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ABSTRACT Nowadays, deep neural networks (DNN5s) are the core enablers for many emerging edge Al
applications. Conventional approaches for training DNNs are generally implemented at central servers or
cloud centers for centralized learning, which is typically time-consuming and resource-demanding due to
the transmission of a large number of data samples from the edge device to the remote cloud. To overcome
these disadvantages, we consider accelerating the learning process of DNNs on the Mobile-Edge-Cloud
Computing (MECC) paradigm. In this paper, we propose HierTrain, a hierarchical edge Al learning
framework, which efficiently deploys the DNN training task over the hierarchical MECC architecture.
We develop a novel hybrid parallelism method, which is the key to HierTrain, to adaptively assign the
DNN model layers and the data samples across the three levels of the edge device, edge server and cloud
center. We then formulate the problem of scheduling the DNN training tasks at both layer-granularity
and sample-granularity. Solving this optimization problem enables us to achieve the minimum training
time. We further implement a hardware prototype consisting of an edge device, an edge server and a
cloud server, and conduct extensive experiments on it. Experimental results demonstrate that HierTrain

can achieve up to 6.9x speedups compared to the cloud-based hierarchical training approach.

INDEX TERMS Edge Al deep learning, fast model training, mobile-edge-cloud computing.

. INTRODUCTION

N RECENT years, deep learning has become a popular

research topic and been integrated into a large number
of applications, including image recognition [1], natural lan-
guage processing [2], recommendation systems [3], to name
a few. Moreover, empowered by edge computing, many real-
time deep learning based edge Al applications are emerging
in various domains such as smart healthcare, smart robots,
and industrial IoT [4].

As a data-driven approach, deep learning based edge Al
typically requires to have adequate data samples, from which
deep neural networks (DNNs) are trained to extract fea-
tures or attributes. These data samples are often generated
by mobile and IoT devices at the network edge that have
limited communication and computation capabilities, such as
mobile phones, smart watches, smart robots, etc. Therefore,

how to efficiently utilize the communication and computation
capabilities of edge devices to train DNNs with the gener-
ated data samples will be a vital issue for many emerging
edge Al applications.

One solution to this problem is cloud computing [5], [6],
which allows edge devices to offload their data samples to
a cloud center. Then, the resource-intensive task of training
a DNN is conducted in the cloud center, often implemented
in parallel on multiple computing units. Despite cloud com-
puting provides almost unlimited computation resources,
the major concern comes from the high data transmission
latency and overhead over the Internet, which slows down
the training process and hinders the real-time model update.
Another solution is to train the DNN in a fully decentralized
peer-to-peer manner [7], [8]. This approach avoids the com-
munication overhead between the edge devices and the cloud
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FIGURE 1. Training a DNN: (a) on the cloud center; (b) on the edge devices in a fully
decentralized peer-to-peer manner; (c) on the mobile-edge-cloud hierarchical
architecture. Here (a) and (b) belong to horizontal training, while (c) is hierarchical
training.

center. Nevertheless, when the computation resources of the
edge devices are limited, solely relying on them to train the
DNN is impractical, or may cause significant computation
delay. We classify these two approaches as horizontal train-
ing, as the computation tasks are executed over multiple
workers at the same system level (either the computing
units in the cloud center, or the edge devices in the fully
decentralized peer-to-peer network).

There are also hierarchical training approaches to efficient
training of DNNs. JointDNN is proposed in [9], which trains
some layers of a DNN on an edge device and the other
layers on the cloud center. However, the latency between
the edge device and the cloud center is still the major factor
to limit the training speed. The emerging edge computing
paradigm provides another option, in which the edge servers
are in between of the edge devices and the cloud center,
and can fulfill computation tasks as close as possible to
the data sources. Comparing to the communication latency
between the cloud center and the edge devices, the latency
between the edge servers and the edge devices is much
lower. These excellent properties motivate the emerging edge
learning scheme of jointly training a DNN with edge devices
and an edge server [10]. Edge learning focuses on training
a DNN model at the network edge near the data sources.
The common paradigm of edge learning in the literature
(e.g., [11], [12]) is built upon the idea of federated learning
(FL) such that each edge device trains a model based on local
data, and then these model updates are aggregated at an edge
server. The primary objective is to achieve privacy-preserving
knowledge sharing among the devices via a joint model
learning process. Different from this, this paper considers
the fast learning with respect to a specific edge device and
leverages a multitude of mobile-edge-cloud resources for
training acceleration.

Fig. 1 illustrates the differences between the horizontal
training and hierarchical training paradigms. Observing that
the works in [9] and [10] only consider two levels in the
mobile-edge-cloud hierarchical architecture — the device and
cloud levels in [9] and the mobile and edge levels in [10],
the drawback of them is that they did not fully utilize the
communication and computation resources of all the three
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levels. As communication latency between mobile and edge
levels is generally low and the computation resource at
the cloud level is abundant, a holistic framework that fully
exploits the communication and computation resources of
all the three levels can definitely leash the great potentials
of mobile-edge-cloud computing for accelerating edge Al
learning.

