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Abstract 

SEU faults are a well-known problem in aerospace 
environment but recently their relevance grew up also at 
ground level in commodity applications coupled, in this 
frame, with strong economic constraints in terms of costs 
reduction. On the other hand, latest hardware 
description languages and synthesis tools allow reducing 
the boundary between software and hardware domains 
making the high-level descriptions of hardware 
components very similar to software programs. Moving 
from these considerations, the present paper analyses the 
possibility of reusing Software Implemented Hardware 
Fault Tolerance (SIHFT) techniques, typically exploited 
in micro-processor based systems, to design SEU 
tolerant architectures. The main characteristics of SIHFT 
techniques have been examined as well as how they have 
to be modified to be compatible with the synthesis flow.  
A complete environment is provided to automate the 
design instrumentation using the proposed techniques, 
and to perform fault injection experiments both at 
behavioural and gate level. Preliminary results presented 
in this paper show the effectiveness of the approach in 
terms of reliability improvement and reduced design 
effort.  

1. Introduction 
Spacecraft and spacecraft designers are being pushed 

to use enabling or emerging commercial technology to 
meet high science data performance in increasingly 
smaller and lower cost spacecraft [1]. The benefits may 
include: higher gates density, increased speed and 
performance, easier system development process using 
COTS development and test equipment, and decreased 
lead times versus rad-hard (RH) approaches.  

The design of SEU tolerant architectures is a well-
known problem in aerospace environment, where 
radiations, such as alpha particles and cosmic rays, can 
cause transient faults in electronic systems. Single-Event 
Upset (SEUs) faults mainly affect flip-flops, memory 
cells, registers and latches causing an undesired change 
of state (bit-flip) in the storage elements [2]. The SEU 
effects have been well investigated in literature and can 
be classified in: (i) fail silent condition, whether the fault 
is masked; (ii) fail silent violation, when the system 

outputs incorrect values; (iii) system crash when the 
system stop working.  

Unfortunately IC manufacturers are being driven by a 
market of which the space community is a very small 
portion. Because of this, commercial approaches must be 
evaluated and sometime modified to meet performance 
and reliability requirements of spacecraft applications 
[1]. In addition, with the increasing use of nanometre 
technologies, due to electromagnetic interference and 
power supply glitches, SEU effects become a relevant 
problem also at ground level. In this scenario SEU 
tolerant architectures design becomes mandatory also in 
commodity applications coupled, in this frame, with 
strong economic constraints in terms of costs reduction 
[3]. 

Many hardware techniques have been proposed to 
develop SEU tolerant architectures. They include 
Signature monitoring for low cost concurrent error 
detection for FSMs; On-line monitoring of reliability 
relevant parameters; Self-Checking; ON-line BIST 
techniques; Scan Paths exploitation [4].  

With the introduction of hardware description 
languages as VHDL and the possibility of describing 
systems at RT-level several researches have been 
performed to introduce SEU tolerant structures directly 
at this description level. The reason relies on the fact that 
the VHDL code can be easily analysed and modified 
before synthesis introducing safe operators and 
functional blocks. Acting in the earlier steps of the 
design flow the designer can trade-off costs and 
dependability improvements, globally reducing the 
developing time. Possible approaches include synthesis 
techniques for self-checking combinational circuits [4] 
[5][6], automatic generation of self-checking data paths 
using CAD tools [7]; libraries of VHDL components 
designed for high circuit reliability and availability [8] 
[9]. 

Concurrently, the massive use of micro-processor 
based systems lead to the development of alternative 
solutions named Software Implemented Hardware Fault 
Tolerance (SIHFT) techniques [10][11][12]. These 
software techniques are able to protect the memory space 
where program data and instructions are stored. The 
basic idea is to apply a set of transformation rules to the 
original code to obtain a new version, functionally 
equivalent but SEU tolerant. Mainly they include Error 
Detection by Duplicated Data (EDDD) approaches 
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[13][14], executing operation on multiple copies of the 
same data and comparing the produced outputs to detect 
the fault occurrence, and Control Flow Checking by 
Software Signatures (CFCSS), based on signatures 
assigned to each code block a-priori and re-computed 
run-time to verify the flow execution [15][16][17].  

