
The DeMaDs Open Source Modeling Framework

for Power System Malfunction Detection

David Fellner

Center for Energy

AIT Austrian Institute of Technology

Vienna, Austria

David.Fellner@ait.ac.at

Thomas I. Strasser

Center for Energy, AIT Austrian

Institute of Technology and TU Wien

Vienna, Austria

Thomas.I.Strasser@ieee.org

Wolfgang Kastner

Institute of Computer Engineering

TU Wien

Vienna, Austria

Wolfgang.Kastner@tuwien.ac.at

Abstract—Modeling and simulation of electrical power systems

are becoming increasingly important approaches for the develop-
ment and operation of novel smart grid functionalities – especially
with regard to data-driven applications as data of certain
operational states or misconfigurations can be next to impossible
to obtain. The DeMaDs framework allows for the simulation
and modeling of electric power grids and malfunctions therein.
Furthermore, it serves as a testbed to assess the applicability
of various data-driven malfunction detection methods. These
include data mining techniques, traditional machine learning
approaches as well as deep learning methods. The framework’s
capabilities and functionality are laid out here, as well as
explained by the means of an illustrative example.

Index Terms—Data-driven approach, malfunction detection,
modeling and simulation, electric power systems, smart grids.

I. INTRODUCTION

The development of new smart grid capabilities for elec-

tric power grids is essential these days. The transformation

towards a sustainable, yet still resilient energy system entails

various challenges. These demands can only be faced by novel

functionalities [1], which allow the grid to react to the current

situation. In order to implement them, but also to test and

monitor them, realistic testbeds are needed. However, there

are various obstacles to using the electrical power grid as a

testbed. The reasons for this are mainly domain-specific: as

the power grid is a vital building block of modern life, it is

regarded as a critical infrastructure. Any meddling or introduc-

tion of non-fully elaborate functionality could compromise its

reliability [2]. Moreover, the power grid can not be rebuilt in

a scaled-down version that would fully reflect its properties.

Furthermore, due to the historical development of the power

grid as a hierarchical system, the lower tiers of the network

are fairly ill-equip with sensors [3]. These circumstances make

data collection and testing in the field, or on a replica of the

actual power grid, either difficult or next to impossible.

This leads to modeling and simulation being the only

feasible option for early-stage development and assessment of

smart grid solutions. This is especially true if these approaches

are not only to be tested in a very limited lab setting.

This work received funding from the Austrian Research Promotion Agency
(FFG) under the “Research Partnerships – Industrial PhD Program” in
DeMaDs (FFG No. 879017).

Regarding grid models, there is free material available to

facilitate these tasks. Very prominent representatives there are

the IEEE radial test feeders [4] which are widely used in power

system analysis under novel circumstances [5]. Even though

the IEEE test feeders feature load profiles, they lack renewable

generation profiles and an approach for future scenarios in

general. The SIMBENCH project [6] is an open-source project

providing specifically designed power grids that allow for the

simulation of distribution grids. These models also include

scenarios and consumption or generation profiles for electric

mobility, battery storage, and novel forms of power generation.

In combination with load flow solvers or power grid simulation

software [7], these resources can be used to assess the impact

and behavior of new techniques in grid operation. The state-

of-the-art on these solvers and tools is quite advanced [8]

and allows for high computational efficiency [9]. The data

generated in the course of this could also be used to develop

means of monitoring grid-connected devices.

However, the integration of these solvers with grid simu-

lation and the modeling of specific applications as well as

their malfunctions is missing from the literature. This is a

prerequisite for the development of monitoring applications.

The current approaches are often solely mathematical models

not integrating data-driven approaches [10]. In case they do

integrate approaches such as machine learning, they only target

very common issues and applications; in [11] the authors

present a model for predicting general power consumption.