Motivated by this, we propose a hierarchical train-
ing framework, abbreviated as HierTrain, which efficiently
deploys the DNN training tasks over the mobile-edge-cloud
levels and achieves minimum training time for fast edge Al
learning. In this paper, our contributions are summarized as

follows.
1) We develop a novel hybrid parallelism method, which

is the key to HierTrain, to adaptively assign the DNN
model layers and the data samples to the three lev-
els by taking into account the communication and
computation resource heterogeneity therein.

2) We formulate the problem of scheduling the DNN
training tasks at both layer-granularity and sample-
granularity. Solving this minimization problem enables
us to achieve the minimum training time.

3) We implement and deploy a hardware prototype over
an edge device, an edge server and a cloud server,
and extensive experimental results demonstrate that
HierTrain achieves superior performance, e.g., achiev-
ing up to 6.9x speedup compared to the cloud-based
hierarchical training approach.

We should emphasize that, different from many existing
works focusing on edge Al inference [13], in this study
we promote HireTrain for addressing the important issue of
edge Al training acceleration. This is due to the emerging
demand that many edge Al applications (e.g., smart robots
and industrial IoT) require both real-time performance and
continuous learning capability of fast model updating with
fresh sensing/input data samples and being adaptive to com-
plex dynamic application environments. On the other hand,
HierTrain is along the emerging line of promoting in-network
model training such as edge learning for intelligent B5G
networking [14] for mitigating the significant overhead and
latency of transferring the data of massive size to the cloud
for remote model training.

It should be noted that our framework can be directly
applied to a DNN which can be represented as an ordered
sequence of layers, such as VGG [15], YOLO [16],
MobileNets [17], etc. Generally speaking, the key idea of
hybrid parallelism of HierTrain can be also useful for RNN.
However, due to the complicated structure of RNN, split-
ting the RNN learning task over multiple workers is much
more challenging. We will consider extending our approach
to support RNN in the future work.

Il. BACKGROUND & MOTIVATION

In general, there are three computing workers/nodes for DNN
training in the mobile-edge-cloud hierarchical system: edge
device, edge server and cloud center, which have diverse
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FIGURE 2. lllustration of the three parallelism methods. Each row of circles represents a layer in the trained DNN.

communication and computation capacities. To jointly train
a DNN, we need to determine how to split the training
data samples and the trained DNN across the three work-
ers. Below, we introduce two traditional methods, model
parallelism and data parallelism, as well as our proposed
hybrid parallelism method. The three parallelism methods
are illustrated in Fig. 2.

1) Model Parallelism: Because a DNN is typically stacked
by a sequence of distinct layers, it is natural to assign the
layers to the workers; see Fig. 2(a). In the model parallelism
method, each worker holds multiple layers and is in charge
of updating the corresponding model parameters. Therefore,
when training the DNN with the back-propagation rule in
the stochastic gradient descent (SGD) algorithm [18], the
workers need to communicate to exchange the intermediate
results. The works of JointDNN [9] and JALAD [19] demon-
strate the effectiveness of the model parallelism method.
However, since the layers of the DNN are trained sequen-
tially, when one worker is computing the others must stay
idle. Thus, the computation resources are not fully utilized
in the model parallelism method.

2) Data Parallelism: The data parallelism method splits
the data samples to the workers, trains one local copy of
DNN in every worker, and forces the local DNNs to reach
a consensus along the optimization process. To implement
SGD, the workers need to exchange either the local stochas-
tic gradients or the local model parameters from time to
time, as depicted in Fig. 2(b). The works of [20] and [21]
show that the data parallelism method is able to accel-
erate the DNN training when the data are collected and
split to multiple computing units within the cloud cen-
ter. Nevertheless, the requirement of transmitting the local
stochastic gradients or the local model parameters, whose
dimensions are the same, leads to heavy communication
overhead when the size of DNN is large. Therefore, the
data parallelism method is not communication-efficient in
the mobile-edge-cloud architecture.

3) Hybrid Parallelism: Observe that the backend lay-
ers in most DNNSs, such as convolutional neural networks
(CNNs), are fully connected layers and contain the majority
of parameters. This fact motivates us to improve the model
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parallelism method through letting all the backend layers be
trained by one worker while the frontend layers be trained
by multiple workers. Therefore, the workers just need to
exchange a small fraction of the local stochastic gradients
or the local model parameters to train the frontend layers, as
well as transmit the intermediate results to train the backend
layers, thus the communication latency between workers is
largely reduced. As shown in Fig. 2(c), the backend layers
are only trained by workers. Some frontend layers are trained
by worker, and workers, while some are jointly trained by
all the workers. Meanwhile, similar to the data parallelism
method, training data samples are split and assigned to all
the workers according to their computing resource hetero-
geneity, to further balance the workloads across the device,
edge and cloud.

In order to apply the hybrid parallelism method to accel-
erate the training of DNNs over the mobile-edge-cloud
architecture, we need to optimize the assignments of the
DNN layers and the data samples to the three workers.
To this end, we propose HierTrain, a hierarchical training
framework, as follows.

lll. HIERTRAIN FRAMEWORK

In this section, we present the HierTrain framework, which
jointly selects the best partition points of the given DNN
model and determines the appropriate number of data
samples delegated to different workers in a mobile-edge-
cloud hierarchy. Fig. 3 presents the system overview of
the HierTrain framework, which consists of three stages:
profiling, optimization, and hierarchical training.

