minimize its cost Ci(p).
Although we assume that a player’s objective is to min-

imize its cost, we can actually express also the payoff of
player i as the difference between its gross payoff �(ωi) by
completing its workload ωi and its cost:

Ui(p) = �(ωi)− Ci(p)

= �(ωi)− ωi

μ+ kbpi +∑j �=i kspj
− αpi,

where i, j ∈ {1, 2, . . . ,N}. Note that the gross payoff �(ωi)

is independent of the prices paid by players, so we get

argmaxpi∈PiUi(p) = argminpi∈PiCi(p),

which implies that maximizing the payoff is equivalent to
minimizing the cost.
Remark 1: For simplicity, in this paper, we assume that

the coefficient α is the same for all users. However, one can
easily relax this assumption. If each player i has a different
αi, the cost becomes

C∗i (p) = ωi

μ+ kbpi +∑j �=i kspj
+ αipi

= αi

α

(
ωiα/αi

μ+ kbpi +∑j �=i kspj
+ αpi

)

= αi

α

(
ω∗i

μ+ kbpi +∑j �=i kspj
+ αpi

)

.
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Thus, we can get a new cost function for player i by replacing
ωi with ω∗i and multiplying the entire expression by αi/α.
We note that this multiplicative constant has no bearing on
the optimal strategy that minimizes the cost function. Hence,
we can still get most of the results derived in Sections IV
and V with small modifications, including the existence and
uniqueness of the Nash equilibrium, an algorithm to compute
the Nash equilibrium, and convergence properties.
Remark 2: Note each player i gets priority access to its

own buy-in resources; hence, kbpi is close to the maximum
computing rate provided by its buy-in resources. Since a user
does not use its own buy-in resources all the time, it will
provide each of the other users with an average computing
rate kspi.
We can assume here a constant ks for all players for two

reasons: (a) the payoff of a user depends only on its own
strategy and the sum of the other players’ strategies, and
(b) the number of users N in a shared/buy-in computing
system is typically large, namely in the order of hundreds
or thousands.
In the following, we shall detail why a constant ks is

enough for calculating the players’ approximate costs. For
this, let assume that when each player i pays pi, it provides
each of the other players with an additional computing rate
ksipi instead of kspi and kb > (N − 1)ksi. Hence the actual
cost of player i is

C∗∗i (p) = ωi

μ+ kbpi +∑j �=i ksjpj
+ αpi

= ωi

μ+ (kb − ksi)pi +∑j∈� ksjpj
+ αpi.

Next, let ks be defined such that

ks
∑

j∈�
pj =

∑

j∈�
ksjpj. (3)

Since the number of players N is typically large, from the
assumption that kb > (N− 1)ks and kb > (N− 1)ksi, we get
kb 	 ks and kb 	 ksi, respectively. As a result, we have

(kb − ks)pi ≈ (kb − ksi)pi. (4)

Combining (3) and (4), we get

Ci(p) = ωi

μ+ kbpi +∑j �=i kspj
+ αpi

= ωi

μ+ (kb − ks)pi + ks∑j∈� pj
+ αpi

≈ ωi

μ+ (kb − ksi)pi +∑j∈� ksjpj
+ αpi

= C∗∗i (p),

which implies that, by assuming a constant ks, the cost of
each player is approximately the same as the actual cost.

IV. NASH EQUILIBRIUM ANALYSIS
In this section, we prove that an SBC game yields a unique
(pure) Nash equilibrium. We also provide an efficient algo-
rithm to compute the equilibrium. In the following, all the

indices i, j, �, m belong to the set {1, 2, . . . ,N}, where N is
the number of players in the game.
First, we consider the player’s best response, which is

defined as the player’s optimal strategy given all other play-
ers’ strategies. The best response strategy pi of player i is
to minimize its cost (2) given {pj | j �= i}, namely:

pi = max

⎛

⎝0,

√
ωi

αkb
− ks
kb

∑

j �=i
pj − μ

kb

⎞

⎠. (5)

Note that the strategy of player i is continuous by assump-
tion, and its best response is upper-bounded by

√
ωi
αkb

> 0
and lower-bounded by 0, which implies that Pi is non-empty
and compact.
Here, we implicitly assume that each player i knows the

sum of prices paid by other players
∑

j �=i pj in order to cal-
culate its best response. This can be achieved in a centralized
way, for example, if the service provider directly provides
information of prices paid by all users. Yet it is also possible
for players to find best responses in a distributed manner: the
players have information of system parameters μ, kb, ks and
have control over their own workloads ωi, so each player can
infer the sum of prices paid by other players by observing
its own delay (1) (completion time of a new job). Besides,
side-information that is accessible to users could also be
employed to estimate the sum of prices paid by other play-
ers. For example, basic information about buy-in computing
nodes in the BU SCC is publicly known, from which users
can estimate the sum by themselves.
A Nash equilibrium is a point at which each player in

the game is playing its best response to the other players’
strategies, which implies that a player cannot lower its cost
by unilaterally changing its strategy.
We proceed to establish the existence of the Nash

equilibrium of the SBC game.
Lemma 1: An SBC game admits a Nash equilibrium.
Proof: First, for each player i, its best response (5) is

upper-bounded by
√

ωi
αkb

> 0 and lower-bounded by 0, so pi

can take any value from [0,
√

ωi
αkb

], which implies that Pi is
compact and convex.
Next, observe that μ > 0, kb > 0, ks > 0, and pi ≥ 0

for all i, so the payoff Ui(p) of player i is continuous in p.
Moreover, taking the second derivative of payoff function
Ui(p) in terms of pi, we obtain

∂2Ui(p)