The work presented in [12] is more specific focusing on

combined heat and power as well as electrical vehicle inte-

gration into the power grid. Demand response in a smart grid

environment is under scrutiny in [13], however, with mere

attention paid to its implementation and not to its monitoring

functionalities with regard to correct execution. When it comes

to monitoring, significant contributions can be found in the

field of security with respect to malicious attacks on the

power grid [14]. Nevertheless, this does for example not

cover misconfigurations occurring during regular operation.

These misconfigurations can lead to malfunctions of the grid-

connected device.

The framework presented now aims to fill this gap by

providing modeling and data generation, processing, and anal-

ysis capabilities. It is designed to serve as a testbed aimed

mailto:David.Fellner@ait.ac.at
mailto:vid.Fellner@ait.ac.at
mailto:Thomas.I.Strasser@ieee.org
mailto:Wolfgang.Kastner@tuwien.ac.at
mailto:ang.Kastner@tuwien.ac.at

to develop and assess functional monitoring solutions. The

approach strives to detect malfunctions during the regular

operation of grid-connected devices. The grid setups to be used

can be arbitrary. Also, the malfunctions under scrutiny can

be modeled freely, as well as a variety of detection methods

employed. This is demonstrated in detail in the previous

works of [15] and [16]. These features allow for the easy

expansion of monitoring use cases. Furthermore, the final

detection application can be parameterized freely to facilitate

development.

The manuscript has the following content: In Section I, the

general motivation and background for the work the and field

of application of the software framework are presented. Sec-

tion II provides an overview of the framework, its architecture,

and its functionalities. Section III provides insights into the

application of the framework by illustrating an example use

case in detail. Section IV outlines the impact the framework

has as a testbed for the development of monitoring solutions

for power system operators. Finally, Section V provides the

conclusions and an outlook about potential further work.

II. FRAMEWORK DESCRIPTION

The framework is entirely written in Python and the imple-

mentation can be found on the corresponding GitHub repos-

itory1. The most important dependencies regarding external

libraries and their use in the framework are illustrated in

Figure 1; almost all libraries used are free and open-source

libraries, with the exception of a library to interface the here-

employed power grid simulation software, DIgSILENT Power-

Factory. As there is sample data provided in the repository, the

use of such software is not mandatory. Furthermore, any grid

modeling and simulation solution can be used in combination

with the rest of the framework. In addition, a script which is

under development is used for load estimation.

However, other implementations of this functionality can

be used as well. This means there are no crucial parts of the

framework that are not openly accessible. The common Python

libraries are made for data handling and path allocations,

whereas for the classic machine learning capabilities Scikit-

learn [17] is used. For deep learning, especially for the

recurrent neural networks employed, Pytorch [18] is being

used. For regular neural network applications, Tensorflow [19]

is applied. The choice of using different libraries for the

implementation of artificial neural networks depending on

their type was made in order to allow for increased flexibility

when developing a solution. Pytorch enables the developer

to adjust and craft the desired architecture in greater detail

in comparison to TensorFlow. This is especially interesting

when trying to craft a monitoring solution in a setting like the

power grid, as the relevant properties of the data and features

are widely unknown beforehand.

1https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset

Fig. 1. The dependencies of the framework.

A. Software Architecture

The architecture of the framework differs depending on the

use case of the respective part of the software. Figure 2 depicts

the software architecture of the framework.

The basic settings for the experiment to be conducted by the

framework are defined in the configuration file. These settings

include data paths and directories as well as configurations for

the machine learning, or deep learning approaches that are to

be used. The settings also define the neural network models

and classifiers to use and how many layers or what type of

kernel they should be parameterized with. Also, settings for

the loading or creation of data and the assembly of datasets

can be specified. These include the specification of the grid

models or malfunctions, in order to define the use case the

detection is applied to. Further settings include the mapping of

data to align real-world measurements with simulation results,

for cases in which these two data sources are to be combined.

Then, the data set generation or import of the defined use

case is done via functions. Functions are chosen here in order

to allow for easier integration of different data sources or grid

simulation tools. The functional interfaces are easier to adjust

or exchange in comparison to an integration of these data

handlers within classes. Depending on the use case, this data is

then saved. In the case of deep learning, the created data sets

are also saved as their compilation is more computationally

expensive compared to the data sets used for other approaches.

