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Abstract—Modeling and simulation of electrical power systems 

are becoming increasingly important approaches for the develop- 
ment and operation of novel smart grid functionalities – especially 
with regard to data-driven applications as data of certain 
operational states or misconfigurations can be next to impossible 
to obtain. The DeMaDs framework allows for  the  simulation 
and modeling of electric power grids and malfunctions therein. 
Furthermore, it serves as a  testbed  to  assess  the  applicability 
of various data-driven malfunction detection methods. These 
include data mining techniques, traditional machine learning 
approaches as well as deep learning methods. The framework’s 
capabilities and functionality are laid out here, as well as 
explained by the means of an illustrative example. 

Index Terms—Data-driven approach, malfunction detection, 
modeling and simulation, electric power systems, smart grids. 

 

I. INTRODUCTION 

The development of new smart grid capabilities for elec- 

tric power grids is essential these days. The transformation 

towards a sustainable, yet still resilient energy system entails 

various challenges. These demands can only be faced by novel 

functionalities [1], which allow the grid to react to the current 

situation. In order to implement them, but also to test and 

monitor them, realistic testbeds are needed. However, there  

are various obstacles to using the electrical power grid as a 

testbed. The reasons for this are mainly domain-specific: as 

the power grid is a vital building block of modern life, it is 

regarded as a critical infrastructure. Any meddling or introduc- 

tion of non-fully elaborate functionality could compromise its 

reliability [2]. Moreover, the power grid can not be rebuilt in 

a scaled-down version that would fully reflect its properties. 

Furthermore, due to the historical development of the power 

grid as a hierarchical system, the lower tiers of the network  

are fairly ill-equip with sensors [3]. These circumstances make 

data collection and testing in the field, or on a replica of the 

actual power grid, either difficult or next to impossible. 

This leads to modeling and simulation being the only 

feasible option for early-stage development and assessment of 

smart grid solutions. This is especially true if these approaches 

are not only to be tested in a very limited lab setting. 
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Regarding grid models, there is free material available to 

facilitate these tasks. Very prominent representatives there are 

the IEEE radial test feeders [4] which are widely used in power 

system analysis under novel circumstances [5]. Even though 

the IEEE test feeders feature load profiles, they lack renewable 

generation profiles and an approach for future scenarios in 

general. The SIMBENCH project [6] is an open-source project 

providing specifically designed power grids that allow for the 

simulation of distribution grids. These models also include 

scenarios and consumption or generation profiles for electric 

mobility, battery storage, and novel forms of power generation. 

In combination with load flow solvers or power grid simulation 

software [7], these resources can be used to assess the impact 

and behavior of new techniques in grid operation. The state- 

of-the-art on these solvers and tools is  quite  advanced  [8] 

and allows for high computational efficiency [9]. The data 

generated in the course of this could also be used to develop 

means of monitoring grid-connected devices. 

However, the integration of these solvers with grid simu- 

lation and the modeling of specific applications as well as  

their malfunctions is missing from the literature. This is a 

prerequisite for the development of monitoring applications. 

The current approaches are often solely mathematical models 

not integrating data-driven approaches [10]. In case they do 

integrate approaches such as machine learning, they only target 

very common issues and applications; in [11] the authors 

present a model for predicting general power consumption. 

The work presented in [12] is more specific focusing on 

combined heat and power as well as electrical vehicle inte-  

gration into the power grid. Demand response in a smart grid 

environment is under scrutiny in [13], however, with mere 

attention paid to its implementation and not to its monitoring 

functionalities with regard to correct execution. When it comes 

to monitoring, significant contributions can be found in the 

field of security with respect to malicious attacks on the  

power grid [14]. Nevertheless, this does for example not  

cover misconfigurations occurring during regular operation. 

These misconfigurations can lead to malfunctions of the grid- 

connected device. 

The framework presented now aims to fill this gap by 

providing modeling and data generation, processing, and anal- 

ysis capabilities. It is designed to serve as a testbed aimed 
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to develop and assess functional monitoring solutions. The 

approach strives to detect malfunctions during the regular 

operation of grid-connected devices. The grid setups to be used 

can be arbitrary. Also, the malfunctions under scrutiny can    

be modeled freely, as well as a variety of detection methods 

employed. This is demonstrated in detail in the previous 

works of [15] and [16]. These features allow for the easy 

expansion of monitoring use cases. Furthermore, the final 

detection application can be parameterized freely to facilitate 

development. 