At the profiling stage, HierTrain performs two initializa-
tion steps: (i) profiling the average execution time of different
model layers in the device, edge, and cloud workers, respec-
tively; (ii) profiling the size of output for each layer in the
model. Specifically, we perform one training iteration on
each computing node of the mobile-edge-cloud, and then
record the execution times and output sizes of different DNN
layers. We repeat this process dozens of times and then take
the averages to get stable mean values. It should be noted that
the output size of each layer in the model is fixed and just
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needs to record only once. Note that since many DNN mod-
els have fixed and known structures, we can conduct such
profiling steps beforehand in an offline manner to reduce the
time overhead. In some challenging scenarios with system
dynamics, we can leverage more sophisticated approaches
for profiling such as regression-based modeling [22] and
machine learning-based prediction [23] by utilizing the col-
lected measurement data together with the dynamic impact
factors (e.g., varying computing resources).

At the optimization stage, the hierarchical training opti-
mizer selects the best DNN model partition points and
determines the number of training samples for the workers of
edge device, edge server, and cloud center, respectively. This
scheduling policy is generated by the optimization algorithm
introduced in Section V. The optimization algorithm mini-
mizes the DNN training time with respect to five decision
variables mg, my, b,, bs, by (mg, m; represent partition points,
b,, bs, b; represent the number of samples processed on each
worker, which will be defined in Section IV). It depends on
the following inputs: (i) the profiled average execution time
of different model layers in the three workers; (ii) the pro-
filed size of output for each layer in the model; (iii) the
available bandwidth between the edge device and the edge
server, and that between the edge server and the cloud center.

At the hierarchical training stage, the edge device first
sends the delegated data samples to the edge server and the
cloud center according to the scheduling policy given in the
optimization stage. Once having the needed data samples at
hand, the edge device, the edge server and the cloud center
start their scheduled training tasks (i.e., the assigned model
training modules) immediately, and perform collaborative
model training in a hierarchical manner.

Note that the hierarchical training stage depicted in Fig. 3
only shows one possible scheduling policy, in which the
cloud center trains the full model while the edge server and
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the edge device only train parts of the model. This schedul-
ing policy is suitable for the scenario that the bandwidth
between edge device and cloud center is in a good con-
dition. However, when the network bandwidth becomes the
bottleneck, the scheduling policy may choose the edge server
or the edge device to train the full model. In the next section,
we will elaborate on how the data samples and the model
layers are partitioned.

IV. PROBLEM STATEMENT OF HIERTRAIN TASK
SCHEDULING

A. TRAINING TASKS IN HIERTRAIN

We consider that a DNN is stacked by a sequence of distinct
layers, and the output of one layer feeds into the input of
the next layer. Our goal is to reduce the overall training time
in the mobile-edge-cloud environment. Towards this end, we
first define three types of training tasks, depicted in Fig. 4
and explained as follows.

TASK O (Original Task) : Training the full DNN
with b, data samples.

TASK S (Short Task): Training mg consecutive
layers from layer 1 to layer mg with by data samples.

TASK L (Long Task) : Training m; consecutive lay-
ers from layer 1 to layer m; with b; data samples.

Here m; and m; are positive integers, and we assume
mg < m; < N (N is the total number of layers in the DNN
model).

The key motivations of defining the three task types above
are as follows. On one hand, only TASK O contains the most
backend layers (e.g., fully connected layers in many DNNs)
that typically have the majority of the parameters, and this
helps to reduce the communication overheads for parameter
exchange across different tasks. On the other hand, TASK
O, L and S all contain the frontend layers (e.g., convolution
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TABLE 1. List of notations.

Parameter Description ‘
LJf. i forward time to handle 1 sample for layer 7 on worker;
L? i backward time to handle 1 sample for layer ¢ on worker;
L;{ i weight update time for layer ¢ on worker;

MP; number of parameters in layer ¢
MO; output size of layer ¢ to handle 1 sample in forward phase

layers in many DNNs) that are often computationally inten-
sive, and this also helps to exploit the computing resources of
different workers in parallel to accelerate the DNN training.
Furthermore, we have the flexibility to optimize the com-
puting workloads of different tasks by varying their input
data sample sizes.

In the following, we denote the workers that execute TASK
0O, TASK S and TASK L as worker,, workers and workery,
respectlvely We also denote the profiling values Lf Lh

; and MP;, MO;. Their meanings are shown in Table 1

By defining the three task structures, we have rich flexi-
bility in optimizing the training workloads across the edge
device, the edge server and the cloud center by tuning
the sizes of their data samples and assigned model lay-
ers, tailored to their computation resources and network
conditions.

B. TRAINING PROCEDURE IN HIERTRAIN

Based on the above-defined three tasks, we elaborate on the
training procedure in HierTrain as follows. First, the schedul-
ing policy determines how to assign the model layers and the
data samples to the three workers. Second, the edge device
initiates the training procedure and sends the partitioned data
samples to the edge server and the cloud center. Last, the
following three phases are executed iteratively.