The actual trend in the design flow is to move up into 
the hierarchy, describing the circuit at the behavioural 
level. These high-level descriptions are synthesizable 
descriptions but at the same time they are very close to 
design specifications. In this context the boundary 
between software domain and hardware domain looses 
weight and the reuse of SIHFT techniques in the 
hardware components descriptions becomes possible.  

The present paper works in this area and proposes an 
automate approach to reuse SIHFT techniques in high 
level hardware descriptions. The goal is to show the 
effectiveness of the approach in terms of reliability 
improvement and reduced design effort. The target 
environment for behavioural level designing is the 
SystemC environment.  

SystemC is a modeling platform consisting of C++ 
class libraries and a simulation kernel to design at the 
system-behavioral and register-transfer-levels. SystemC 
represents a de facto standard for system-level design 
and is supported by a collaborative effort among a broad 
range of companies named Open SystemC Initiative 
(OSCI). In comparison with traditional hardware 
description languages, C++ appear to be the most 
suitable approach for behavioural-level design. It 
provides the control and data abstractions necessary to 
develop compact and efficient descriptions using the 
power of an Object Oriented (OO) language. In addition, 
most systems include both hardware and software units, 
the last ones typically described in C/C++. Finally, most 
designers are familiar with this language and a large 
number of development tools is available coming from 
the software area. 

The proposed approach includes a SystemC-based 
class library, named SAFE Library. It extends the original 
SystemC class collection with constructs characterized 
by high dependability properties. The original design 
description is instrumented with the SAFE Library 
before the synthesis flow in order to obtain a SAFE 
Description compatible with all the synthesis tools 
supporting SystemC. In the paper we propose one 
implementation of SAFE library, but the approach can 
support any SHIFT technique. 

A SystemC Environment for Applications (SEA) tool 
is provided to automate the insertion of the SAFE 
Library. The tool also allows validating the modified 
design description and performing fault injection 
experiments both at behavioural and gate level. Using the 
SEA tool the designer can efficiently trade-off costs and 
dependability properties tuning the optimal SEU tolerant 
solution for the target design. 

This paper is organized as follows: Section 2 analyzes  
the reuse of SIHFT techniques in the hardware domain 
whereas Section 3 presents the proposed design flow and 
the SEA tool. Section 4 reports some experimental 
results to validate the proposed approach and Section 5 
draws some conclusions. 

2. Using SIHFT techniques in HW 
designing 

With the introduction of Object Oriented (OO) design 
languages like C++, the high-level description of 
hardware components becomes very close to a standard 
software program. Well-known and verified algorithms 
written using C/C++ can be synthesized and 
implemented as ASIC cores or mapped into FPGA 
components with a very low design effort. 

However, software programs and high-level hardware 
descriptions have different final implementations, and 
thus so far different approaches have been proposed to 
achieve SEU tolerance in the hardware and software 
domains.  

The OO code of a software program is translated by a 
compiler in a sequence of instructions executable in a 
given micro-processor platform. A memory accessible by 
the micro-processor stores instructions and data needed 
during the computation process. Thus, to deal with SEU 
occurrence in the memory, software techniques (SIHFT) 
target two aspects: the generation of incorrect data (1) 
and illegal executions of the program flow (2). The 
former are due to the occurrence of SEUs in memory 
locations storing data whereas the latter are usually 
caused by SEUs which corrupt jump or in general control 
flow instructions in memory locations storing code. 
Typically SIHFT techniques address (1) via data 
protection and (2) via control flow monitoring. The basic 
idea is to modify the original code introducing 
redundancy. The proposed approaches differ in terms of 
achieved dependability levels and introduced 
performance degradation (delays and area). 

The OO code describing hardware components is 
converted through the synthesis process into a networks 
of combinational blocks and memory elements,  
executing the expected computation process.  

To reuse the SIHFT techniques in the hardware 
domain some preliminary analysis and considerations 
should be made. The basic idea is to define a link 
between the final hardware implementation and the high-
level design description. First, the target dependability 
properties have to be identified at the hardware level. 
Then, they have to be mapped into the high-level design 
description. Finally, SIHFT techniques have to be 
adapted to obtain code synthesizable and able to achieve 
the target dependability properties in the hardware 
implementation. 
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To achieve SEU tolerance, the memory elements 
available in the post-synthesis description have to be 
protected. They include memory elements (flip-flops) 
instanced to store data and memory elements 
implementing the control logic. SIHFT techniques 
developed to target (1) can be efficiently exploited to 
achieve data protection in the hardware domain, but 
solutions for (2) are not directly applicable. 