The manuscript has the following content: In Section I, the 

general motivation and background for the work the and field 

of application of the software framework are presented. Sec- 

tion II provides an overview of the framework, its architecture, 

and its functionalities. Section III provides insights into the 

application of the framework by illustrating an example use 

case in detail. Section IV outlines the impact the framework 

has as a testbed for the development of monitoring solutions 

for power system operators. Finally, Section V provides the 

conclusions and an outlook about potential further work. 

 

II. FRAMEWORK DESCRIPTION 

 
The framework is entirely written in Python and the imple- 

mentation can be found on the corresponding GitHub repos- 

itory1. The most important dependencies regarding external 

libraries and their use in the framework are illustrated in 

Figure 1; almost all libraries used are free and open-source 

libraries, with the exception of a library to interface the here- 

employed power grid simulation software, DIgSILENT Power- 

Factory. As there is sample data provided in the repository, the 

use of such software is not mandatory. Furthermore, any grid 

modeling and simulation solution can be used in combination 

with the rest of the framework. In addition, a script which is 

under development is used for load estimation. 

However,  other implementations of this functionality can 

be used as well. This means there are no crucial parts of the 

framework that are not openly accessible. The common Python 

libraries are made for data handling and path allocations, 

whereas for the classic machine learning capabilities Scikit- 

learn [17] is used. For deep learning, especially for the 

recurrent neural networks employed, Pytorch [18] is being 

used. For regular neural network applications, Tensorflow [19] 

is applied. The choice of using different libraries for the 

implementation of artificial neural networks depending on 

their type was made in order to allow for increased flexibility 

when developing a solution. Pytorch  enables  the  developer 

to adjust and craft the desired architecture in greater detail     

in comparison to TensorFlow. This is especially interesting 

when trying to craft a monitoring solution in a setting like the 

power grid, as the relevant properties of the data and features 

are widely unknown beforehand. 

 
1https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset 

 
Fig. 1. The dependencies of the framework. 

 

 

A. Software Architecture 

The architecture of the framework differs depending on the 

use case of the respective part of the software. Figure 2 depicts 

the software architecture of the framework. 

The basic settings for the experiment to be conducted by the 

framework are defined in the configuration file. These settings 

include data paths and directories as well as configurations for 

the machine learning, or deep learning approaches that are to 

be used. The settings also define the neural network models 

and classifiers to use and how many layers or what type of 

kernel they should be parameterized with. Also, settings for 

the loading or creation of data and the assembly of datasets 

can be specified. These include the specification of the grid 

models or malfunctions, in order to define the use case the 

detection is applied to. Further settings include the mapping of 

data to align real-world measurements with simulation results, 

for cases in which these two data sources are to be combined. 

Then, the data set generation or import of the defined use 

case is done via functions. Functions are chosen here in order 

to allow for easier integration of different data sources or grid 

simulation tools. The functional interfaces are easier to adjust 

or exchange in comparison to an integration of these data 

handlers within classes. Depending on the use case, this data is 

then saved. In the case of deep learning, the created data sets 

are also saved as their compilation is more computationally 

expensive compared to the data sets used for other approaches. 

For experiments testing not a single detection method but   

a pipeline of methods that form an approach to a practical 

detection application, load estimation is done via an external 

script. This script is still under development and therefore not 

fully integrated with the Detection Application class. This also 

allows for the use of alternative load estimation or generally 
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Fig. 2.  The software architecture of the framework. 

 

data mining approaches more easily. 

The main functionalities regarding malfunction detection 

are bundled into three classes: Deep Learning and Trans- 

former Detection both serve as isolated test beds for methods. 

These are either grid-unspecific using device-level data in the 

case of the Deep Learning approaches or grid-specific using 

transformer data for Transformer Detection. The last class,  

Detection Application, then allows for the integration of the 

individually assessed methods into a practically applicable 

detection application. 

B. Software Functionalities 

The framework, as already mentioned above, allows for a 

great variety of scenarios in which the modeled malfunctions 

are to be detected. The malfunctions are modeled as incorrect 

control curves of devices whose behavior are reflected in grid 

operational data. This detection can be tested and validated in 

different grid topologies, using differently sized and composed 

data sets of different origins. The data can originate both from 

simulation or real-world settings such as lab environments.  

Furthermore, the approaches to preprocessing and data-driven 

detection can be varied. Also, various options for metrics and 

visualization of results are given. 

When developing deep learning-based detection methods, 

data generation allows for the generation of large amounts     

of data.  This  is  done  by  using  an  arbitrary  number  of  

grid models for simulation. These simulations can be paral- 

lelized, to swiftly yield operational data of a certain type of 

grid-connected device experiencing the malfunction modeled. 