For experiments testing not a single detection method but

a pipeline of methods that form an approach to a practical

detection application, load estimation is done via an external

script. This script is still under development and therefore not

fully integrated with the Detection Application class. This also

allows for the use of alternative load estimation or generally

generate deep learning

raw data

generate deep learning

data set

generate detection

method raw data

PFlib

generate load estimation

training data

Neurallelf

Load estimation

Tensorflow

Transformer Detection

Scikit-learn Detection Application

Pytorch Deep Learning

External Software Framework

Framework

part

freely restricted

available use

Fig. 2. The software architecture of the framework.

data mining approaches more easily.

The main functionalities regarding malfunction detection

are bundled into three classes: Deep Learning and Trans-

former Detection both serve as isolated test beds for methods.

These are either grid-unspecific using device-level data in the

case of the Deep Learning approaches or grid-specific using

transformer data for Transformer Detection. The last class,

Detection Application, then allows for the integration of the

individually assessed methods into a practically applicable

detection application.

B. Software Functionalities

The framework, as already mentioned above, allows for a

great variety of scenarios in which the modeled malfunctions

are to be detected. The malfunctions are modeled as incorrect

control curves of devices whose behavior are reflected in grid

operational data. This detection can be tested and validated in

different grid topologies, using differently sized and composed

data sets of different origins. The data can originate both from

simulation or real-world settings such as lab environments.

Furthermore, the approaches to preprocessing and data-driven

detection can be varied. Also, various options for metrics and

visualization of results are given.

When developing deep learning-based detection methods,

data generation allows for the generation of large amounts

of data. This is done by using an arbitrary number of

grid models for simulation. These simulations can be paral-

lelized, to swiftly yield operational data of a certain type of

grid-connected device experiencing the malfunction modeled.

Moreover, operational data of the correct behavior of these

grid-connected devices is extracted as well. These data can

not be obtained in the real world, especially not in a labelled

manner as the occurrence of a misconfiguration goes unnoticed

at the moment. The results are saved in a CSV format.

This data is used to form data sets of the misconfiguration

under scrutiny in the use case, which are stored in an hd5

format as they contain up to 200,000 samples. These data

sets can now contain data stemming from a single grid or

multiple grids. This allows for the assessment of whether the

applied deep learning method is able to extract fundamental

properties from the data. This is done in order to assess if

a specific method can recognize a malfunction without any

grid-specific context. The data and the individual samples

therein can also be plotted. The framework allows for data

preprocessing such as scaling as well as training in various

deep-learning approaches. In addition, it enables a comparison

to traditional statistical methods. Furthermore, hyperparameter

tuning can be conducted. The performance is assessed using

common measures such as the F-score, and scores can also be

visualized.

Another monitoring approach is provided by transformer-

level detection. Here only operational data gathered at the

transformer is used. Data is loaded from, or generated and

saved to CSV files. Also, both loading of, for example, real-

world data, and generation of data is implemented to merge

data of different origins. Then the data is preprocessed via

Principal Component Analysis (PCA) and combined into

datasets. Again, these datasets contain grid operational data

of cases in which a malfunction is present or have their

origin in regular grid operation. As there are data in a higher

resolution as well as more data channels available in this

setting, traditional machine learning approaches are to be

tested here. This is due to the meters at substations measuring

more variables, and these at a higher rate, than smart meters

in the distribution grid. As this case is grid-specific, also more

advanced tools of data analysis such as hierarchical clustering

are available. This clustering helps to assess whether possible

real-world data from a specific grid aligns with simulated data.

Various classifiers can be applied which can then be assessed

by the aforementioned range of result metrics and their plots.

