
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated Synthesis of SEU Tolerant Architectures from OO Descriptions / Chiusano, SILVIA ANNA; DI CARLO,
Stefano; Prinetto, Paolo Ernesto. - STAMPA. - (2002), pp. 26-31. (Intervento presentato al convegno IEEE 8th
International On-Line Testing Workshop (IOLTW) tenutosi a Isle of Bendor, FR nel 8-10 July 2002)
[10.1109/OLT.2002.1030179].

Original

Automated Synthesis of SEU Tolerant Architectures from OO Descriptions

Publisher:

Published
DOI:10.1109/OLT.2002.1030179

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1408856 since:

IEEE Computer Society

Automated Synthesis of SEU Tolerant Architectures from OO Descriptions

S. CHIUSANO, S. DI CARLO, P. PRINETTO
POLITECNICO DI TORINO

Dipartimento di Automatica e Informatica Torino, Italy
E-MAIL: {chiusano, dicarlo, prinetto}@polito.it

Abstract

SEU faults are a well-known problem in aerospace
environment but recently their relevance grew up also at
ground level in commodity applications coupled, in this
frame, with strong economic constraints in terms of costs
reduction. On the other hand, latest hardware
description languages and synthesis tools allow reducing
the boundary between software and hardware domains
making the high-level descriptions of hardware
components very similar to software programs. Moving
from these considerations, the present paper analyses the
possibility of reusing Software Implemented Hardware
Fault Tolerance (SIHFT) techniques, typically exploited
in micro-processor based systems, to design SEU
tolerant architectures. The main characteristics of SIHFT
techniques have been examined as well as how they have
to be modified to be compatible with the synthesis flow.
A complete environment is provided to automate the
design instrumentation using the proposed techniques,
and to perform fault injection experiments both at
behavioural and gate level. Preliminary results presented
in this paper show the effectiveness of the approach in
terms of reliability improvement and reduced design
effort.

1. Introduction
Spacecraft and spacecraft designers are being pushed

to use enabling or emerging commercial technology to
meet high science data performance in increasingly
smaller and lower cost spacecraft [1]. The benefits may
include: higher gates density, increased speed and
performance, easier system development process using
COTS development and test equipment, and decreased
lead times versus rad-hard (RH) approaches.

The design of SEU tolerant architectures is a well-
known problem in aerospace environment, where
radiations, such as alpha particles and cosmic rays, can
cause transient faults in electronic systems. Single-Event
Upset (SEUs) faults mainly affect flip-flops, memory
cells, registers and latches causing an undesired change
of state (bit-flip) in the storage elements [2]. The SEU
effects have been well investigated in literature and can
be classified in: (i) fail silent condition, whether the fault
is masked; (ii) fail silent violation, when the system

outputs incorrect values; (iii) system crash when the
system stop working.

Unfortunately IC manufacturers are being driven by a
market of which the space community is a very small
portion. Because of this, commercial approaches must be
evaluated and sometime modified to meet performance
and reliability requirements of spacecraft applications
[1]. In addition, with the increasing use of nanometre
technologies, due to electromagnetic interference and
power supply glitches, SEU effects become a relevant
problem also at ground level. In this scenario SEU
tolerant architectures design becomes mandatory also in
commodity applications coupled, in this frame, with
strong economic constraints in terms of costs reduction
[3].

Many hardware techniques have been proposed to
develop SEU tolerant architectures. They include
Signature monitoring for low cost concurrent error
detection for FSMs; On-line monitoring of reliability
relevant parameters; Self-Checking; ON-line BIST
techniques; Scan Paths exploitation [4].

With the introduction of hardware description
languages as VHDL and the possibility of describing
systems at RT-level several researches have been
performed to introduce SEU tolerant structures directly
at this description level. The reason relies on the fact that
the VHDL code can be easily analysed and modified
before synthesis introducing safe operators and
functional blocks. Acting in the earlier steps of the
design flow the designer can trade-off costs and
dependability improvements, globally reducing the
developing time. Possible approaches include synthesis
techniques for self-checking combinational circuits [4]
[5][6], automatic generation of self-checking data paths
using CAD tools [7]; libraries of VHDL components
designed for high circuit reliability and availability [8]
[9].