Moreover, operational data of the correct behavior of these 

grid-connected devices is extracted as well. These data can  

not be obtained in the real world, especially not in a labelled 

manner as the occurrence of a misconfiguration goes unnoticed 

at the moment. The results are  saved  in  a  CSV  format.  

This data is used to form data sets of the misconfiguration 

under scrutiny in the use case, which are stored in an hd5 

format as they contain up to 200,000 samples. These data 

sets can now contain data stemming from a single grid or 

multiple grids. This allows for the assessment of whether the 

applied deep learning method is able to extract fundamental 

properties from the data. This is done in order to assess if       

a specific method can recognize a malfunction without any 

grid-specific context. The data and the individual samples 

therein can also be plotted. The framework allows for data 

preprocessing such as scaling as well as training in various  

deep-learning approaches. In addition, it enables a comparison 

to traditional statistical methods. Furthermore, hyperparameter 

tuning can be conducted. The performance is assessed using 

common measures such as the F-score, and scores can also be 

visualized. 

Another monitoring approach is provided by transformer- 

level detection. Here only operational data gathered at  the 

transformer is used. Data is loaded from, or generated and 

saved to CSV files. Also, both loading of, for example, real-

world data, and generation of data is implemented to merge 

data of different origins. Then the data is preprocessed via 

Principal Component Analysis (PCA) and combined into 

datasets. Again, these datasets contain grid operational data 

of cases in which a malfunction is present or have  their 

origin in regular grid operation. As there are data in a higher 

resolution as well as more data channels available in this 

setting, traditional machine learning approaches are to be 

tested here. This is due to the meters at substations measuring 

more variables, and these at a higher rate, than smart meters 

in the distribution grid. As this case is grid-specific, also more 

advanced tools of data analysis such as hierarchical clustering 

are available. This clustering helps to assess whether possible 

real-world data from a specific grid aligns with simulated data. 

Various classifiers can be applied which can then be assessed 

by the aforementioned range of result metrics and their plots. 

The so-developed and assessed methods can be tested in      

a near-to-life setup which is represented by the detection 

application. Here, in order to fill gaps in data that were 

assumed to be known in the isolated method testbeds, also load 
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estimation is conducted. A load estimation approach using a 

neural network is trained. Therefore, training data is generated 

in a similar manner to the cases described before and saved    

in a CSV file. Moreover, this load estimation is compared      

to a linear regression estimation to benchmark it. Using this 

estimation for data mining, data sets can be assembled in a 

manner similar to what they could also be collected like in 

Listing 1. Configurations for a deep learning use case. 

 
import os 

import math 
 

# Sytem settings 

grid_data_folder = os.path.join(os.getcwd(), 

 → 'raw_data_generation', 'input') 

raw_data_folder = os.path.join(os.getcwd(), 

the field. This aims at testing the performance of the detection 

methods under more realistic conditions. The data mining 

 → 

... 
'raw_data') 

approach is also kept flexible in order to test the methods 

under different assumptions on which data is available. The 

result metrics can be inspected at every step of this pipeline   

to identify the potential for enhancements. 

III. ILLUSTRATIVE EXAMPLE 

To complement the above-elaborated description of the 

software with a more tangible example, one use case is 

described in detail below (cf. Listing 1). 

The crucial parts of a sample configuration file for testing   

a deep learning application on an electric vehicle charging 

station use case are presented. At first data paths are defined, 

both for the grid data used as well as for results and the dataset. 

Then the specific dataset to be used is defined along with the 

use case, which is done by choosing the device type that is     

to be monitored for malfunctions. Following, parameters for 

the type of neural network used for detection are specified 

along with training parameters such as the number of epochs, 

or the optimizer. The great flexibility in the choice of these  

parameters is made possible  by  the  before-mentioned  use  

of Pytorch. Also, the result metrics can be chosen, as well 
as  settings  for  a  grid  search  in  order  to  be  able  to  tune 

# Deep learning settings 

learning_config = { 

"mode": "train", # train, eval 

"dataset": "7day_200k", 

"type": "EV", 

# PV, EV, (PV, EV) > malfunction 

"RNN model settings": [1, 2, 20, 5], 

# dim of in&output, dim of hidden state, # of 

 → layers 

"LSTM model settings": [1, 2, 3, 5], 

"R-Transformer model settings": [1, 3, 2, 1, 

 → 'GRU', 7, 4, 1, 0.1, 0.1], 

# input size, dimension of model,output size, 

 → heads, rnn_type, key size, # local RNN 

 → layers, # RNN-multihead-attention blocks, 

 → dropout, emb_dropout 

"number of epochs": 20, 

"learning rate": 1 * 10 ** -6, 

"decision criteria": 'majority vote', 

... 