The so-developed and assessed methods can be tested in

a near-to-life setup which is represented by the detection

application. Here, in order to fill gaps in data that were

assumed to be known in the isolated method testbeds, also load

Script

Function

Class

Configuration file

generate deep learning

raw data

generate detection

method raw data

generate load estimation

training data

generate deep learning

data set
Transformer Detection Load estimation

Deep Learning Detection Application

estimation is conducted. A load estimation approach using a

neural network is trained. Therefore, training data is generated

in a similar manner to the cases described before and saved

in a CSV file. Moreover, this load estimation is compared

to a linear regression estimation to benchmark it. Using this

estimation for data mining, data sets can be assembled in a

manner similar to what they could also be collected like in

Listing 1. Configurations for a deep learning use case.

import os

import math

Sytem settings

grid_data_folder = os.path.join(os.getcwd(),

 → 'raw_data_generation', 'input')

raw_data_folder = os.path.join(os.getcwd(),

the field. This aims at testing the performance of the detection

methods under more realistic conditions. The data mining

 →

...
'raw_data')

approach is also kept flexible in order to test the methods

under different assumptions on which data is available. The

result metrics can be inspected at every step of this pipeline

to identify the potential for enhancements.

III. ILLUSTRATIVE EXAMPLE

To complement the above-elaborated description of the

software with a more tangible example, one use case is

described in detail below (cf. Listing 1).

The crucial parts of a sample configuration file for testing

a deep learning application on an electric vehicle charging

station use case are presented. At first data paths are defined,

both for the grid data used as well as for results and the dataset.

Then the specific dataset to be used is defined along with the

use case, which is done by choosing the device type that is

to be monitored for malfunctions. Following, parameters for

the type of neural network used for detection are specified

along with training parameters such as the number of epochs,

or the optimizer. The great flexibility in the choice of these

parameters is made possible by the before-mentioned use

of Pytorch. Also, the result metrics can be chosen, as well
as settings for a grid search in order to be able to tune

Deep learning settings

learning_config = {

"mode": "train", # train, eval

"dataset": "7day_200k",

"type": "EV",

PV, EV, (PV, EV) > malfunction

"RNN model settings": [1, 2, 20, 5],

dim of in&output, dim of hidden state, # of

 → layers

"LSTM model settings": [1, 2, 3, 5],

"R-Transformer model settings": [1, 3, 2, 1,

 → 'GRU', 7, 4, 1, 0.1, 0.1],

input size, dimension of model,output size,

 → heads, rnn_type, key size, # local RNN

 → layers, # RNN-multihead-attention blocks,

 → dropout, emb_dropout

"number of epochs": 20,

"learning rate": 1 * 10 ** -6,

"decision criteria": 'majority vote',

...

"activation function": 'relu', # relu, tanh

"mini batch size": 60,

"optimizer": 'SGD', # Adam, SGD

"k folds": 5, # choose 1 to not do crossval

"early stopping": True,

"LR adjustment": 'warm up',

"% of epochs for warm up": 10,

"train test split": 0.3,

"metrics": ['accuracy', 'precision_macro',

hyperparameters.
 →

...
'recall_macro', 'f1_macro'],

In the next section of the configuration file, the dataset to

be created can be specified. If a dataset is already set to be

available no new dataset is created. If not so, the number of

samples the dataset created should contain, or how long a

sample is, is defined. Also, the number of grids the samples

should be drawn from can be specified. Lastly, settings on the }
grid simulation which creates the dataset can be customized.

"plot samples": True,

"classifier": "RNN",

"save_model": True,

"do grid search": True,

"grid search": ("calibration rate", [0, 0.05,

 → 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

 → 1])

Parameters such as step size or how many cores should be

used for parallelization can be set, along with the exact type of

malfunction. In this case, as shown in Figure 3, a generic active

power control curve of an electric vehicle charging station

is inverted, which is considered the misconfiguration to be

detected. The curve depends on the voltage, meaning in the

malfunctioning case active power consumption is not reduced

at low voltages which therefore constituted the detectable

anomalous behavior. The red line marks the correct control

curve, whereas the blue line is the inverted, malfunctioning

control curve.