∂p2
i

= − k2
bωi

(
μ+ kbpi +∑j �=i kspj

)3
< 0,

which implies that Ui(p) is strictly concave in pi for fixed
{pj | j �= i}. The lemma then follows from [32, Th. 1].
Remark 3: In principle, it is possible to prove the unique-

ness of the Nash Equilibrium by showing that the game
satisfies the so-called “diagonally strictly concave prop-
erty” [32]. Yet, given the generality of our model, we find
it difficult to prove this property, even in the 2-player case.
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Besides, in our analysis of the Nash equilibrium, we not
only prove uniqueness, but also characterize properties of
SBC games, which leads to an algorithm for computing the
Nash equilibrium.
The next lemma shows that, at a Nash equilibrium, a

player with a larger workload will pay no less than a player
with a smaller workload.
Lemma 2: At a Nash equilibrium of an SBC game,

p1 ≥ p2 ≥ · · · ≥ pN ≥ 0.

Proof: Assume that Lemma 2 does not hold, that is, there
exist i, j, such that, at a Nash equilibrium, ωi ≥ ωj and
pi < pj. We distinguish between two cases: (A) pi = 0,
(B) pi > 0, and analyze the best response strategies of players
i and j in each of the two cases:
(A) pj > pi = 0. At a Nash equilibrium, the best response

strategies of player i and player j must be according to (5)
⎧
⎨

⎩

ks
kb
pj + ks

kb

∑
m�=i,j pm + μ

kb
≥
√

ωi
αkb

,

pj + ks
kb

∑
m�=i,j pm + μ

kb
=
√

ωj
αkb

.
(6)

(B) pj > pi > 0. At a Nash equilibrium, the best response
strategies of player i and player j must be according to (5)

⎧
⎨

⎩

pi + ks
kb
pj + ks

kb

∑
m�=i,j pm + μ

kb
=
√

ωi
αkb

,

pj + ks
kb
pi + ks

kb

∑
m�=i,j pm + μ

kb
=
√

ωj
αkb

.
(7)

However, in either case, (6) or (7) cannot hold if ωi ≥ ωj
and ks/kb < 1. Hence, Lemma 2 always holds.

From Lemma 2, we obtain the following corollary.
Corollary 1: If ωi > ωj and pj > 0, then pi > pj.
Proof: If ωi > ωj and pj > 0, then (7) must hold for player

i and player j, from which we conclude that pi > pj > 0.
In the following, we assume that the strategy profile of

all players p = [p1, p2, . . . , pN]ᵀ is from a possible Nash
equilibrium of the game. From Lemma 2, we know that
p1 ≥ · · · ≥ pN ≥ 0 at any Nash equilibrium. We further
assume that if pN = 0, then m is the minimum index such
that pm = 0; otherwise, m = N + 1.

Consider the best response strategy profile of players that
pay positive prices at a Nash equilibrium, denote it by {pi |
i < m}. According to (5), the strategy profile {pi | i < m}
must satisfy

pi + ks
kb

∑

j �=i
pj + μ

kb
=
√

ωi

αkb
, ∀ i < m. (8)

Since pj = 0 for j ≥ m, from (8) we get

pi + ks
kb

∑

j<m,j �=i
pj + μ

kb
=
√

ωi

αkb
, ∀ i < m. (9)

The next lemma establishes a property of the solution
of (9). With this property, we will be able to show that,
given m, the strategy profile {pi | i < m} is unique.
Lemma 3: Equations (9) have a unique solution.

Proof: Equations (9) can be re-written as follows:

⎡

⎢
⎢
⎢
⎢
⎣

1 ks
kb

. . . ks
kb

ks
kb

1 . . . ks
kb

...
. . .

...
ks
kb

ks
kb

. . . 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

p1
p2
...

pm−1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
ω1
αkb
− μ

kb√
ω2
αkb
− μ

kb
...√

ωm−1
αkb
− μ

kb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

We claim that (10) has a unique solution q =
[p1, p2, . . . , pm−1]ᵀ. Denote (10) by Aq = b. To prove our
claim, we will show that the columns of A are linearly
independent.
Denoting A = [a1, a2, . . . , am−1], where a1, a2, . . . , am−1

are columns vectors of A, and denoting the �-th item of
vector ai by ai(�), we have

ai(�) = 1, � = i,

ai(�) = ks
kb

, � �= i. (11)

Assume by contradiction that the columns of A are linearly
dependent. Then, there exists an i-th column that can be
expressed as a linear combination of other columns:

ai =
∑

j �=i
λjaj, 1 ≤ i, j ≤ m− 1

which yields
∑

j �=i
λjaj(i) = ai(i),

∑

j �=i
λjaj(�) = ai(�), ∀ � �= i. (12)

Combining (11) with (12), we get
∑

j �=i
λj
ks
kb
= 1, (13)

λ� +
∑

j �=i,j �=�

λj
ks
kb
= λ�

(

1− ks
kb

)

+
∑

j �=i
λj
ks
kb
= ks
kb

, ∀ � �= i.

(14)

By (13), and substituting the term
∑

j �=i λiks/kb in (14)
with 1, we get

(1+ λ�)

(

1− ks
kb

)

= 0, ∀ � �= i.

We already know that 0 < ks/kb < 1, so it must be that

λ� = −1, ∀ � �= i.