"activation function": 'relu', # relu, tanh 

"mini batch size": 60, 

"optimizer": 'SGD', # Adam, SGD 

"k folds": 5, # choose 1 to not do crossval 

"early stopping": True, 

"LR adjustment": 'warm up', 

"% of epochs for warm up": 10, 

"train test split": 0.3, 

"metrics": ['accuracy', 'precision_macro', 

hyperparameters. 
 → 

... 
'recall_macro', 'f1_macro'], 

In the next section of the configuration file, the dataset to  

be created can be specified. If a dataset is already set to be 

available no new dataset is created. If not so, the number of 

samples the dataset created should contain, or how long a 

sample is, is defined. Also, the number of grids the samples 

should be drawn from can be specified. Lastly, settings on the } 
grid simulation which creates the dataset can be customized. 

"plot samples": True, 

"classifier": "RNN", 

"save_model": True, 

"do grid search": True, 

"grid search": ("calibration rate", [0, 0.05, 

 → 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

 → 1]) 

Parameters such as step size or how many cores should be 

used for parallelization can be set, along with the exact type of 

malfunction. In this case, as shown in Figure 3, a generic active 

power control curve of an electric vehicle charging station      

is inverted, which is considered the misconfiguration to be 

detected. The curve depends on the voltage, meaning in the 

malfunctioning case active power consumption is not reduced 

at low voltages which therefore constituted the detectable 

anomalous behavior. The red line marks the correct control  

curve, whereas the blue line is the inverted, malfunctioning 

control curve. 

These settings and parameters are then used to either create 

or  import  a  grid  model.  Such  a  grid  model  is  depicted  

in Figure 4. The grid is modeled with the specified amount   

of, for example, photovoltaic units or electric vehicle charging 

stations. Some of them are then in turn modeled with the 

malfunction specified. Then grid simulations are run and data 

# Dataset settings 

raw_data_available = True # leave True if grid 

 → simulation is not available 

sample_length = 7 * 96 # 96 datapoints per day 

number_of_samples = 200000 

number_of_grids = len([i for i in 

 → os.listdir(grid_data_folder) 

# Grid simulation settings 

parallel_computing = True 

cores = 12 

sim_length = 365 # simulation length in days 

step_size = 15 # simulation step size in minutes 

percentage = {'PV': 0, 

'EV': 25, 'BESS': 0, 

'HP': 0} # percentage of busses with 

 → active PVs etc... 

broken_control_curve_choice = 2 # 1 = flat curve, 2 

 → = inversed curve 

t_start = None # default(None): times inferred from 

 → profiles in data 

t_end = None 
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Fig. 3. Malfunctioning P(U) control curve. 

 

 

is collected at the devices’ connection points to the grids, 

which are symbolized by the triangles, boxes, or circles 

connected to the lines. The data is then used to assemble 

datasets. These are then used for training and testing the 

specified deep neural networks. 

The so-trained neural networks are used for the detection  

of malfunctions in the test set. The performance results are 

then stored and also plotted, as  Figure  5  illustrates.  Here, 

the F-score is listed as a metric. The Precision, how accurate 

label predictions are, as well as the Recall, signifying how 

many of the true positives were found, are used to calculate 

this score. The results allow drawing conclusions about the 

performance of a certain parameterization of a certain deep 

neural network architecture on a specific dataset. It also allows 

for easy hyperparameter optimization. The model scoring the 

best results is saved and can be exported for integration into 

applications to make demonstrations easy. This should also 

help facilitate possible field tests of the found solution. 

IV. IMPACT AND APPLICATION 

The framework’s impact is mainly threefold: first of all,     

it allows for the development of detection methods on a 

device level, as shown in the previous practical  example.  

This method is intended to work across grid setups; the deep 

learning approach is meant to extract fundamental properties 

from the data of devices in regular operation and of devices 

experiencing malfunctions. Pretraining a network for a certain 

malfunction then allows the incorporation of the detection 

solution of this use case into a distribution system operator’s 

monitoring system. Such a solution also enables the operator 

to know which malfunction occurred. The second aspect aims 

at developing a detection solution at the transformer level. 