SIHFT approaches for data protection typically act on 
program variables inserting redundant information such 
as error code and data replication, and checking all the 
assignments, controls and evaluations of variables to 
keep status up. In the high-level description of hardware 
components, variables store data and are mapped in 
memory elements during the synthesis flow. Therefore, 
SIHFT techniques for (1) can be easily reused to achieve 
data protection in the hardware domain.  

Several solutions have been proposed in software for 
control flow monitoring (2). The basic idea is to split the 
original program into elementary blocks and for each 
block off-line compute a reference signature representing 
the correct execution of the block. At run time the 
signatures are calculated again and compared with the 
golden ones. Since the signatures are computed on 
portions of program machine code, these approaches are 
not directly applicable to hardware descriptions where 
the concepts of instruction, addresses and opcode have 
no meaning in the final implementation.  

To reuse control flow monitoring techniques in the 
hardware domain an analogy with the software domain 
should be found. The synthesis process inserts some 
logic (both combinational parts and memory elements) to 
implement the control. This logic is not explicitly 
defined in the high level description, but it is inferred by 
the synthesis process based on the computation flow 
specified in the high-level description, and some 
additional synthesis constraints (e.g., available units and 
synthesis for minimum area or delay). The control logic 
is usually implemented as a Finite State Machine (FSM) 
where the memory elements influence the states 
evolution. The sequence of states of the FSM has a 
strong analogy with the control flow of a software 
program. Therefore, SIHFT techniques for (2) can be an 
effective solution to protect control logic in the hardware 
design implementation. They only have to be modified in 
order to work without resorting to the concept of 
instruction opcode or memory addresses. 

Starting from this analysis, we propose an approach 
which works in two different directions: 
• Make safe variables, to detect and /or correct the SEU 

occurrence on them. The approach generates redundant 
copy of variables or of part of them and check the 
consistence of the copy. 

• Make safe control on flow, proposing an approach 
independent from program machine code. It is 
implemented as a module call Agent able to check the 

correct evolution of the FSM implementing the control 
logic. 
 
Despite the approach used to protect variables is 

intuitive some more words must be spent concerning 
control flow protection. The Agent is a relatively simple 
unit running concurrently with the given design. The 
Agent is able to receive information about the current 
state of the control logic and check the correct evolution 
of them. It can be easily implemented using OO 
languages. The original code has to be slightly modified 
inserting so called checkpoints in correspondence of 
branch instructions in order to transmit status 
information to the Agent. This implementation allows 
reusing most of the concepts and theory defined and well 
proved in the software control flow checking field. 

3. The proposed design flow 
To automate the insertion of dependable structures 

and validate the concepts sketched in Section 2 a 
complete design environment has been set up. 

As target platform we selected the SystemC v. 1.2 
environment, the most widely used in high-level 
designing. SystemC relies on a library of classes and 
basic blocks to describe hardware systems at the high-
level. In our approach we extend the SystemC Library 
defining a SAFE Library which includes constructs to 
achieve data protection and control flow monitoring. The 
implementation takes advantage of all the facilities 
offered by C++ language like template, classes 
inheritance, and operators override [18].  

Figure 1 shows the proposed design flow. It is 
structured in two design steps, named High-level Design 
Instrumentation and Synthesis Process, and two 
validation steps based on fault injection experiments, at 
the high and gate-level.  

First, the given high-level design description is 
properly instrumented in order to obtain its reliable 
version (High-level Design Instrumentation). The 
modification process is based on the content of the SAFE 
Library and is driven by the designer who selects the 
portions of the code to modify. Moreover, the designer 
can trade-off dependability improvements and 
implementation costs choosing, out of the SAFE Library 
content, the constructs to apply. As an example, most 
critical variables can be modified inserting constructs to 
achieve fault correction; the simple fault detection can be 
implemented for the remaining variables, or even a 
certain subset of variables can be untouched.  