However, this contradicts (13), hence the assumption can-
not hold. We thus conclude that the columns of A are
linearly independent, which implies that A is invertible.
Consequently, the solution q = A−1b to (10) is unique,
that is, equations (9) have a unique solution.
The next lemma helps to find the value m such that pi = 0

for all i ≥ m. Intuitively, a player is not willing to pay if there
are enough free resources, which include shared resources
and idle buy-in resources from players with larger workloads.
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Lemma 4: At any Nash equilibrium of the SBC game, the
best response strategy of player m is pm = 0 if and only if

ks
kb

∑

i<m

p∗i +
μ

kb
≥
√

ωm

αkb
, (15)

where {p∗i | i < m} is the unique solution to (9).
Proof:We will prove that (15) is a necessary and sufficient

condition for pm = 0 at a Nash equilibrium.
(A) (Necessity): pm = 0⇒ ks

kb

∑
i<m p

∗
i + μ

kb
≥
√

ωm
αkb

.
From Lemma 2, at a Nash equilibrium, pm = 0 implies

pi = 0 for i ≥ m. Solving (9) yields {p∗i | i < m}, which is the
best response strategy profile for players i < m in the case
that pi = 0 for i ≥ m. Therefore, combining {p∗i | i < m}
with {pi = 0 | i ≥ m}, we get a strategy profile for all
players that is a Nash equilibrium. As a result, the best
response strategy of player m is according to (5)

pm = max

⎛

⎝0,

√
ωm

αkb
− ks
kb

∑

i �=m
pi − μ

kb

⎞

⎠

= max

(

0,

√
ωm

αkb
− ks
kb

∑

i<m

p∗i −
μ

kb

)

= 0,

which implies

ks
kb

∑

i<m

p∗i +
μ

kb
≥
√

ωm

αkb
.

(B) (Sufficiency): ks
kb

∑
i<m p

∗
i + μ

kb
≥
√

ωm
αkb
⇒ pm = 0.

We will prove this by establishing its contraposition,
namely:

pm > 0⇒ ks
kb

∑

i<m

p∗i +
μ

kb
<

√
ωm

αkb
.

Note that pm is non-negative, hence the case pm < 0 is not
possible.
If pm > 0, then the best response strategy of player m is

according to (5)

pm =
√

ωm

αkb
− ks
kb

∑

i �=m
pi − μ

kb
. (16)

Since {p∗i | i < m} is the solution to (9), we have

p∗i +
ks
kb

∑

j<m,j �=i
p∗j =

√
ωi

αkb
− μ

kb
, ∀i < m. (17)

According to the best response (5), the strategy profile
{pi | i < m} at a Nash equilibrium must satisfy (8), which
is equivalent to

pi + ks
kb

∑

j<m,j �=i
pj + ks

kb

∑

j≥m
pj =

√
ωi

αkb
− μ

kb
, ∀i < m. (18)

Summing (17) and (18) in terms of index i from 1 to
m− 1, respectively,

(

1+ ks
kb

(m− 2)

)∑

i<m

p∗i

=
∑

i<m

√
ωi

αkb
− (m− 1)

μ

kb
, (19)

(

1+ ks
kb

(m− 2)

)∑

i<m

pi + (m− 1)
ks
kb

∑

j≥m
pj

=
∑

i<m

√
ωi

αkb
− (m− 1)

μ

kb
. (20)

We observe that the RHS of (19) is equal to the RHS
of (20). Substituting the RHS of (19) with the LHS of (20)
and re-arranging terms, we get

∑

i<m

p∗i =
∑

i<m

pi + (m− 1)ks/kb
(1+ (m− 2)ks/kb)

∑

j≥m
pj

=
∑

i<m

pi + (m− 1)ks/kb
(1− ks/kb + (m− 1)ks/kb)

∑

j≥m
pj

≤
∑

i<m

pi +
∑

j≥m
pj.

Finally, from the above inequality and (16) we get

ks
kb

∑

i<m

p∗i +
μ

kb
≤ ks
kb

⎛

⎝
∑

i<m

pi +
∑

j≥m
pj

⎞

⎠+ μ

kb

= ks
kb

⎛

⎝pm +
∑

i<m

pi +
∑

j>m

pj

⎞

⎠+ μ

kb

< pm + ks
kb

∑

i �=m
pi + μ

kb

=
√

ωm

αkb
,

which completes the proof.
From Lemmas 3 and 4, we deduce that, once we find the

minimum m such that pm = 0, the solution set {p∗i | i < m}
to (9) together with {pi = 0 | i ≥ m} is the unique Nash
equilibrium. This leads to Algorithm 1 for computing the
Nash equilibrium of an N-player SBC game.
The following theorem formalizes this result.
Theorem 1: For an N-player SBC game, there exists

a unique Nash equilibrium, which can be obtained by
Algorithm 1.
Proof: If

√
ω1
αkb
≤ μ

kb
, then from Lemma 4, we know that

p1 = 0 is the best response strategy of player 1. Moreover,
from Lemma 2, we know that pi ≤ p1 = 0 for all i > 1, that
is, for players 2, 3, . . . ,N, the best response strategies are
also 0. Thus, {0, 0, . . . , 0} is the unique Nash equilibrium
of the N-player SBC game.
If
√

ω1
αkb

>
μ
kb
, then we proceed to Steps 4 − 11 of

Algorithm 1 in order to find the Nash equilibrium. The

196 VOLUME 1, 2020



Algorithm 1: Computation of the Nash Equilibrium for
an N-Player SBC Game
Output: {p1, p2, . . . , pN}

1 i← 1;
2 {p1, p2, . . . , pN} ← {0, 0, . . . , 0};
3 if

√
ω1
αkb

>
μ
kb

then

4 while i ≤ N do
5 compute {p∗1, p∗2, . . . , p∗i } by solving:

⎡

⎢
⎢
⎢
⎢
⎣

1 ks
kb

. . . ks
kb

ks
kb

1 . . . ks
kb

...
. . .