Concurrently, the massive use of micro-processor
based systems lead to the development of alternative
solutions named Software Implemented Hardware Fault
Tolerance (SIHFT) techniques [10][11][12]. These
software techniques are able to protect the memory space
where program data and instructions are stored. The
basic idea is to apply a set of transformation rules to the
original code to obtain a new version, functionally
equivalent but SEU tolerant. Mainly they include Error
Detection by Duplicated Data (EDDD) approaches

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

[13][14], executing operation on multiple copies of the
same data and comparing the produced outputs to detect
the fault occurrence, and Control Flow Checking by
Software Signatures (CFCSS), based on signatures
assigned to each code block a-priori and re-computed
run-time to verify the flow execution [15][16][17].

The actual trend in the design flow is to move up into
the hierarchy, describing the circuit at the behavioural
level. These high-level descriptions are synthesizable
descriptions but at the same time they are very close to
design specifications. In this context the boundary
between software domain and hardware domain looses
weight and the reuse of SIHFT techniques in the
hardware components descriptions becomes possible.

The present paper works in this area and proposes an
automate approach to reuse SIHFT techniques in high
level hardware descriptions. The goal is to show the
effectiveness of the approach in terms of reliability
improvement and reduced design effort. The target
environment for behavioural level designing is the
SystemC environment.

SystemC is a modeling platform consisting of C++
class libraries and a simulation kernel to design at the
system-behavioral and register-transfer-levels. SystemC
represents a de facto standard for system-level design
and is supported by a collaborative effort among a broad
range of companies named Open SystemC Initiative
(OSCI). In comparison with traditional hardware
description languages, C++ appear to be the most
suitable approach for behavioural-level design. It
provides the control and data abstractions necessary to
develop compact and efficient descriptions using the
power of an Object Oriented (OO) language. In addition,
most systems include both hardware and software units,
the last ones typically described in C/C++. Finally, most
designers are familiar with this language and a large
number of development tools is available coming from
the software area.

The proposed approach includes a SystemC-based
class library, named SAFE Library. It extends the original
SystemC class collection with constructs characterized
by high dependability properties. The original design
description is instrumented with the SAFE Library
before the synthesis flow in order to obtain a SAFE
Description compatible with all the synthesis tools
supporting SystemC. In the paper we propose one
implementation of SAFE library, but the approach can
support any SHIFT technique.

A SystemC Environment for Applications (SEA) tool
is provided to automate the insertion of the SAFE
Library. The tool also allows validating the modified
design description and performing fault injection
experiments both at behavioural and gate level. Using the
SEA tool the designer can efficiently trade-off costs and
dependability properties tuning the optimal SEU tolerant
solution for the target design.

This paper is organized as follows: Section 2 analyzes
the reuse of SIHFT techniques in the hardware domain
whereas Section 3 presents the proposed design flow and
the SEA tool. Section 4 reports some experimental
results to validate the proposed approach and Section 5
draws some conclusions.

2. Using SIHFT techniques in HW
designing

With the introduction of Object Oriented (OO) design
languages like C++, the high-level description of
hardware components becomes very close to a standard
software program. Well-known and verified algorithms
written using C/C++ can be synthesized and
implemented as ASIC cores or mapped into FPGA
components with a very low design effort.

However, software programs and high-level hardware
descriptions have different final implementations, and
thus so far different approaches have been proposed to
achieve SEU tolerance in the hardware and software
domains.

The OO code of a software program is translated by a
compiler in a sequence of instructions executable in a
given micro-processor platform. A memory accessible by
the micro-processor stores instructions and data needed
during the computation process. Thus, to deal with SEU
occurrence in the memory, software techniques (SIHFT)
target two aspects: the generation of incorrect data (1)
and illegal executions of the program flow (2). The
former are due to the occurrence of SEUs in memory
locations storing data whereas the latter are usually
caused by SEUs which corrupt jump or in general control
flow instructions in memory locations storing code.
Typically SIHFT techniques address (1) via data
protection and (2) via control flow monitoring. The basic
idea is to modify the original code introducing
redundancy. The proposed approaches differ in terms of
achieved dependability levels and introduced
performance degradation (delays and area).