To avoid long backtracks in the design flow, the 
developed environment allows validating at early design 
steps the dependability properties of the instrumented 
design. Fault injection experiments performed on the 
safe version of the high-level design description (High-
level Fault Injection) check whether the performed 
modifications allow meeting the target reliability 
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constraints. If not, the designer can restart the process, 
modify differently the original design description, and 
tune the optimal design solution. Otherwise, the design is 
synthesized and a gate-level SAFE implementation is 
gathered (Synthesis Process). Fault injection experiments  
on the gate-level description (Gate-level Fault Injection) 
check that constructs inserted at the high-level maintain 

their functionality through the synthesis flow. The aim is 
to verify that the dependability properties of the SAFE 
gate-level description are the expected ones and 
correspond to the high-level SEU tolerance previously 
computed. 

 

OO CodeOO Code

High Level Design
Instrumentation OO Safe CodeOO Safe Code

Safe 
Library

Synthesys Process

Safe Gate Level NetlistSafe Gate Level Netlist
Technology 
Lybrary

Dependability 
Constrants

Dependability 
Constrants

High Level
Fault Injection

Gate Level
Fault Injection High Level SEU ToleranceHigh Level SEU Tolerance

Dependability
Constraints TuningGate Level SEU ToleranceGate Level SEU Tolerance

Comparator

 

Figure 1: The proposed design flow 

4. Experimental results 
Performed experiments show that the reuse of SHIFT 

techniques in the hardware domain is a feasible 
approach. 

A tool named SystemC Environment for Applications 
(SEA)  has been implemented to perform the design 
instrumentation and the fault injection experiments. 

The SystemC design descriptions have been 
synthesized using CoCentric SystemC Compiler v. 
2000.11. All the optimisation options have been disabled 
during the synthesis process, to preserve the 
modifications introduced in the safe version of the design 
description. An in house-developed technology library 
for synthesis has been used, including elementary gates 
and D flip-flops.  

The used CoCentric SystemC Compiler release do 
not yet completely support all the SystemC constructs. 
For this reason, the SEA tool implements a refinement 
step which automatically elaborates the code and 
generate a fully synthesizable version. 

Table 1 summarises the characteristics of the 
considered benchmarks. Since in the present paper the 
aim is the validation of the approach, we considered 
relatively simple examples as test cases. They are four 

data-dominated designs, named Alarm, Front_cnt, 
Counter, and Singen, in which most of the available logic 
is devoted to data storing and data manipulation, and 
three control-flow dominated designs named Bouble 
Sort,  2D Gaussian Distribution, and FFT, in which the 
most critical SEUs are the ones affecting the control flow 
execution.  

The experiments aim at verifying the correspondence 
between design SEU tolerance measured at the high and 
gate-level, and evaluating the impacts of the introduced 
modifications in terms of performance degradation.  

Table 2 and Table 3 report the high-level and gate-
level dependability measures when the benchmarks are 
instrumented with the SAFE Library. About 10,000 fault 
injection experiments were run, and the design SEU 
tolerance is computed as: 

%
SEUsinjectedof #

SEUscorrected and detectedof #
⋅⋅

⋅⋅⋅  

In Table 2, for each benchmark all the available 
variables have been protected inserting the SEU 
detection capability, in the first two columns, and the 
SEU correction in the remaining two. 
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Data-dominated benchmarks Control-flow dominated benchmarks 

Circuit Description Type of Variables Circuit Description 

ALARM The output signal of the unit blinks for NMAX clock 
cycles after the start signal is triggered on.  

INTEGER 
BOOLEAN BOUBLE SORT Sort an array of 

elements 

FRONT_CNT 
This unit verifies at  each clock cycle  if its input is 

equal to zero or  one, and outputs the number of 
zeros and one counted. 

INTEGER 2D GAUSSIAN 
DISTRIBUTION 

Estimate a 2D Gaussian 
distribution 

COUNTER It is a |4096| counter with parallel data load input. INTEGER 

SINGEN It  outputs a sinusoidal waveform.  
INTEGER 

A SET OF PRE- 
COMPUTED VALUES

FFT Compute fast 
Fourier Transformate 

Table 1: Benchmarks 

The introduced modifications guarantee complete 
fault tolerance at the software level, since SEU occurred 
in variables are always either detected or corrected. The 
results gathered at the gate-level still confirm the 
effectiveness of the approach. The apparent reduction of 
the SEU tolerant values is mainly due the difference 
between the high-level and gate-level fault injector. In 
fact, at high-level fault can be injected in variable storing 
data, only. On the other hand, at gate-level faults are 
injected in any point of the circuit, since data and control 
logic can not be distinguished. Since benchmarks have 
been instrumented to achieve data protection, SEUs 
affecting the control logic are neither detected nor 
corrected, and consequently the fault tolerance values 
decrease. Being the considered examples data-
dominated, the control logic is rather small and therefore 
the SEU tolerance values at the high-level and gate-level 
are quite close. Experiments therefore show that SIHFT 
techniques for data protection can be effectively used in 
hardware domain. 