1) FORWARD

worker; executes the forward phase (i.e., inference through
the DNN model to obtain the current model loss) over
the assigned layers, using a mini-batch by of data samples.
Once completing the forward phase over the assigned lay-
ers, workers sends the output to worker,. Then, worker,
proceeds to execute the forward phase over the rest of the
layers. worker; acts the same as worker;, using a mini-batch
by of data samples. worker, also executes the forward phase,
but it is over all the layers and using a mini-batch b, of data
samples. When the forward phase ends, worker, collects the
model losses from B = by + b; + b, data samples.

2) BACKWARD

For each data sample, worker, starts the backward phase
(i.e., back-propagation using the loss to obtain the stochastic
gradients) from the last layer of the DNN. If the data sample
belongs to worker,, then worker, executes the full backward
phase. If the data sample belongs to worker;, then worker,
sends the intermediate results to worker; upon reaching layer
my+ 1, and worker; proceeds to execute the backward phase
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over the rest of the layers. The same rule applies to workers,
except that worker, sends the intermediate results to worker;
upon reaching layer mg;+ 1. When the backward phase ends,
every worker obtains the stochastic gradients of the assigned
layers.

3) WEIGHT UPDATE

worker; and workers send the computed stochastic gradients
to worker,. Then worker, averages the stochastic gradients
layer-wise, and sends the averaged stochastic gradients to
worker; and worker; according to the layers assigned to them.
With these stochastic gradients, the three workers update the
weights of their assigned layers independently.

C. FORMULATION OF MINIMIZING TRAINING TIME

The core of HierTrain is a scheduling policy that determines
how the model layers and the data samples are assigned to
the three workers. The goal is to minimize the training time,
which is determined by the computation and communication
latencies. To analyze these two quantities, we assume that
the DNN has N layers and the size of each data sample is
O bits.

1) COMPUTATION LATENCY

Recall that the DNN training procedure is divided into
three phases: forward, backward and weight update. In
the forward and backward phases, the amount of com-
putation is proportional to the number of processed data
samples [24]. We denote T} ; p forwara and T} p packward aS
the computation latencies of executing layer i on worker;
with b input data samples in the forward and backward

phases, respectively. Here j € {o, 5,1}, i € {1,2,..., N}, and
b € {by, b, + by, b, + b; + bs}. Then we have

Tj.i.b forward = bLj i (D

Tj,i,b,backward = b it ()

The computation latency 7 ,pgare of the weight update phase
on a worker j € {o, s, [} is the summation of the execution
time over the involved layers, given by

m;
Tj,update = ZL;{I-. (3)
i=1

2) COMMUNICATION LATENCY

The workers are bidirectionally connected with each other.
For example, the edge device and the edge server are
connected with the high-speed wireless local-area-network
(WLAN) link, while the edge server and the cloud center
are connected with the bandwidth-limited wide-area-network
(WAN) link. Let B, ¢ denote the bandwidth between worker,
and workers, B,; the bandwidth between worker, and
worker;, B the bandwidth between workers and worker;.
The communication latency is the ratio of the transferred
data size and the bandwidth between two workers, as
Tcommunication = M (4)

Bandwidth
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3) TRAINING TIME

As depicted in Fig. 4, worker,, workers, worker; use b,,
bs, b; data samples as inputs, respectively. Layer 1 to layer
myg are executed in parallel over the three workers, layer
ms + 1 to layer m; are executed in parallel over worker,
and worker;, and the rest of layers are executed on worker,.
Below we calculate the training time, beginning with those
in the forward and backward phases.

Denote Tlorward and Tl}ackward as the latencies of execut-
ing layers between 1 and my over the three workers in the

forward and backward phases, respectively, given by

mg
1
Tforward = max To,input + ZTo,i,bUJbrwards

i=1

n

Ts,input + E Ts,i,bs,forward + Ts,oulputv
i=1
myg

Tl,input+§ Tl,i,bljorward 5 (5)
i=1
my

1
Tpackwara = max ZTo,i,bo,backward s
i=1

myg
E Ts,i,bj,backward + Ts,grad»

i=1

myg
> “Thi.by.backward | - (6)

i=1

Here Tjippus is the communication latency of worker; to
receive b; data samples, j € {o,s,[}. We use (4) to cal-
culate T jupur, Where DataSize = b; x Q and Bandwidth
is the bandwidth between the edge device and worker;.
T, ouspur TEPresents the communication latency of workery
to transmit its forward output to worker,. Recall that
MO, is the output size of layer m; in the forward
phase for one data sample, b; is the number of data

samples of workers, and B, is the bandwidth between
worker, and workers. Then according to (4), Ty oupur =
bs x MOy

B T graa represents the communication latency of
worker, to send the intermediate results to workers in the
backward phase. The size of the intermediate results is
equal to the output data of layer m; in forward phase.
Thus, Ts,grad = Ts,output-

Denote T]gorward and TZuckwara’ as the latencies of exe-
cuting layers between my; + 1 and my; over worker, and
worker; in the forward and backward phases, respectively,
given by

mp
2
Tforward = max Z To,i,b,,+bhf0rward ,
i=mg+1
mj
Z Tl,i,b[,forward+Tl,output s (7)
i=mg+1
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respectively. Layer 1 to layer mg are executed in parallel over the three workers, layer
ms + 1 to layer m; are executed in parallel over workero and worker), and the rest of
layers are executed on workero.