The OO code describing hardware components is
converted through the synthesis process into a networks
of combinational blocks and memory elements,
executing the expected computation process.

To reuse the SIHFT techniques in the hardware
domain some preliminary analysis and considerations
should be made. The basic idea is to define a link
between the final hardware implementation and the high-
level design description. First, the target dependability
properties have to be identified at the hardware level.
Then, they have to be mapped into the high-level design
description. Finally, SIHFT techniques have to be
adapted to obtain code synthesizable and able to achieve
the target dependability properties in the hardware
implementation.

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

To achieve SEU tolerance, the memory elements
available in the post-synthesis description have to be
protected. They include memory elements (flip-flops)
instanced to store data and memory elements
implementing the control logic. SIHFT techniques
developed to target (1) can be efficiently exploited to
achieve data protection in the hardware domain, but
solutions for (2) are not directly applicable.

SIHFT approaches for data protection typically act on
program variables inserting redundant information such
as error code and data replication, and checking all the
assignments, controls and evaluations of variables to
keep status up. In the high-level description of hardware
components, variables store data and are mapped in
memory elements during the synthesis flow. Therefore,
SIHFT techniques for (1) can be easily reused to achieve
data protection in the hardware domain.

Several solutions have been proposed in software for
control flow monitoring (2). The basic idea is to split the
original program into elementary blocks and for each
block off-line compute a reference signature representing
the correct execution of the block. At run time the
signatures are calculated again and compared with the
golden ones. Since the signatures are computed on
portions of program machine code, these approaches are
not directly applicable to hardware descriptions where
the concepts of instruction, addresses and opcode have
no meaning in the final implementation.

To reuse control flow monitoring techniques in the
hardware domain an analogy with the software domain
should be found. The synthesis process inserts some
logic (both combinational parts and memory elements) to
implement the control. This logic is not explicitly
defined in the high level description, but it is inferred by
the synthesis process based on the computation flow
specified in the high-level description, and some
additional synthesis constraints (e.g., available units and
synthesis for minimum area or delay). The control logic
is usually implemented as a Finite State Machine (FSM)
where the memory elements influence the states
evolution. The sequence of states of the FSM has a
strong analogy with the control flow of a software
program. Therefore, SIHFT techniques for (2) can be an
effective solution to protect control logic in the hardware
design implementation. They only have to be modified in
order to work without resorting to the concept of
instruction opcode or memory addresses.

Starting from this analysis, we propose an approach
which works in two different directions:
• Make safe variables, to detect and /or correct the SEU

occurrence on them. The approach generates redundant
copy of variables or of part of them and check the
consistence of the copy.

• Make safe control on flow, proposing an approach
independent from program machine code. It is
implemented as a module call Agent able to check the

correct evolution of the FSM implementing the control
logic.

Despite the approach used to protect variables is

intuitive some more words must be spent concerning
control flow protection. The Agent is a relatively simple
unit running concurrently with the given design. The
Agent is able to receive information about the current
state of the control logic and check the correct evolution
of them. It can be easily implemented using OO
languages. The original code has to be slightly modified
inserting so called checkpoints in correspondence of
branch instructions in order to transmit status
information to the Agent. This implementation allows
reusing most of the concepts and theory defined and well
proved in the software control flow checking field.

3. The proposed design flow
To automate the insertion of dependable structures

and validate the concepts sketched in Section 2 a
complete design environment has been set up.

As target platform we selected the SystemC v. 1.2
environment, the most widely used in high-level
designing. SystemC relies on a library of classes and
basic blocks to describe hardware systems at the high-
level. In our approach we extend the SystemC Library
defining a SAFE Library which includes constructs to
achieve data protection and control flow monitoring. The
implementation takes advantage of all the facilities
offered by C++ language like template, classes
inheritance, and operators override [18].

Figure 1 shows the proposed design flow. It is
structured in two design steps, named High-level Design
Instrumentation and Synthesis Process, and two
validation steps based on fault injection experiments, at
the high and gate-level.

First, the given high-level design description is
properly instrumented in order to obtain its reliable
version (High-level Design Instrumentation). The
modification process is based on the content of the SAFE
Library and is driven by the designer who selects the
portions of the code to modify. Moreover, the designer
can trade-off dependability improvements and
implementation costs choosing, out of the SAFE Library
content, the constructs to apply. As an example, most
critical variables can be modified inserting constructs to
achieve fault correction; the simple fault detection can be
implemented for the remaining variables, or even a
certain subset of variables can be untouched.