Table 2 shows that at the gate-level the fault tolerance 
is higher when resorting to the correction strategy. This 
increase is due to the synthesis process. The hardware 
overhead due to the correction strategy is higher then the 
one due to the detection approach; in addition not all the 
instanced logic is always in use, but typically some 
portions are idle in certain time slots. The synthesis 
process reuses this logic to implement part of the control 
logic, and as a consequence the data protection is 
partially extended to the control logic. 

Table 3 summarizes the experiments when the Agent 
approach is applied to the three control-flow dominated 
examples. An ad-hoc mechanism has been implemented 
to emulate control flow fault injection at high level. 

In Table 3, SEU tolerance values are lower then the 
target 100% due to the aliasing phenomenon. The 
aliasing is related to the block size and the signature 
computation function, and cause masking the SEU 
occurrence. Mainly, the execution of a certain block can 
generate a correct signature even when the flow 
execution was not correct.  

The SEU tolerance values further decrease at the gate-
level for the noise introduced by the fault injection 

experiments. Being the benchmarks control-flow 
dominated the two results are anyhow quite close.   

 
SEU detection 

mode 
SEU correction 

mode 
Example High-level 

descr. 

Gate-
level 

descr. 

High-level
descr. 

Gate-
level 

descr. 

ALARM 91% 97.2% 

FRONT_CNT 88.6% 89.7% 

 
COUNTER 

 
86.9% 89% 

SINGEN 

100% 
 

88.8% 

100% 
 

 
90% 

 

Table 2: SEU tolerance via data protection 

The results in Table 3 show that the Agent can 
efficiently monitor the control flow. At the same time 
they point out that more investigations are needed for an 
optimal use of the Agent, in order to avoid SEU masking. 

Finally, experiments have been performed 
instrumenting all the examples with both data protection 
and control flow monitoring constructs. The obtained 
SEU tolerance is about the 100% also at the gate-level. 
The reason of the not full tolerance is mainly a sub-
optimal use of the Agent and is not in the lack of data 
protection. 

Concerning the implementation costs, the area 
overhead is comparable with the one of already proposed 
hardware SEU tolerant architectures. For the examples in 
Table 2, where most of the logic is devoted to data, the 
area of the SEU tolerant design is about two times the 
original area when the SEU detection capability is 
applied to all the variables,  three times in the case of the 
SEU correction approach. 

Finally, experiments pointed out that good 
dependability properties can be achieved with a lower 
cost carefully selecting the variables to protect. In the 
ALARM example we identified a subset of critical 
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variables more often crossed to propagate values through 
the design. 92% SEU tolerance is achieved protecting the 
critical variables, about 34% of the available variables. 
Acting on the remaining 66% of variables, a similar SEU 
tolerance is obtained but the introduced area is 
significantly higher since in this case the number of 
protected variables is almost doubled.     

 

Example 

SEU 
detection 

in high-level 
descr. 

SEU detection 
in gate-level 

descr. 

BUBBLE SORT 73% 69.8% 

2D GAUSSIAN 
DISTRIBUTION 83% 81.4% 

 
FFT 

 
54% 51.3% 

Table 3: SEU tolerance via control flow monitoring 

5. Conclusions and on going work  
The present paper analyzed the reuse of Software 

Implemented Hardware Fault Tolerance (SIHFT) 
techniques to design SEU tolerant architectures. Two 
aspects have been targeted: data protection and control 
flow monitoring. Well-known SIHFT techniques have 
been customized to make them synthesizable and to 
finally generate a gate-level description with improved 
dependability properties. A complete development 
environment has been set up to automate the design 
instrumentation using SIHFT techniques and evaluate the 
results via high-level and gate-level fault injections. 
Preliminary results presented in this paper showed the 
effectiveness of approach. Currently we are investigating 
alternative SIHFT techniques, to evaluate the trade-off in 
terms of dependability improvements and performance 
degradation. Moreover, metrics are under study to 
identify the most critical areas in the given system, and 
thus optimize the design modifications. 