These settings and parameters are then used to either create

or import a grid model. Such a grid model is depicted

in Figure 4. The grid is modeled with the specified amount

of, for example, photovoltaic units or electric vehicle charging

stations. Some of them are then in turn modeled with the

malfunction specified. Then grid simulations are run and data

Dataset settings

raw_data_available = True # leave True if grid

 → simulation is not available

sample_length = 7 * 96 # 96 datapoints per day

number_of_samples = 200000

number_of_grids = len([i for i in

 → os.listdir(grid_data_folder)

Grid simulation settings

parallel_computing = True

cores = 12

sim_length = 365 # simulation length in days

step_size = 15 # simulation step size in minutes

percentage = {'PV': 0,

'EV': 25, 'BESS': 0,

'HP': 0} # percentage of busses with

 → active PVs etc...

broken_control_curve_choice = 2 # 1 = flat curve, 2

 → = inversed curve

t_start = None # default(None): times inferred from

 → profiles in data

t_end = None

u [p.u.]

Fig. 3. Malfunctioning P(U) control curve.

is collected at the devices’ connection points to the grids,

which are symbolized by the triangles, boxes, or circles

connected to the lines. The data is then used to assemble

datasets. These are then used for training and testing the

specified deep neural networks.

The so-trained neural networks are used for the detection

of malfunctions in the test set. The performance results are

then stored and also plotted, as Figure 5 illustrates. Here,

the F-score is listed as a metric. The Precision, how accurate

label predictions are, as well as the Recall, signifying how

many of the true positives were found, are used to calculate

this score. The results allow drawing conclusions about the

performance of a certain parameterization of a certain deep

neural network architecture on a specific dataset. It also allows

for easy hyperparameter optimization. The model scoring the

best results is saved and can be exported for integration into

applications to make demonstrations easy. This should also

help facilitate possible field tests of the found solution.

IV. IMPACT AND APPLICATION

The framework’s impact is mainly threefold: first of all,

it allows for the development of detection methods on a

device level, as shown in the previous practical example.

This method is intended to work across grid setups; the deep

learning approach is meant to extract fundamental properties

from the data of devices in regular operation and of devices

experiencing malfunctions. Pretraining a network for a certain

malfunction then allows the incorporation of the detection

solution of this use case into a distribution system operator’s

monitoring system. Such a solution also enables the operator

to know which malfunction occurred. The second aspect aims

at developing a detection solution at the transformer level.

This is done by using data collected at the substation and

applying traditional machine learning methods to it. This

detection approach is grid specific. However, it requires no

extensive prior training. Only a certain calibration phase would

be necessary.

For both application cases, different data sources, data

qualities, and data availability can be assessed. Furthermore,

different neural network architectures, classifiers, and param-

eters of these can be compared as well benchmarked against

classic statistical methods.

Lastly, the full detection application merges the approaches

mentioned above with a full detection application. This means

integrating the isolated approaches with data mining tech-

niques such as load estimation. This data mining is in turn

also either performed by a neural network or by traditional

statistical approaches. It can also be tuned to allow for optimal

solution development for real-world applications. A testbed

of this form did not exist to this point, and as elaborated in

the beginning, the real-world power grid can not be used as

such. Currently, because of the assumed data availability, its

applicability is limited to the adaptation of misconfiguration

detection in an LV grid segment linked to the MV level by a

substation. However, for this reason, this scope of use cases

also has a big advantage in integrability, since few alterations

to the grid infrastructure are needed. Therefore, the framework

has an impact as an enabler of technology development.