To avoid long backtracks in the design flow, the
developed environment allows validating at early design
steps the dependability properties of the instrumented
design. Fault injection experiments performed on the
safe version of the high-level design description (High-
level Fault Injection) check whether the performed
modifications allow meeting the target reliability

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

constraints. If not, the designer can restart the process,
modify differently the original design description, and
tune the optimal design solution. Otherwise, the design is
synthesized and a gate-level SAFE implementation is
gathered (Synthesis Process). Fault injection experiments
on the gate-level description (Gate-level Fault Injection)
check that constructs inserted at the high-level maintain

their functionality through the synthesis flow. The aim is
to verify that the dependability properties of the SAFE
gate-level description are the expected ones and
correspond to the high-level SEU tolerance previously
computed.

OO CodeOO Code

High Level Design
Instrumentation OO Safe CodeOO Safe Code

Safe
Library

Synthesys Process

Safe Gate Level NetlistSafe Gate Level Netlist
Technology
Lybrary

Dependability
Constrants

Dependability
Constrants

High Level
Fault Injection

Gate Level
Fault Injection High Level SEU ToleranceHigh Level SEU Tolerance

Dependability
Constraints TuningGate Level SEU ToleranceGate Level SEU Tolerance

Comparator

Figure 1: The proposed design flow

4. Experimental results
Performed experiments show that the reuse of SHIFT

techniques in the hardware domain is a feasible
approach.

A tool named SystemC Environment for Applications
(SEA) has been implemented to perform the design
instrumentation and the fault injection experiments.

The SystemC design descriptions have been
synthesized using CoCentric SystemC Compiler v.
2000.11. All the optimisation options have been disabled
during the synthesis process, to preserve the
modifications introduced in the safe version of the design
description. An in house-developed technology library
for synthesis has been used, including elementary gates
and D flip-flops.

The used CoCentric SystemC Compiler release do
not yet completely support all the SystemC constructs.
For this reason, the SEA tool implements a refinement
step which automatically elaborates the code and
generate a fully synthesizable version.

Table 1 summarises the characteristics of the
considered benchmarks. Since in the present paper the
aim is the validation of the approach, we considered
relatively simple examples as test cases. They are four

data-dominated designs, named Alarm, Front_cnt,
Counter, and Singen, in which most of the available logic
is devoted to data storing and data manipulation, and
three control-flow dominated designs named Bouble
Sort, 2D Gaussian Distribution, and FFT, in which the
most critical SEUs are the ones affecting the control flow
execution.

The experiments aim at verifying the correspondence
between design SEU tolerance measured at the high and
gate-level, and evaluating the impacts of the introduced
modifications in terms of performance degradation.

Table 2 and Table 3 report the high-level and gate-
level dependability measures when the benchmarks are
instrumented with the SAFE Library. About 10,000 fault
injection experiments were run, and the design SEU
tolerance is computed as:

%
SEUsinjectedof #

SEUscorrected and detectedof #
⋅⋅

⋅⋅⋅

In Table 2, for each benchmark all the available
variables have been protected inserting the SEU
detection capability, in the first two columns, and the
SEU correction in the remaining two.

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

Data-dominated benchmarks Control-flow dominated benchmarks

Circuit Description Type of Variables Circuit Description

ALARM The output signal of the unit blinks for NMAX clock
cycles after the start signal is triggered on.

INTEGER
BOOLEAN BOUBLE SORT Sort an array of

elements

FRONT_CNT
This unit verifies at each clock cycle if its input is

equal to zero or one, and outputs the number of
zeros and one counted.