...
ks
kb

ks
kb

. . . 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

p∗1
p∗2
...

p∗i

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
ω1
αkb
− μ

kb√
ω2
αkb
− μ

kb
...√

ωi
αkb
− μ

kb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

6 {p1, p2, . . . , pi} ← {p∗1, p∗2, . . . , p∗i };
7 if i < N and ks

kb

∑
j≤i p∗i + μ

kb
≥
√

ωi+1
αkb

then

8 break;
9 end
10 i← i+ 1;
11 end
12 end

equations we need to solve in Step 5 at each iteration cor-
respond to (9) in Lemma 3. As shown there, the solution
to (9) is unique at each iteration.
Lemma 4 establishes that the best response strategy of

player m is pm = 0 if and only if (15) is satisfied. Thus,
by going from i = 1 to i = N and solving (9) iteratively
until (15) is satisfied, we find all the pi > 0, from which we
get the index m such that pi > 0 for i < m and pi = 0, i ≥ m.
In the end, we get a strategy profile from Algorithm 1, such
that, for player m,m+1, . . . ,N, their best response strategies
are 0; for player 1, 2, . . . ,m−1, their best response strategies
are per (9), hence the unique solution set {p∗i | i < m}
to (9) constitutes the best response strategies for players
1, 2, . . . ,m− 1.

In conclusion, the output {p1, p2, . . . , pN} of Algorithm 1,
which is in the form of {p∗1, p∗2, . . . , p∗m−1, 0, . . . , 0},
is a Nash equilibrium of the N-player SBC game.
Moreover, since m is unique following Algorithm 1 and
{p∗1, p∗2, . . . , p∗m−1} is the unique solution set to (9), the Nash
equilibrium {p1, p2, . . . , pN} is unique.
In general, it is considered difficult (PPAD-complete)

to find the Nash equilibrium for an N-player game [33].
However, for an SBC game, Theorem 1 shows that the
Nash equilibrium is not only unique but also can be solved
by Algorithm 1 in polynomial time, as established in the
following.
Lemma 5: The Nash equilibrium of an N-player SBC

game can be computed by Algorithm 1 in polynomial time,
specifically in O(N4).
Proof: It takes O(N) to initialize i and {p1, p2, . . . , pN}

(Steps 1 − 2). Then, the algorithm first decides whether

it needs to execute the while loop (Steps 4 − 11). If it
is executed, then, at each iteration, it takes O(N3) time to
compute the best response equation (Step 5), O(N) to update
{p1, p2, . . . , pN} (Step 6) as well as to check whether to break
the loop (Steps 7− 9), and O(1) to update i (Step 10). The
“while” loop will be executed at most N times. In conclusion,
the total running time of Algorithm 1 is upper-bounded by
O(N4).
Next, we briefly analyze the efficiency of the unique Nash

equilibrium of an SBC game. Define the social welfare as
the sum of all players’ payoffs

U(p) =
∑

i∈�
Ui(p)

=
∑

i∈�

(

�(ωi)− ωi

μ+ kbpi +∑j �=i kspj
− αpi

)

.

Consider each player i that pays a positive price pi > 0 at
the equilibrium. To maximize the player’s own payoff Ui(p),
pi has to satisfy

∂Ui(p)

∂pi
= kbωi
(
μ+ kbpi +∑� �=i ksp�

)2
− α = 0. (21)

However, to maximize the social welfare, pi has to satisfy

∂U(p)

∂pi
= kbωi
(
μ+ kbpi +∑� �=i ksp�

)2
− α

+
∑

j �=i

⎛

⎜
⎝

ksωj
(
μ+ kspi + kbpj +∑� �=i,� �=j ksp�

)2

⎞

⎟
⎠

= 0, (22)

if the solution p	
i to (22) is positive. Note that ∂Ui(p)/∂pi <

∂U(p)/∂pi, so if we substitute pi in (21) with the solution
p	
i to (22), we get ∂Ui(p)/∂p	

i < 0. Moreover, ∂Ui(p)/∂pi
is a strictly decreasing function of pi, hence we get that the
solution pi to (21) is strictly smaller than the social optimal
solution p	

i , and this holds for all players that pay positive
prices at the Nash equilibrium. In other words, to maximize
social welfare, each of these players should pay more. As
a result, the Nash equilibrium of a shared/buy-in computing
game is strictly sub-optimal, i.e., inefficient, in terms of the
social welfare.

V. SBC GAMES AS AGGREGATIVE GAMES AND
BEST-RESPONSE DYNAMICS
In this section, we establish a connection between SBC
games and aggregative games. With that at hand, we are
able to prove that an SBC game can always converge to its
Nash equilibrium.
Consider a game 〈�, {Pi}i∈�,, {Ui}i∈�〉 as defined in

Section III, where � is the finite set of players, Pi is the
non-empty strategy set of player i, and Ui is the payoff of
player i. We say that a game 〈�, {Pi}i∈�,, {Ui}i∈�〉 is an
aggregative game, if for each player i, its payoff Ui is a
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function of pi and
∑

j∈� pj, i.e., Ui(p) = Ũi(pi,
∑

j∈� pj). In
an aggregative game, the payoff of player i depends only on
its own strategy pi and the aggregate of all players’ strategies∑

j∈� pj. As a result, it is enough for the player to know
the aggregate in order to calculate its payoff, instead of the
strategy of each specific player j.
Lemma 6: An SBC game is an aggregative game.
Proof: Note that in an SBC game, the payoff function Ui

of player i can be written as

Ui(p) = �(ωi)− ωi

μ+ kbpi +∑j �=i kspj
− αpi

= �(ωi)− ωi

μ+ (kb − ks)pi + ks∑j∈� pj
− αpi

= Ũi

⎛

⎝pi,
∑

j∈�
pj

⎞

⎠.