V. CONCLUSIONS

The work presented describes the need for new monitoring

capabilities for smart grids and points out the lack of possi-

bilities to develop such with the means available. Therefore,

a framework that can serve as a testbed for novel monitoring

solutions for all sorts of new grid-connected devices is intro-

duced here. Various approaches can be tested and integrated

into a complete solution. This enables the development of a

future detection tool for grid operators. The assessment of this

solution can be conducted under as life-like circumstances

as possible outside of the grid. The framework is designed

in a flexible manner, as to allow users to exchange parts of

it. Therefore, it is possible to use whichever means of grid

simulation or data mining technique the user prefers.

In the future, more predefined use cases are to be added

to reflect the characteristics of more malfunctions. Also,

the choice and architectures of predefined machine learning

algorithms ought to be updated regularly, in order to keep up

with recent developments in these methods. Finally, a field test

of the solution as a monitoring tool is envisioned.

REFERENCES

[1] V. Saxena, N. Kumar, and U. Nangia, “Smart grid: A sustainable smart
approach,” Journal of Physics: Conference Series, no. 1, p. 012042, Aug.
2021.

[2] R. Cantelmi, G. Di Gravio, and R. Patriarca, “Reviewing qualitative
research approaches in the context of critical infrastructure resilience,”
Environment Systems and Decisions, vol. 41, no. 3, pp. 341–376, Sep.
2021.

[3] S. K. Routray, D. Gopal, A. Pallekonda, A. Javali, and S. Kokkirigadda,
“Measurement, control and monitoring in smart grids using nbiot,” in
2021 6th International Conference on Inventive Computation Technolo-
gies (ICICT), 2021, pp. 229–234.

[4] W. Kersting, “Radial distribution test feeders,” IEEE Transactions on
Power Systems, vol. 6, no. 3, pp. 975–985, 1991.

[5] K. D. Shinde and P. B. Mane, “Analysis of radial distribution test
feeders in presence of solar photovoltaic systems using powerfactory,” in
2022 IEEE International Conference in Power Engineering Application
(ICPEA), 2022, pp. 1–4.

[6] S. Meinecke, D. Sarajlić, S. R. Drauz, et al., “Simbench—a benchmark
dataset of electric power systems to compare innovative solutions based
on power flow analysis,” Energies, vol. 13.12:3290, 2020.

[7] R. Villena-Ruiz, A. Honrubia-Escribano, and E. Gómez-Lázaro, “Learn-
ing load flow analysis in electric power systems: A case study in power-
factory,” in 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO), 2022, pp. 1357–
1362.

1
P [p.u.]

0.95 1.05

0.1875

LV1.101 Bu

LV1.101 Loa..LV1.101 SGe..
Soil_Alternat..

Fig. 4. Sample power grid (taken from [6]).

0.51

0.50

0.49

0.48

0.47

2 4 6 8 10

Number of Attention Heads Values

Fig. 5. Results on hyperparameter tuning.

[11] S. Tiwari, A. Jain, N. M. O. S. Ahmed, Charu, L. M. Alkwai, A. K. Y.

Dafhalla, and S. A. S. Hamad, “Machine learning-based model for
prediction of power consumption in smart grid- smart way towards smart
city,” Expert Systems, vol. 39, no. 5, p. e12832, 2022.

[12] F. Calise, F. L. Cappiello, M. Dentice d’Accadia, and M. Vicidomini,
“Smart grid energy district based on the integration of electric vehicles
and combined heat and power generation,” Energy Conversion and
Management, vol. 234, p. 113932, 2021.

[13] A. M. Eltamaly, M. A. Alotaibi, A. I. Alolah, and M. A. Ahmed, “A
novel demand response strategy for sizing of hybrid energy system with
smart grid concepts,” IEEE Access, vol. 9, pp. 20 277–20 294, 2021.

[14] H. Zhang, B. Liu, and H. Wu, “Smart grid cyber-physical attack and
defense: A review,” IEEE Access, vol. 9, pp. 29 641–29 659, 2021.

[15] D. Fellner, T. I. Strasser, and W. Kastner, “Applying deep learning-
based concepts for the detection of device misconfigurations in power
systems,” Sustainable Energy, Grids and Networks, vol. 32, p. 100851,
2022.