INTEGER 2D GAUSSIAN
DISTRIBUTION

Estimate a 2D Gaussian
distribution

COUNTER It is a |4096| counter with parallel data load input. INTEGER

SINGEN It outputs a sinusoidal waveform.
INTEGER

A SET OF PRE-
COMPUTED VALUES

FFT Compute fast
Fourier Transformate

Table 1: Benchmarks

The introduced modifications guarantee complete
fault tolerance at the software level, since SEU occurred
in variables are always either detected or corrected. The
results gathered at the gate-level still confirm the
effectiveness of the approach. The apparent reduction of
the SEU tolerant values is mainly due the difference
between the high-level and gate-level fault injector. In
fact, at high-level fault can be injected in variable storing
data, only. On the other hand, at gate-level faults are
injected in any point of the circuit, since data and control
logic can not be distinguished. Since benchmarks have
been instrumented to achieve data protection, SEUs
affecting the control logic are neither detected nor
corrected, and consequently the fault tolerance values
decrease. Being the considered examples data-
dominated, the control logic is rather small and therefore
the SEU tolerance values at the high-level and gate-level
are quite close. Experiments therefore show that SIHFT
techniques for data protection can be effectively used in
hardware domain.

Table 2 shows that at the gate-level the fault tolerance
is higher when resorting to the correction strategy. This
increase is due to the synthesis process. The hardware
overhead due to the correction strategy is higher then the
one due to the detection approach; in addition not all the
instanced logic is always in use, but typically some
portions are idle in certain time slots. The synthesis
process reuses this logic to implement part of the control
logic, and as a consequence the data protection is
partially extended to the control logic.

Table 3 summarizes the experiments when the Agent
approach is applied to the three control-flow dominated
examples. An ad-hoc mechanism has been implemented
to emulate control flow fault injection at high level.

In Table 3, SEU tolerance values are lower then the
target 100% due to the aliasing phenomenon. The
aliasing is related to the block size and the signature
computation function, and cause masking the SEU
occurrence. Mainly, the execution of a certain block can
generate a correct signature even when the flow
execution was not correct.

The SEU tolerance values further decrease at the gate-
level for the noise introduced by the fault injection

experiments. Being the benchmarks control-flow
dominated the two results are anyhow quite close.

SEU detection

mode
SEU correction

mode
Example High-level

descr.

Gate-
level

descr.

High-level
descr.

Gate-
level

descr.

ALARM 91% 97.2%

FRONT_CNT 88.6% 89.7%

COUNTER

86.9% 89%

SINGEN

100%

88.8%

100%

90%

Table 2: SEU tolerance via data protection

The results in Table 3 show that the Agent can
efficiently monitor the control flow. At the same time
they point out that more investigations are needed for an
optimal use of the Agent, in order to avoid SEU masking.

Finally, experiments have been performed
instrumenting all the examples with both data protection
and control flow monitoring constructs. The obtained
SEU tolerance is about the 100% also at the gate-level.
The reason of the not full tolerance is mainly a sub-
optimal use of the Agent and is not in the lack of data
protection.

Concerning the implementation costs, the area
overhead is comparable with the one of already proposed
hardware SEU tolerant architectures. For the examples in
Table 2, where most of the logic is devoted to data, the
area of the SEU tolerant design is about two times the
original area when the SEU detection capability is
applied to all the variables, three times in the case of the
SEU correction approach.

Finally, experiments pointed out that good
dependability properties can be achieved with a lower
cost carefully selecting the variables to protect. In the
ALARM example we identified a subset of critical

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

variables more often crossed to propagate values through
the design. 92% SEU tolerance is achieved protecting the
critical variables, about 34% of the available variables.
Acting on the remaining 66% of variables, a similar SEU
tolerance is obtained but the introduced area is
significantly higher since in this case the number of
protected variables is almost doubled.

Example

SEU
detection

in high-level
descr.

SEU detection
in gate-level

descr.

BUBBLE SORT 73% 69.8%

2D GAUSSIAN
DISTRIBUTION 83% 81.4%

FFT

54% 51.3%

Table 3: SEU tolerance via control flow monitoring

5. Conclusions and on going work
The present paper analyzed the reuse of Software

Implemented Hardware Fault Tolerance (SIHFT)
techniques to design SEU tolerant architectures. Two
aspects have been targeted: data protection and control
flow monitoring. Well-known SIHFT techniques have
been customized to make them synthesizable and to
finally generate a gate-level description with improved
dependability properties. A complete development
environment has been set up to automate the design
instrumentation using SIHFT techniques and evaluate the
results via high-level and gate-level fault injections.
Preliminary results presented in this paper showed the
effectiveness of approach. Currently we are investigating
alternative SIHFT techniques, to evaluate the trade-off in
terms of dependability improvements and performance
degradation. Moreover, metrics are under study to
identify the most critical areas in the given system, and
thus optimize the design modifications.