The lemma then follows.
Next, we show that SBC games have the property of

strategic substitutes, or in other words, submodularity. That
is, each player in the game will opt to pay a higher price if
other players are paying lower prices, and vice versa.
Let p−i denote the strategy of a player j other than i, we

say that a payoff function Ui(p) has decreasing difference
in (pi, p−i) if for all p̃i ≥ pi and p̃−i ≥ p−i,

Ui(p̃i, p̃−i)− Ui(pi, p̃−i) ≤ Ui(p̃i, p−i)− Ui(pi, p−i).
Moreover, we say that the game 〈N, {Pi}i∈�,, {Ui}i∈�〉 is
submodular if (a) Pi is a compact subset of R; (b) the
payoff function Ui(p) is upper semi-continuous in (pi, p−i);
(c) and the payoff function Ui(p) has decreasing difference
in (pi, p−i).
Lemma 7: An SBC game is submodular.
Proof: Pi is a compact subset of R since it is continuous

by assumption, upper-bounded by
√

ωi
αkb

> 0, and lower-
bounded by 0, as shown in Section IV.

Given a twice continuously differentiable function
f : X→ R, f has decreasing difference in if and only if

∂2f (x)
∂xi∂xj

≤ 0, ∀ i �= j.

Consider the payoff function Ui(p) of player i. We have

∂2Ui(p)

∂pi∂pj
= − kbksωi

(
μ+ kbpi +∑� �=i ksp�

)3
< 0, ∀ j �= i.

Therefore, the payoff function Ui(p) has decreasing differ-
ence in (pi, p−i). Furthermore, note that μ > 0, kb > 0,
ks > 0, pi ≥ 0 and p−i ≥ 0 for all i, from which we can get
that Ui(p) is continuous in (pi, p−i). Thus, we deduce that
an SBC game is submodular.
Next, we will apply the results from [28] to our model,

and show that an SBC game always converges to its Nash
equilibrium through best response dynamics from all possible
initial states.

Best response dynamics correspond to a procedure
whereby, starting from an initial state, every player itera-
tively updates its strategy according to its best response (5).
If an SBC game converges to a specific state through best
response dynamics, then we know that every player must be
playing its best response strategy, i.e., the Nash equilibrium
is reached.
More specifically, we assume that best response dynamics

acts in the following way: in each round, players update
their strategies once one after another according to their
best responses (5) given other players’ strategies, and the
process continues as long as an equilibrium is not reached.
Theorem 2: Through best response dynamics, an SBC

game will converge to its unique Nash equilibrium from all
possible initial states.
Proof: Firstly, we have proven that an SBC game is an

aggregative game (Lemma 6). For each player i, its strategy
set Pi is compact, and the payoff function Ui(p) is continuous
(as shown at the beginning of Section IV).
Secondly, the assumptions 1’ and 2 of [28] are satisfied.

Indeed, as explained in Remark 2 of [28], since the strategy
sets Pi in our model are one-dimensional, Assumption 1’
is essentially equivalent to submodularity which has already
been proven (Lemma 7). Assumption 2 implies that the shift
function for aggregating, which is a linear sum

∑
j∈� pj in

our model, exhibits strictly increasing differences in pi and∑
j∈�,j �=i pj, possibly after a strict monotone transformation.

As explained in Example 3 of [28], it can be shown that
with a monotone transformation h(z) = exp (z), the linear
sum will exhibit strictly increasing differences.
Thirdly, best response dynamics will yield an admissi-

ble sequential improvement path defined in [28]. In each
round, each player updates its strategy according to its best
response, which implies that each player moves to a strictly
preferred strategy if it exists, or stay with the previous strat-
egy otherwise. Note that there is no indifference path in our
model, since the best response (5) is single-valued. The path
is admissible in the sense that each player gets the chance
to move in each round, so that following the path everyone
can keep updating until the Nash equilibrium is reached.
In conclusion, an SBC game satisfies all requirements

of [28, Th. 2], thus will always converge to its unique pure
Nash equilibrium through best response dynamics. Note that
we have already proved the uniqueness of the pure Nash
equilibrium. Moreover, the convergence was proven by con-
sidering limit conditions of best response dynamics, which
implies the initial states have no influence to the convergence
property. Hence, an SBC game always converges from all
possible initial states.
Remark 4: In our model, we assume the aggregate to be

a linear sum of all players’ strategies, which simplifies the
analysis and helps us establish the existence and uniqueness
of the game’s Nash equilibrium in a constructive manner. The
results we get with the linear sum aggregate assumption have
been validated using BU SCC data in Section VI. However,
it might be worth allowing the aggregate to take a more
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general and complex form, so that it can apply to more
scenarios. Note that, even if we relax the assumption about
the aggregate, the convergence properties of the game still
hold as long as the game is submodular and the aggregate
exhibits a strictly increasing difference, possibly after a strict
monotone transformation.

VI. NUMERICAL RESULTS
In this section, we provide numerical results to illustrate, con-
firm and expand on our theoretical results. We first describe
and justify the setting of simulation parameters. Next, we
thoroughly evaluate the dynamic behavior of the SBC game.
We show that the game always converges, when players
update their prices either sequentially (i.e., one by one) or
in parallel. Next, we empirically evaluate the computational
complexity of Algorithm 1 and indicate that it is indeed
polynomial, and the order of growth is upper-bounded by 4,
as stated by Lemma 5. Next, we verify Lemma 2, namely
that prices paid by players are non-decreasing with their
workloads, using actual data from the BU SCC. Last, we
provide insight on the impact of model parameters on the
resulting Nash equilibrium, and discuss design guidelines
based on our analysis.