m
2
Tbackward = max Z TO,i,bo-i-bs,backward,
i=mg+1
mj
Z Tl,i,b[,bczckwurd+Tl,grad . (8)
i=mg+1

Here T} oupu: is the communication latency of worker; to
transmit its forward output to worker,, given by T} oupur =
b[XMOml . .
VR T, graa Tepresents the communication latency of
worker, to send the intermediate results to worker; in the
backward phase, it is equal to 17 puspur-

Denote T}%rw g and T,?a ckward &S the latencic?s of executing
layers between m; + 1 and N over worker, in the forward

and backward phases, respectively, given by

N

3
Tfarward = Z To,i,h0+bs+b1,f0rward» 9
i=m+1

N

Z To,i,b0+bs+b1,backward-
i=m+1

3
Tbackward = ( 1 0)

Now we consider the training time in the weight update
phase. After the backward phase finishes, worker; and
workers send the stochastic gradients to worker,. Then
worker, sends the averaged stochastic gradients to worker;
and workers according to the layers assigned to them, and
the three workers update the weights of their assigned layers.
The total time cost in the weight update phase is denoted
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as Tupdate, given by

Tupdate = maX{To,updatw T, update Tl‘update}

(1)

Here Tj updare is the computation latency of the weight update
phase on worker;, j € {o, s, [}, as defined in (3). Ty, eightgrad
and Tj yeighrgrad TEpresent the communication latencies of
workers and worker; to send the stochastic gradients to and
receive the updated weights from worker,, respectively. For
layer i, the sizes of the stochastic gradients and the updated
weights are both MP;. Therefore, we have Ty yeightgraa =

2 mg _ 2 my i
Bos Zi:Al MP; and T[,weightgrad = B, Zi:l MP;.

+ max { Ts,weightgrads Tl,weightgrad } .

4) MINIMIZATION OF TRAINING TIME

Therefore, the time of training the DNN for one iteration,
including both computation and computation, is given by

3
Tiotal = Z(T){?onvard + Tﬁackward) + Tupdatt% (12)
k=1

in which the number of used data samples is

B = b, + by +by. (13)

Here B is the predefined batch size, while b,, by and b; are
decision variables.

The number of layers mg and m; for TASK S and TASK
L are also decision variables. It is possible in some scenarios
that mg or m; can equal to 0, meaning that worker or worker;
will not participate in the DNN training procedure. For these
scenarios, we do not assign any data samples to worker; or
worker;, such that by = 0 or b; = 0. To characterize these
connections, we introduce constraints

OSbSSmSBs

0 < b; <mB.

(14)
(15)

When mg; = 0 or m; = 0, (14) or (15) ensures that by = 0 or
b; = 0. Otherwise, if mg or m; is any positive integer, (14)
or (15) automatically satisfies due to (13).

In summary, when worker;, worker; and worker, have
been fixed, to minimize the training time, HierTrain solves
the following optimization problem

Pi: minimize  Tiotal, (16)
{bo,bs,bj,mg,m;}

s.t. by +bs+b =B, (17)

0 < by < m,B, (13)

0<b <mB, (19)

where the decision variables b,,, bs, b, mg, m; are all nonneg-
ative integers. Since there are 6 possible mappings between
workers, worker;, worker, and the edge device, the edge
server, the cloud center, we can enumerate all the mappings,
calculate the optimal scheduling policy {b,, bs, by, mg, m;}
for each mapping, and then find the global optimal schedul-
ing policy. The next section gives details of the proposed
algorithm.
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Algorithm 1 HierTrain Algorithm
1: Input:

1) Lé,i’LIZZ,i’LII:,i’k € {d, e, c}: profiling values of device,
edge, cloud
2) BWg,, BWe.: bandwidth of device-edge and edge-cloud
3) MP;: layer i parameters data size
4) MO;: layer i output data size
Output: optimal solution {my, m}, by, by, b} }
2: Imitialization: T4 minimum = MAX > MAX is an infinite
number
3: for map {Device, Edge, Cloud} to {worker,, workers, worker;}
do
4: for mg =0 — N do

5 for m; = mgy — N do

6: Solve the relaxed problem of P with mg and m; to
get {bo, bs, by}

7: {bo, bg, b;} < Round(b,, by, by) > rounding
bo, bs, by to integers

8: Calculate Ty, according to (12)

9: if Trotar < Trotal, minimum then

10: {m}k,m;‘,bz,b;‘,b;‘} = { mg, my, by, by, by}

11 Tiotal, minimum = Trotal

12: end if

13: end for

14: end for

15: end for

Return: {my,my, b}, b¥, by}

V. OPTIMIZATION OF SCHEDULING POLICY

Note that even when workers, worker; and worker, have
been fixed, solving P is still challenging because: (i) in the
objective Ty, the terms of Typgare, T,’fommd and Tll,‘ackward,
where k = 1, 2, 3, all contain summations with the numbers
of summands determined by my and my; (ii) the decision
variables b,, by, b;, ms, m; are all integers.