[16] D. Fellner, T. I. Strasser, W. Kastner, B. Feizifar, and I. F. Abdulhadi,
“Data driven transformer level misconfiguration detection in power

[8] M. C. Herrera-Briñez, O. D. Montoya, L. Alvarado-Barrios, and H. R.
Chamorro, “The equivalence between successive approximations and
matricial load flow formulations,” Applied Sciences, vol. 11, no. 7, 2021.

[9] Z. Wang, S. Wende-von Berg, and M. Braun, “Fast parallel new- ton–
raphson power flow solver for large number of system calculations with
cpu and gpu,” Sustainable Energy, Grids and Networks, vol. 27, p.
100483, 2021.

[10] D. K. Panda and S. Das, “Smart grid architecture model for control,
optimization and data analytics of future power networks with more
renewable energy,” Journal of Cleaner Production, vol. 301, p. 126877,
2021.

distribution grids,” in 2022 IEEE SMC), 2022, pp. 1840–1847.
[17] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[18] Adam Paszke, Sam Gross, Francisco Massa, et al., “PyTorch: An Im-
perative Style, High-Performance Deep Learning Library,” in Ad-
vances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 2019, pp. 8024–8035.

[19] Mart ı́n Abadi, Ashish Agarwal, Paul Barham, et al., “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

MV1.101 Bu..

MV1.101 grid..

LV1.101 Bus 4
LV1.101 Loa..

L1-A

LV1.101 SGe..

LV1.101 Line 3
NAYY 4x150S..

LV1.101 SGe..

LV1.101 Line..
NAYY 4x150S..

LV1.101 Line..
NAYY 4x150S..

LV1.101 Bus 2 LV1.101 Line 4
NAYY 4x150S..

LV1.101 Stor..

LV1.101 Bus 7

LV1.101 Bus 1
LV1.101 Loa.. LV1.101 Load..
Soil_Alternat.. H0-C ~

LV1.101 Loa..
Air_Semi-Par..

LV1.101 Loa.L.V1.101 SGe..
Air_Alternati..

LV1.101 Line 8
NAYY 4x150S..

LV1.101 Load..
L2-A

LV1.101 Bus 9

LV1.101 Load..
L2-A

LV1.101 Bus 8

LV1.101 Line..
NAYY 4x15L0VS1...101 Load..

H0-B

LV1.101 Bus..
LV1.101 Loa..
Soil_Alternat..

LV1.101 Stor..

LV1.101 Line 5
NAYY 4x150S..

LV1.101 Loa.. LV1.101 SGe..
HLS_A_3.7

~
~

LV1.101 Load..
L2-A

LV1.101 Bus..

LV1.101 Loa.. LV1.101 Loa.. LV1.101 SGe..
HLS_A_22.0 HLS_A_11.0

LV1.101 Loa.L. V1.101 Stor..
L1-A

LV1.101 Bus..
LV1.101 Load..

L1-A LV1.101 Line 9
NAYY 4x150S..

LV1.101 Load.. LV1.101 Stor..
L2-A LV1.101 Bus..

LV1.101 LoLVa.1..101 SGe..
Soil_Alternat..

~

LV1.101 Loa.. LV1.101 Load..
HLS_A_11.0 L1-A

s 6 LV1.101 Bus.. LV1.101 Loa.. LV1.101 Load..
HLS_A_22.0 H0-A

~ LV1.101 Line..
NAYY 4x150S..

LV1.101 Load..
L1-A

LV1.101 Loa.L. V1.101 Stor..
Air_Parallel_2

LV1.101 Bus 5

LV1.101 Loa.. LV1.101 Loa..
HLS_B_3.7 Soil_Alternat..

LV1.101 Bus 3

LV1.101 Loa..
L2-A

LV1.101 LoLVa.1..101 SGe..
HLS_A_3.7

 F-score

Precision

Recall

S
c
o
r
e
s

http://www.tensorflow.org/