A. SIMULATION
In this subsection, we evaluate the results of Sections III
and IV through simulation of best-response dynamics. We
first discuss the simulation set-up.

1) SET-UP

We choose the BU SCC as a case study. The SCC has
about 500 active projects running, so we simulate the best
response dynamics of an SBC game with N = 500 players to
investigate its behavior. In each round, each player updates
its strategy once by playing its best response given the other
players’ strategies. We consider both the cases of sequential
updates (i.e., players updates their strategies one after the
other as in our definition of best response dynamics) and
that of parallel updates, whereby all players update their
strategies in parallel.
We classify users’ jobs into three categories [7]: shared

jobs are those running on shared nodes, buy-in jobs are
those running on a user’s own buy-in nodes, and public jobs
are those running on other users’ idle buy-in nodes. As of
2015-2016 [7], the shared workload on the BU SCC was
2.43× 107 CPU-hours, the buy-in workload was 1.42× 107

CPU-hours, and the public workload was 7.51× 106 CPU-
hours. We note that the aggregate shared, buy-in and public
computing rates correspond respectively to Nμ, kb

∑
pi, and

(N − 1)ks
∑
pi, in our model.

Based on the workload characterization of [7], we assume
that the project’s workload (i.e., each players’ job size in
the game) is a random variable that follows a log-normal
distribution. Specifically, let 
 denote the workload random
variable, then

P(
 ≤ ω) = 1

2
+ 1

2
erf

[
ln ω − ν

σ

]

, (23)

where erf stands for the error function. In our simulation,
we set ν = 7.37 and σ = 5.69. In practice, any shared/buy-
in computing systems has a maximum workload that it can
sustain. In our simulation, we set that value to 5 × 106

CPU-hours. If a random sample exceeds that value, that
sample is discarded. As a result, the median and mean of
sample workloads are 906.87 and 1.77 × 105 CPU-hours,
respectively.
We assume that the shared, buy-in and public nodes

are used for approximately the same time in total, so that
the ratio among workloads is approximately the same as
the ratio among the computing rates reported above, i.e.,
Nμ : kb

∑
pi : (N−1)ks

∑
pi ≈ 24.3 : 14.2 : 7.5. Therefore,

we firstly set α = 1 and kb = 30, then μ = 775 and
ks = 0.0030 accordingly to satisfy the ratio above. Note
that the prices pi that we obtain from simulation do not
correspond exactly to how much players actually pay, but
rather reflect their qualitative behavior (a different value of
α would lead to different prices.)

2) NASH EQUILIBRIUM AND CONVERGENCE SPEED

Recall that best response dynamics is a procedure through
which every player updates its strategy iteratively according
to its best response (5). We investigate the best response
dynamics of the SBC game following two updating rules:
sequential updating and parallel updating. In the sequential
updating case, players update their strategies one by one
during each round. In the parallel updating case, players
update their strategies at the same time during each round,
which implies that each player makes its decision according
to the strategy profile of all the other players in the previous
round. Note that the sequential updating is exactly the same
as the best response dynamics defined in Section V. The
parallel updating case could represent the case where players
update their strategies in a distributed manner. Since there
may be some delay when inferring the latest strategies of
other players, players simultaneously update their strategies
in one round based on past information. In the following,
each simulation is run 100 times, where each run uses a
different random seed.
We first consider the case of an SBC game with 500

players and an “empty” initial state, i.e., the prices of all
the players are initially set to 0. We assume that the game
converges when the L2-norm of the players’ strategy profile
p = [p1, p2, . . . , pN]ᵀ changes by less than 10−6 in two
consecutive rounds.
The simulations show that, in all the runs, the game con-

verges to the Nash equilibrium predicted by Theorem 1.
In the sequential updating case, the game converges to the
Nash equilibrium within 6 ± 1 rounds (specifically within
6 rounds in 89% of the cases and 5 rounds in the remain-
ing 11%); in the parallel updating case, the game converges
within 11 ± 1 rounds (specifically within 10 rounds in 4%
of the cases, 11 rounds in 91% of the cases, and 12 rounds
in the remaining 5%), as also shown in Table 2. One of the
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TABLE 2. Number of rounds needed for convergence from an empty initial state. The

numbers in parenthesis correspond to the percentage of cases, based on 100 runs.

TABLE 3. Number of rounds needed for convergence from an arbitrary initial state.

The numbers in parenthesis correspond to the percentage of cases, based on 100 runs.

TABLE 4. Average number of rounds needed for convergence vs. number of players.

simulation runs for the sequential updating case is illustrated
in Fig. 1(a).
Next, we examine the convergence of the game’s best

response dynamics from an arbitrary initial state. We ini-
tialize the prices with random values that are uniformly
distributed between 0 and 300. After 100 runs for both
sequential and parallel updating, we find that the game
always converges to the Nash equilibrium, although it gen-
erally takes slightly more rounds than from an empty initial
state. In the sequential updating case, the game converges
to the Nash equilibrium within 7 ± 1 rounds, while in the
parallel updating case, the game converges with in 12 ± 1
rounds, as detailed in Table 3. One of the simulation runs
for the sequential updating case is shown in Fig. 1(b),
and one of the simulation runs for the parallel updating
case is shown in Fig. 1(c). As expected, in all the cases
above, the Nash equilibrium coincides with the output of
Algorithm 1.
The fast convergence of the game may be explained as

follows. The only term in the best response (5) of player i that
changes between two consecutive rounds is ks

kb

∑
j �=i pj. If all

players are not too far from the equilibrium, the difference

 ks
kb

∑
j �=i pj will be relatively small compared with the best

response pi in the previous round. Moreover, since the best
response of player i has two other unchanged terms

√
ωi
αkb

and μ
kb
, one round of best response dynamics will bring every

player not too far from the equilibrium (note that, in parallel
updating case, players do not have the latest information so
it takes two rounds). As a result, one can expect that after
the second round, the players’ strategies should not change
much.
Next, we investigate the relationship between the conver-

gence speeds (in terms of number of rounds till convergence)
and the number of players. Again, we simulate the best
response dynamics of the game from arbitrary initial states
for 100 times. Detailed results for the both sequential and
parallel updating cases are shown in Table 4. We find that
the game converges fast, and the number of rounds required
increases slowly with the number of players in the game.