To address the first challenge, we observe that when mi;
and m; are fixed, P; will become a standard integer linear
programming (ILP) problem and is relatively easier to solve.
Motivated by this observation, we enumerate the values of
mg and my, solve the resulting ILP problems, and then find
the best one among the ILP solutions. This enumeration is
feasible because the numbers of layers my and m; are often
modest in practice (such as AlexNet: 8 layers, VGG-16: 16
layers, GoogleNet: 22 layers, MobileNet: 28 layers).

To address the second challenge, for each ILP problem, we
relax the integer variables to real ones, solve the relaxed lin-
ear programming (LP) problem, and then round the solution
to integers. To be specific, the relaxed LP problem can be
efficiently solved with CPLEX, Gurobi or CVXPY. Although
these optimization solvers can solve ILP problem directly, we
choose to convert the ILP problem to LP problem the reason
is that these solvers solve LP problem are much faster than
solve ILP problem. Further, the rounding operation works
as follows. Given a real solution (b,, by, by) of the relaxed
LP problem, we divide them into integer parts int(b;) and
fraction parts frac(b;), j € {0, s, 1}, and then sort the frac-
tion parts in a descending order. For b; with the largest
fraction part, we let bj’.“ = int(b;) + 1, while for the other

VOLUME 1, 2020



‘IEEES IEEE Open Journal of the
Com3oc  communications Society

TABLE 2. Algorithm running time.

LeNet | AlexNet | VGG-16 | VGG-19 | googLeNet | ResNet-34
0.52s 1.48s 3s 4s 5.3s 12s
Device Edge Cloud f

& mapping strategy Optimization by
solving P,
¢
o Ad candidate scheduling
worker,  worker; worker strategy
Mapping

FIGURE 5. Each mapping strategy corresponds to a candidate optimal scheduling
policy.

two b, b;.‘ = int(b)). If b} + b} + b;‘ = B is satisfied, then
the rounding operation ends. Otherwise, for the two b; with
the largest fraction parts, we let b¥ = int(b;j) + 1, while for
the other b, b}" = int(bj). The constraint b, + by + b; = B
can be satisfied after at most two steps.

So far, we have solved P; given that workers, worker;
and worker, have been fixed. In order to deploy the DNN
training task over the mobile-edge-cloud environment, we
still need to find the best mapping strategy between the
device, edge and cloud workers and worker,, workers and
worker;. As illustrated in Fig. 5, since the overall number
of mappings is only 6, we can enumerate all the map-
ping, find a candidate optimal scheduling policy for each
mapping, and then choose the best mapping strategy with
the minimum training time. The algorithm is outlined in
Algorithm 1.

In our algorithm, there are 6 possible mappings. For
each map})ing, the number of enumerations for mg, and
m; are w This is because the feasible values of
my are from O to N, and we need to enumerate the val-
ues of m; from mg; to N for each m,. Therefore, we
could get that the total number of enumerations in our
algorithm are 3(N? + 3N + 2). Note that for the case of
HierTrain, the number of model layers are typically small.
Hence, enumerating strategy is an amenable solution for
our problem. For other large-scale cases, we may consider
to utilize efficient heuristic optimization approaches such
as simulated annealing and evolutionary optimization which
can be efficient for large-scale combinatorial optimization
problems.

As shown in the Table 2, in order to verify the efficiency
of our algorithm, we list the algorithm running time based
on some common deep neural networks configuration. All
results are obtained on a desktop computer equipped with
an Intel Core i7-6700 3.4 GHz with 8 GB RAM running
Linux. We use python as programming language and CPLEX
as optimization problem solver. From Table 2, we see that
the proposed algorithm runs very fast, and in practice its
running time can be ignored compared with the long DNN
training time.
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VI. EVALUATION

A. DATASET AND MODELS

We evaluate HierTrain by training two well-known CNNs for
image classification tasks. The first CNN is LeNet-5 [25],
and we train it with the CIFAR-10 dataset [26]. CIFAR-10
contains 50,000 training images and 10,000 testing images,
each of which has 10 Ilabels. The second CNN is
AlexNet [27], which is more complicated than LeNet-5.
We train AlexNet on the tiny ImageNet dataset. The tiny
ImageNet dataset has 200 classes, while each class has 500
training images, 50 validation images, and 50 testing images.

B. EXPERIMENTAL SETUP

We use a Raspberry Pi 3 tiny computer to act as an edge
device. The Raspberry Pi 3 has a quad-core ARM processor
at 1.2 GHz with 1 GB of RAM. We use an Intel NUC,
a small but powerful mini PC which is equipped with a
four Intel Cores i3-7100U with 8 GB of RAM, to emulate
the edge server. Unless specifically indicated, we only use
one core of the edge server in our experiments. This is to
simulate the application scenarios where the edge server has
to serve multiple edge devices and each edge device cannot
occupy all the computation resource of the edge server. The
cloud center is a Dell Precision T5820 Tower workstation
with 16 Intel Xeon processor at 3.7 GHz and with 30 GB
of RAM, and equipped with NVIDIA GPU GeForce GTX
1080 Ti. The computation capability of the cloud center is
one order magnitude higher than those of the edge device
and the edge server. All the three workers run the Ubuntu
system, and we use Linux Traffic Control on them to emulate
constrained network bandwidths.