6. Acknowledgments
The authors wish to thank Synopsys Inc. which kindly

provides us the CoCentric SystemC Compiler to run the
experiments. Moreover, the authors thank C. Gay and L.
Bianchi for the fruitful discussions and for implementing
the SEA tool.

7. References
[1] K.A. LaBel, M. M. Gates, A. K. Moran, P.W. Marshall, J. Barth,

E. G. Stassinopoulos, C. M. Seidleck, C. J. Dale, Commercial
Microelectronics Technologies for Applications in the Satellite
Radiation Environment, IEEE Aereospace Application
Conference, 1996.

[2] F. W. Sexton, Measurement of Single Event Phenomena in
Devices and ICs, IEEE NSREC Short Course, pp. III-1 III-5,
1992.

[3] M. Nicolaidis, Y. Zorian, On Line Testing for VLSI – A
Compendium of Approaches, Journal of Electronic Testing,
Theory and Application (JETTA), Vol. 2, Nos. 1/2, Feb-Apr.
1998, pp. 7-8.

[4] K. De, C. Natarajan, D. Nair, P. Banerjee, RSYN: a system for
automated synthesis of reliable multilevel circuits, IEEE
Transaction on VLSI Systems, pp. 186-195, June 1994

[5] N. K. Jha, S. J. Wang, Design and Synthesis of Self-Checking
VLSI Circuits, IEEE Transaction on CAD, vol. 12, No. 6, pp.
878-887, June 1993

[6] F. Salice, M. Sami, D. Sciuto, Synthesis of Multilevel Self-
Checking Logic, IEEE Int. Workshop on defect and fault
Tolerance in VLSI, October 1994

[7] B. Hamadi, H. Bederr, M. Nicolaidis, A tool for automatic
generation of self-checking data paths, IEEE VLSI Test
Symmposium, pp. 460-466, April 1995

[8] Vargas, F.; Amory, A., Recent improvements on the specification
of transient-fault tolerant VHDL descriptions: a case-study for
area overhead analysis, 13th Symposium on Integrated Circuits
and Systems Design, 2000, pp. 249 -254

[9] Stroud, C.; Ding, M.; Seshadri, S.; Kim, I.; Roy, S.; Wu, S.;
Karri, R., A parameterized VHDL library for on-line testing,
IEEE International Test Conference, 1997, pp. 479 –488

[10] P. P. Shirvani, N. R. Saxena, E. J. McCluskey, Software-
implemented EDAC protection against SEUs, IEEE Transaction
on Reliability, Vol. 49, Issue 3, pp. 273-284, Sept. 2000.

[11] P. P. Shirvani, N. Oh, E. J. McCluskey, Software-Implemented
Hardware Fault Tolerance Experiments COTS in Space, Center
for Reliable Computing, Stanford University, Dec. 2000.

[12] V. Strumpen, Portable and Fault-Tolerant Software Systems,
IEEE Micro, pp. 22-32, September-October 1998.

[13] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante,
Soft-error Detection through Software Fault-Tolerance
techniques, DFT'99: IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, November 1-3, 1999 -
Albuquerque, New Mexico, USA, pp. 210-218

[14] A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, A C/C++
source-to-source compiler for dependable applications,
 IEEE Dependable Systems and Networks, 2000,
pp. 71 -78

[15] G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin, “Two software
techniques for on-line error detection”, 22th International
Symposium on Fault-Tolerant Computing (FTCS-22), pp. 328-
335, July, 1992.

[16] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A. Abraham,
“Design and Evaluation of System-Level Checks for on-line
Control Flow Error Detection”, IEEE Transaction on Parallel
and Distributed Systems, Vol. 10, No. 6, pp. 627-641, June
1999.

[17] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri,
Control Flow Checking via Regular Expressions, to be presented
at Asian Test Sympsyum, Nov. 2001.

[18] B. Stroustrup The C++ Programming Language, II edition,
Addison-Wesley, 1991.

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