FIGURE 1. Convergence of best response dynamics.

3) TIME COMPLEXITY

In this subsection, we investigate the time complexity for
computing the Nash equilibrium. We compute the Nash equi-
librium of the game with number of players ranging from
N = 400 to N = 6000 in two ways: using best response
dynamics from an empty initial state and with sequential
updates, as done in the previous subsection, and computing
the equilibrium using Algorithm 1. The details on the hard-
ware and software used for this simulation are as follows:
OS: Windows 10 Pro, CPU: AMD Ryzen 5 2600x 6-Core
Processor, RAM: 16 GB, Software: MATLAB R2018b.
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FIGURE 2. Time complexity of computing the Nash equilibrium using (1) best
response dynamics and (2) Algorithm 1.

The corresponding results are shown in Fig. 2 on a loga-
rithmic scale. We perform linear regression to the logarithms
of the data, through which we empirically find that the
time complexity of best response dynamics scales as (N2.05),
while the time complexity of Algorithm 1 scales as (N3.14).
The time complexity of best response dynamics is as

expected, namely: our simulations showed that the game con-
verges in a nearly constant number of rounds. Considering
that there are N players and it takes O(N) to calculate one
player’s strategy according to best response (5) during each
round, the overall time complexity should roughly be O(N2).
However, it is hard to provide an exact result since we
do not precisely know how many rounds are needed for
convergence. We also note that the actual complexity of
Algorithm 1 is below the upper bound of O(N4) provided
by Lemma 5, hence the upper bound is slightly pessimistic.
Regardless, using best response dynamics is a faster way to
compute the Nash equilibrium.

4) INFLUENCE OF PARAMETERS

In this subsection, we choose three players out of the 500
players in the game as representatives, and change the values
of the parameters μ, kb, ks, {ωi} in order to investigate the
influence of these parameters on the game’s Nash equilib-
rium. We set the job sizes of the chosen three players as
{ω1, ω2, ω3} = {2×105, 1×105, 5×104}. We scale each of
the four parameters by a multiplicative factor β to evaluate
the impact of the three players’ strategies at the Nash equi-
librium. Fig. 3 presents the results. We shall discuss these
findings in the model analysis subsection.

B. VALIDATION OF RATIONAL BEHAVIOR USING
BU SCC DATA
Similar to many prior works on game theory, our paper
assumes that users are fully rational. Thus, the selected strat-
egy of each user is based on the action that maximizes its
payoffs, as provided by Eq. (5) in our case. This equation
forms the basis of Lemma 2 and the rest of this paper,
whereby the price paid by a user is non-decreasing with its
workload.

FIGURE 3. Influence of parameters. β is a multiplicative scaling factor of the
parameter under study.

We next validate this assumption using BU SCC data
collected from January 2019 to July 2019. As mentioned
before, projects in BU SCC correspond to players in our
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FIGURE 4. Number of buy-in nodes owned by a project vs. the workload of the
project in the BU SCC [2].

TABLE 5. Number of buy-in nodes owned vs. average and median workload (in the

units of cpu-hours) of projects in the BU SCC [2].

model. We investigate the relationship between the number
of buy-in nodes owned by a project (which is commensu-
rate with the price paid) and the project’s total workload.
A box plot is presented in Fig. 4, where the lowerbound
and upperbound of a box represents the first and third quar-
tile of the data, respectively, and the red line inside a box
represents the median. The ends of the whiskers in the box
plot represent the lowest and highest data still within 1.5
interquartile range (IQR) of the lower and upper quartile,
respectively [34]. Table 5 shows detailed information about
the average and median workloads. We generally observe
a positive correlation between the number of buy-in nodes
and the workload, which coincides with our basic assump-
tion that a player with larger workload tends to pay more
for buy-in resources.
We also note two interesting phenomena: (i) There are

many “outliers” in Fig. 4, which implies that some projects
are more price-sensitive than others (i.e., they have larger α).
In other words, they rather endure longer job completion
times than paying more; (ii) The players that own zero or
one buy-in nodes have roughly the same amount of work-
load. Specifically, the average and median workloads of a
project that owns zero buy-in node are 42035 CPU-hours
and 3206.5 CPU-hours, respectively, while the average and
median workloads of a project that owns one buy-in node
are 76733 CPU-hours and 2638 CPU-hours, respectively.
Indeed, it appears that some projects that own one buy-in
node have little demand for it. However, this situation is rare
when projects own at least two buy-in nodes.

C. MODEL ANALYSIS
1) INFLUENCE OF PARAMETERS

As established by Theorem 2, an N-player SBC game yields
a unique Nash equilibrium, which can be explicitly calculated

given the parameters μ, kb, ks, ω1, ω2, . . . , ωN . We next pro-
ceed to consider how these parameters influence the Nash
equilibrium.
The parameters μ, kb, ks are set by the system provider.