This is done by using data collected at the substation and 

applying traditional machine learning methods to it. This 

detection approach is grid specific. However, it requires no 

extensive prior training. Only a certain calibration phase would 

be necessary. 

For both application cases, different data sources, data 

qualities, and data availability can be assessed. Furthermore, 

different neural network architectures, classifiers, and param- 

eters of these can be compared as well benchmarked against 

classic statistical methods. 

Lastly, the full detection application merges the approaches 

mentioned above with a full detection application. This means 

integrating the isolated approaches with data mining tech- 

niques such as load estimation. This data mining is in turn  

also either performed by a neural network or by traditional 

statistical approaches. It can also be tuned to allow for optimal 

solution development for real-world applications. A testbed   

of this form did not exist to this point, and as elaborated in  

the beginning, the real-world power grid can not be used as 

such. Currently, because of the assumed data availability, its 

applicability is limited to the adaptation of misconfiguration 

detection in an LV grid segment linked to the MV level by a 

substation. However, for this reason, this scope of use cases 

also has a big advantage in integrability, since few alterations 

to the grid infrastructure are needed. Therefore, the framework 

has an impact as an enabler of technology development. 

V. CONCLUSIONS 

The work presented describes the need for new monitoring 

capabilities for smart grids and points out the lack of possi- 

bilities to develop such with the means available. Therefore,   

a framework that can serve as a testbed for novel monitoring 

solutions for all sorts of new grid-connected devices is intro- 

duced here. Various approaches can be tested and integrated 

into a complete solution. This enables the development of a 

future detection tool for grid operators. The assessment of this 

solution can be conducted  under  as  life-like  circumstances 

as possible outside of the grid. The framework is designed     

in a flexible manner, as to allow users to exchange parts of    

it. Therefore, it is possible to use whichever means of grid 

simulation or data mining technique the user prefers. 

In the future, more predefined use cases are to be added     

to reflect the characteristics  of  more  malfunctions.  Also,  

the choice and architectures of predefined machine learning 

algorithms ought to be updated regularly, in order to keep up 

with recent developments in these methods. Finally, a field test 

of the solution as a monitoring tool is envisioned. 
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[6] S. Meinecke, D. Sarajlić, S. R. Drauz, et al., “Simbench—a benchmark 
dataset of electric power systems to compare innovative solutions based 
on power flow analysis,” Energies, vol. 13.12:3290, 2020. 

[7] R. Villena-Ruiz, A. Honrubia-Escribano, and E. Gómez-Lázaro, “Learn- 
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Air_Alternati.. 

LV1.101 Line 8 
NAYY 4x150S.. 

LV1.101 Load.. 
L2-A 

LV1.101 Bus 9 

LV1.101 Load.. 
L2-A 

LV1.101 Bus 8 

LV1.101 Line.. 
NAYY 4x15L0VS1...101 Load.. 

H0-B 

LV1.101 Bus.. 
LV1.101 Loa.. 
Soil_Alternat.. 

LV1.101 Stor.. 

LV1.101 Line 5 
NAYY 4x150S.. 

LV1.101 Loa.. LV1.101 SGe.. 
HLS_A_3.7 

~ 
~ 

LV1.101 Load.. 
L2-A 

LV1.101 Bus.. 

LV1.101 Loa.. LV1.101 Loa.. LV1.101 SGe.. 
HLS_A_22.0 HLS_A_11.0 

LV1.101 Loa.L. V1.101 Stor.. 
L1-A 

LV1.101 Bus.. 
LV1.101 Load.. 

L1-A LV1.101 Line 9 
NAYY 4x150S.. 

LV1.101 Load.. LV1.101 Stor..  
L2-A LV1.101 Bus.. 

LV1.101 LoLVa.1..101 SGe.. 
Soil_Alternat.. 

~ 

LV1.101 Loa.. LV1.101 Load.. 
HLS_A_11.0 L1-A 

s 6 LV1.101 Bus.. LV1.101 Loa.. LV1.101 Load.. 
HLS_A_22.0 H0-A 

~ LV1.101 Line.. 
NAYY 4x150S.. 

LV1.101 Load.. 
L1-A 

LV1.101 Loa.L. V1.101 Stor.. 
Air_Parallel_2 

LV1.101 Bus 5 

LV1.101 Loa..  LV1.101 Loa.. 
HLS_B_3.7    Soil_Alternat.. 

LV1.101 Bus 3 

LV1.101 Loa.. 
L2-A 

LV1.101 LoLVa.1..101 SGe.. 
HLS_A_3.7 
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