6. Acknowledgments 
The authors wish to thank Synopsys Inc. which kindly 

provides us the CoCentric SystemC Compiler to run the 
experiments. Moreover, the authors thank C. Gay and L. 
Bianchi for the fruitful discussions and for implementing 
the SEA tool.  

7. References 
[1] K.A. LaBel, M. M. Gates, A. K. Moran, P.W. Marshall, J. Barth, 

E. G. Stassinopoulos, C. M. Seidleck, C. J. Dale, Commercial 
Microelectronics Technologies for Applications in the Satellite 
Radiation Environment, IEEE Aereospace Application 
Conference, 1996. 

[2] F. W. Sexton, Measurement of Single Event Phenomena in 
Devices and ICs, IEEE NSREC Short Course, pp. III-1  III-5, 
1992. 

[3] M. Nicolaidis, Y. Zorian, On Line Testing for VLSI – A 
Compendium of Approaches, Journal of Electronic Testing, 
Theory and Application (JETTA), Vol. 2, Nos. 1/2, Feb-Apr. 
1998, pp. 7-8. 

[4] K. De, C. Natarajan, D. Nair, P. Banerjee, RSYN: a system for 
automated synthesis of reliable multilevel circuits,  IEEE 
Transaction on VLSI Systems, pp. 186-195, June 1994 

[5] N. K. Jha, S. J. Wang, Design and Synthesis of Self-Checking 
VLSI Circuits, IEEE Transaction on CAD, vol. 12, No. 6, pp. 
878-887, June 1993 

[6] F. Salice, M. Sami, D. Sciuto, Synthesis of Multilevel Self-
Checking Logic, IEEE Int. Workshop on defect and fault 
Tolerance in VLSI, October 1994 

[7] B. Hamadi, H. Bederr, M. Nicolaidis, A tool for automatic 
generation of self-checking data paths, IEEE VLSI Test 
Symmposium, pp. 460-466, April 1995 

[8] Vargas, F.; Amory, A., Recent improvements on the specification 
of transient-fault tolerant VHDL descriptions: a case-study for 
area overhead analysis, 13th Symposium on Integrated Circuits 
and Systems Design, 2000, pp. 249 -254 

[9] Stroud, C.; Ding, M.; Seshadri, S.; Kim, I.; Roy, S.; Wu, S.; 
Karri, R., A parameterized VHDL library for on-line testing, 
IEEE International Test Conference, 1997, pp. 479 –488 

[10] P. P. Shirvani, N. R. Saxena, E. J. McCluskey, Software-
implemented EDAC protection against SEUs, IEEE Transaction 
on Reliability, Vol. 49, Issue 3, pp. 273-284, Sept. 2000. 

[11] P. P. Shirvani, N. Oh, E. J. McCluskey, Software-Implemented 
Hardware Fault Tolerance Experiments COTS in Space, Center 
for Reliable Computing, Stanford University, Dec. 2000. 

[12] V. Strumpen, Portable and Fault-Tolerant Software Systems, 
IEEE Micro, pp. 22-32, September-October 1998. 

[13] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, 
Soft-error Detection through Software Fault-Tolerance 
techniques, DFT'99: IEEE International Symposium on Defect 
and Fault Tolerance in VLSI Systems, November 1-3, 1999 - 
Albuquerque, New Mexico, USA, pp. 210-218 

[14]  A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, A C/C++ 
source-to-source compiler for dependable applications,   
 IEEE Dependable Systems and Networks, 2000,   
pp. 71 -78 

[15] G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin, “Two software 
techniques for on-line error detection”, 22th International 
Symposium on Fault-Tolerant Computing (FTCS-22), pp. 328-
335, July, 1992. 

[16] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A. Abraham, 
“Design and Evaluation of System-Level Checks for on-line 
Control Flow Error Detection”, IEEE Transaction on Parallel 
and Distributed Systems, Vol. 10, No. 6, pp. 627-641, June 
1999. 

[17] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, 
Control Flow Checking via Regular Expressions, to be presented 
at Asian Test Sympsyum, Nov. 2001.   

[18]  B. Stroustrup The C++ Programming Language, II edition, 
Addison-Wesley, 1991. 

 
 

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02) 
0-7695-1641-6/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