There are many existing open-source platforms for training
CNNs, such as TensorFlow [28], Theano [29], MXNet [30],
PyTorch [31], and Chainer [32]. Among them we choose
Chainer because it is flexible and able to leverage dynamic
computation graphs, which facilitates the application of the
proposed hybrid parallelism method.

C. BASELINES

To elucidate the performance of the proposed HierTrain
framework, we consider the following baselines in the
experimental evaluation.

1) ALL-EDGE

The edge device transmits all the training data samples to
the edge server, and the edge server completes the DNN
training.

2) ALL-CLOUD

The edge device transmits all the training data samples to
the cloud center, and the cloud center completes the DNN
training.

3) JOINTDNN [9]
The edge device and the cloud center jointly train the DNNS.
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FIGURE 6. Comparison of real and theoretical latencies of training AlexNet.
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FIGURE 7. Per-iteration training time of AlexNet for HierTrain, All-Edge and
All-Cloud under different bandwidths.

4) JOINTDNN+

We extend JointDNN to train the DNNs in the mobile-
edge-cloud architecture. Following the design of JointDNN,
the scheduling in JointDNN+ is by solving a shortest path
problem over a graphic model.

5) JALAD [19]

The edge server and the cloud center jointly train the DNNs.
A data compression strategy is applied to reduce the edge-
cloud transmission latency. In our experiments we set the
number of bits ¢ used in data compression as 8.

D. RESULTS
1) MODEL VALIDITY

We first validate the formulated model that captures the exe-
cution delay of one iteration in training a DNN. Using the
same scheduling policy, we obtain the real latency measured
from the experiment and the theoretical latency, both in train-
ing AlexNet. As is shown in Fig. 6, the real and theoretical
latencies highly match.

2) COMPARISON WITH ALL-EDGE AND ALL-CLOUD

Next we compare HeirTrain with the two baselines, All-
Edge and All-Cloud, by fixing the mobile-edge bandwidth
to 5 Mbps and varying the edge-cloud bandwidth from
1.5 Mbps to 5 Mbps. Fig. 7 shows the average per-
iteration time to train AlexNet. The time cost of All-Cloud
decreases as the edge-cloud bandwidth increases, while that
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of All-Edge remains unchanged. HeirTrain outperforms, and
achieves up to 2.3x and 4.5x speedup comparing to All-
Edge and All-Cloud, respectively. Similar observations can
be found in training LeNet-5, as depicted in Fig. 8. HierTrain
is the best among the three schemes, achieves up to 1.7x
and 6.9x speedup comparing to All-Edge and All-Cloud,
respectively.

3) COMPARISON WITH JOINTDNN, JOINTDNN+ AND
JALAD

Now we conduct experiments to compare HierTrain with
the three baselines: two state-of-the-art methods JointDNN
and JALAD, as well as JointDNN+ that extends JointDNN
to the mobile-edge-cloud architecture. The results on train-
ing AlexNet and LeNet-5 are demonstrated in Fig. 9 and
Fig. 10, respectively. Observe that HierTrain outperforms
both JointDNN and JointDNN+. Among these two base-
lines, JointDNN+ is better than JointDNN because it can
utilize the edge server when the edge-cloud bandwidth is as
low as 1.5 Mbps or 2 Mbps. When the edge-cloud bandwidth
becomes larger, both JointDNN and JointDNN+ choose to
run the training tasks in the cloud center.

Fig. 9 also compares HierTrain and JALAD in train-
ing AlexNet. When the edge-cloud bandwidth ranges from
1.5 Mbps to 2 Mbps, JALAD performs better than HierTrain.
The reason is that the data compression strategy of JALAD
can largely reduce the amount of transmitted data between
the edge server and the cloud center. This makes JALAD

VOLUME 1, 2020



‘IEEES IEEE Open Journal of the
Com3oc  communications Society

w
o

—— HierTrain
Joint DNN+

—+— Joint DNN

—— JALAD

w
o

N
v

N
o

-
v

one iteration training time (s)

——

1.5 2.0 2.5 3.0 3.5 4.0 4.5
edge-cloud bandwidth (Mb)

-
o

FIGURE 10. Per-iteration training time of LeNet-5 for HierTrain, JointDNN,
JointDNN+, and JALAD under different bandwidths.

advantageous in the low bandwidth condition as the com-
munication time cost is the dominating factor in the overall
delay. However, when the bandwidth increases, the benefit
from reducing communication delay with data compres-
sion degrades sharply, and HierTrain outperforms JALAD.
In Fig. 10 that shows the experimental results of training
LeNet-5, the curves of JALAD and JointDNN+ overlap,
because their scheduling policies are the same in the sce-
nario — they are the same as the All-Edge strategy in the
low bandwidth condition and the All-Cloud strategy in the
high bandwidth condition.