The parameter μ reflects the amount of shared resources. As
expected, the larger μ is, the less players are willing to pay,
as shown in Fig. 3(a). With a too large μ, no player will
choose to buy in since they already have access to enough
resources; with a too small μ, players are forced to buy
in, but their costs may be too high, which may makes a
shared/buy-in system not very attractive.
The parameter kb measures how many resources a player

can get by paying a price. A larger kb implies that players
get more buy-in resources for the same price. The influence
of kb is shown in Fig. 3(b), which is subtle and depends
on the workload of each player. It is hard to tell whether a
player will pay more or less as kb increases, however, we
do observe that players with lower workload will tend to
pay more while players with larger workload will tend to
pay less. We get similar insight by analyzing the players’
best response strategies (see Eq. (5)): pi is not a monotonic
function of kb, but for a player i with a larger workload ωi,
the derivative of its best response strategy pi with respect to
kb is more likely to be negative, i.e., pi is more likely to be
a decreasing function of kb, which explains why the price
paid by player 1, who has the largest workload among the
three players, starts decreasing earlier as the scaling factor
β increases in Fig. 3(b).

The parameter ks measures how much a player’s buy-in
resources can benefit other players. A larger ks implies that a
player can make more use of other players’ buy-in resources.
The influence of ks is shown in Fig. 3(c). As ks increases,
users can access more “public” resources made available by
idle buy-in nodes, and hence are less likely to purchase their
own buy-in resources. This can also be explained by analyz-
ing players’ best response strategies (see Eq. (5)): note that
pi ≥ 0 for all i, thus pi is always a non-increasing function
of ks. Another interesting result is that, as ks increases, pi
decreases at a slower speed since the absolute value of the
derivative of pi with respect to ks, which is

∑
j �=i pj/kb, gets

smaller.
The set {ω1, ω2, . . . , ωN} corresponds to the workloads

of the players. Given μ, kb, ks, as ωi gets larger, player i
needs more resources and will tend to pay more for buy-in
resources, as indicated by Lemma 2. How a player perceives
the parameters μ, kb, ks is also relevant to its workload.
When μ, kb, ks changes, all player strategies will change
accordingly, however, the strategy of a player with a larger
workload will change relatively less. The influence of ωi is
shown in Fig. 3(d).

2) POTENTIAL TRAPS AND DESIGN GUIDELINES

Define players that pay strictly positive prices, i.e., pi > 0,
as “heavy users”, and players that do not pay, i.e., pi = 0, as
“light users”. Heavy users have to buy in resources in order to
minimize their costs. Although heavy users benefit each other
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through buy-in resources, users with larger workloads benefit
relatively less than users with smaller workloads. For exam-
ple, consider two heavy users with workloads ω1 and ω2,
where ω1 > ω2, then user 1 gets additional computing rate
ksp2 from user 2, while user 2 gets additional computing rate
ksp1 from user 1. From Lemma 2, we know that p1 > p2, as
a result, user 1 gets relatively less additional resources even
though it needs more resources due to its larger workload. On
the other hand, shared resources and buy-in resources from
other users can satisfy the needs of light users. Hence their
best response strategy is to pay nothing, which implies that
light users benefit the most from the shared/buy-in feature.
Thus, light users behave as “free-riders” in the system.

In essence, this game incorporates some inherent unfairness,
since a user with smaller workload relatively experiences
a larger benefit. Moreover, a heavy user may be tempted
to lower its cost by splitting its job into M > 1 shares,
and then join the system as M light users, each being a
free-rider. A possible solution for preventing users from
such an artificial split of jobs is to charge all users of
the system (e.g., in the University of Illinois at Urbana-
Champaign Campus Cluster [35], light users still need to
pay for shared resources). Another solution is to check the
users’ identity before being admitted into the system. For
example, the SCC at Boston University can only be accessed
by valid faculty and research staff members, hence a user
cannot (easily) split its job in this system.

VII. CONCLUSION
We proposed a game-theoretic model for shared/buy-in
computing systems, which provides a formal method to ana-
lyze the behavior of such systems. We investigated both
static and dynamic properties of the game. We established
that the game admits a unique Nash equilibrium, and, fur-
thermore, we provided a polynomial-time algorithm for
computing it. We then established that, regardless of the
initial state, the game converges to the Nash equilibrium
through best response dynamics. This result was obtained by
showing that a SBC game belongs to the class of aggregative
games.
Through numerical simulations, we explored additional

convergence properties of the game and the effect of the
system parameters on the structure of the Nash equilib-
rium. In particular, we found that the Nash equilibrium
can be computed faster using best response dynamics than
through Algorithm 1. However, only Algorithm 1 prov-
ably provides the exact answer in a deterministic amount
of time. Another interesting insight from the paper is that
increasing the amount of buy-in resources that a user gets
per currency unit (i.e., increasing the parameter kb) may
lead some users to pay less and other users to pay more.
We also investigated potential traps in the design of SBC
systems, including the possible emergence of free-riders, and
suggested corresponding guidelines for addressing this issue.
Our work is an initial attempt to formally understand

the behavior of practical shared/buy-in computing systems.

As such, it opens several interesting directions for future
research, in particular: (i) investigating the perspective of
social welfare, most notably the price of anarchy of the game;
(ii) adding the service provider to the game, including its
objective and strategic behavior; (iii) relaxing the assumption
of a linear sum within the cost function into a more general
aggregate form, in order to generalize our results. One of the
goals of shared/buy-in systems from a provider’s perspective
is to consolidate IT services (all the users in an organization
use the same platform). A system where light users would be
charged for resource usage (which may appear fairer/more
efficient) may deter such users from entering the system in
the first place and defeat to some extent the purpose of the
system.
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