4) EFFECT OF VARYING EDGE SERVER RESOURCES

Finally, we investigate the performance of HierTrain when
the computation capability at the edge server changes. We
consider training AlexNet, while keep the mobile-edge band-
width as 5 Mbps and the edge-cloud bandwidth as 3.5 Mbps.
We use docker to control the CPU cores used in the training
process. As shown in Fig. 11, when the edge-cloud band-
width is very low (< 1.5 Mbps), improving the computation
capability of the edge server can speedup the training pro-
cess. This performance gain shrinks when the computation
capability of the edge server keeps increasing. To be spe-
cific, varying from 1 CPU to 2 CPUs leads to large speedup,
while varying from 3 CPUs to 4 CPUs yields insignificant
speedup. When the edge-cloud bandwidth is sufficiently large
(> 3 Mbps), the computation capability of the edge server
does not influence the overall performance. The reason for
this phenomenon is that when the edge-cloud bandwidth is
sufficiently large, the optimal policy is training on the cloud.

VIl. RELATED WORK

Due to the attractive features of elasticity in computing
power and flexible collaboration, hierarchically distributed
computing structures naturally become a popular choice
for executing DNN training or inference. Considering the
deployment location for DNN, existing approaches can be
divided into three classes.

A. CLOUD-BASED
Conventionally, most DNNs are usually deployed on the
powerful cloud datacenters [33]. However, this means that
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under different bandwidths.

a large amount of original data should be uploaded to the
cloud, causing prohibitive communication overhead. In order
to improve efficiency, Neurosurgeon [22] proposed a compu-
tation offloading idea in DNNs between the edge device and
the cloud server at layer-granularity. Neurosurgeon explored
one suitable partition point of DNN model and the execu-
tion starts with edge device and then switches to the cloud,
which performs the rest of the computation. Reference [34]
presented an optimal scheduling algorithm for collaboratively
computation of feed-forward neural networks to achieve
maximum performance and energy efficiency. JointDNN [9]
provided optimization formulations at layer-granularity for
forward and backward propagation in DNNs, which can get
the optimal computation scheduling of processing some lay-
ers on the edge device and some layers on the cloud server.
The limitation of cloud-based approach is the long WAN
latency between device and cloud.

B. EDGE-BASED

An alternative is to deploy DNN at the edge of network.
Li et al. [35] proposed a collaborative and on-demand DNN
co-inference framework which could leverage hybrid com-
putation resources of device and edge so as to achieve
on-demand low-latency. Reference [36] exploited the vir-
tual machine technique to let mobile users utilize nearby
server called “cloudlet” to speed up service. Gabriel [37],
[38] is a system that uses “cloudlet” for speech and face
recognition applications. The focus of these works above
is DNN inference at the edge. For the edge learning that
considers the DNN training, many existing works target at
the fast and cost-efficient FL (federated learning) scheme
in order to train a commonly-shared model across multiple
devices [39]. Along a different line, we consider the fast
model learning with respect to a specific edge device and
leverage a multitude of mobile-edge-cloud resources to
training acceleration.

C. HIERARCHY-BASED

Alternatively, some studies focus on using both central cloud
servers and edge servers for the execution. Reference [40]
proposed a novel distributed DNN framework over dis-
tributed computing hierarchies (consisting of cloud, edge,
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devices), which can allow low-latency classification via early
exit. Li ef al. [19] decoupled the DNN to execute on an
edge and the cloud. They not only take into account latency
measurement and raw data quantity between layers, but
also take the compression of in-layer data into account.
Huang et al. [41] proposed a DeePar framework which can
exploit all the available resources from the device, the edge,
and the cloud to improve the overall inference performance.
Lin et al. [42] proposed a cost-driven offloading strategy
based on a self-adaptive particle swarm optimization (PSO)
algorithm using the genetic algorithm (GA) operators (PSO-
GA) to minimize the system cost during offloading DNN
layers over the cloud, edge, and devices.

Previous studies above mainly focus on distributed DNN
inference. And they follow the scheme of partitioning DNNs
into several parts then executing sequentially, which could
not fully utilize the computation resources. In our work,
we consider accelerating training DNNs in a hierarchical
computing paradigm. To this end, we propose the train-
ing methodology hybrid parallelism which can dynamically
adapt the number of parallel execution layers over comput-
ing nodes. In addition, different from previous studies we
separate computation overhead not only on layer-granularity
but also on sample-granularity.

VIIl. CONCLUSION

In this paper, we study the problem of accelerating the
training procedure of DNNs on the mobile-edge-cloud archi-
tecture. To this end, first, we present a novel hybrid
parallelism method for training DNNSs. Secondly, in order get
scheduling policy of using hybrid parallelism method to train
DNNs on the mobile-edge-cloud environment, we formulate
the problem of computation scheduling of training DNNs at
layer-granularity and sample-granularity as a minimization
optimization programming problem, and solve it to get the
scheduling policy. In addition, we test HierTrain in the real
hardware and the results show that it could obviously out-
perform the naive policies such as all-edge and all-cloud,
and also outperform exist prior works like JointDNN and
JALAD.

For the future work, we are going to generalize the
HierTrain framework to the application scenarios in multi-
device and multi-edge environments, in which the federated
learning across multi-devices and the device-to-edge associ-
ation are interesting and challenging.
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