
Technical Report no. 2005-10

Dynamic and fault-tolerant cluster management

Anders Gidenstam Boris Koldehofe Marina Papatriantafilou

Philippas Tsigas

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2005

Technical Report in Computer Science and Engineering at
Chalmers University of Technology and Göteborg University

Technical Report no. 2005-10
ISSN: 1652-926X

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden, April 2005

Dynamic and fault-tolerant cluster management

Anders Gidenstam Boris Koldehofe Marina Papatriantafilou Philippas Tsigas

Abstract
Recent decentralised event-based systems have focused on providing event delivery which

scales with increasing number of processes. While the main focus of research has been on ensur-
ing that processes maintain only a small amount of information on maintaining membership and
routing, an important factor in achieving scalability for event-based peer-to-peer dissemination
system is the number of events disseminated at the same time. This work presents a dynamic
and fault tolerant cluster management method which can be used to coordinate concurrent ac-
cess to resources in a peer-to-peer system. In the context of event-based dissemination systems
the cluster management can be used to control the number of concurrently disseminated events.
We present and analyse an algorithm implementing the proposed cluster management model in
a fault-tolerant and decentralised way. The algorithm provides for each cluster a limited set of
tickets. A process which has obtained a ticket may send events corresponding to the resources
of the cluster. The algorithm guarantees that no two processes ever issue an event corresponding
to the same ticket at the same time. The cluster management model on its own has interesting
properties which can be useful for many peer-to-peer applications.

Keywords: peer-to-peer communication, large scale group communication, middleware

1 Introduction

Many applications like collaborative applications rely on an event-based dissemination service, for
instance to exchange information on the state of shared replicated objects. For some applications
there may be a large number of processes involved. Peer-to-peer dissemination algorithms for struc-
tured and unstructured networks have been studied to provide scalable event dissemination for a large
number of processes. A lot of work has focused on providing delivery guarantees in the occurrence
of dynamical joining and leaving processes by maintaining a low amount of resources locally at each
process.

Current peer-to-peer dissemination systems rely on a good behaviour of each peer such that the
overall number of events disseminated at the same time remains sufficiently small. A common as-
sumption is that the rate of all the incoming events remains constant. The reason is that there exists
a limit for the amount information which can be stored locally, but also the amount of information
which one can send in a message per time unit is bounded by the physical constraints of computer
networks. Since often the dissemination of an event is triggered by local decisions it is a difficult
problem to control the amount of events which are disseminated at the same time. Once this rate ex-
ceeded the assumptions made by the dissemination system, the dissemination system cannot provide
the original guarantees.

Here we address this problem by proposing a distributed cluster management. A cluster represents
a region of interest in a peer-to-peer system, for example it may consist of a set of resources or objects

1

which processes would like to access. To coordinate access to the resources, a cluster issues a finite
set of enumerated tickets. Processes which received a ticket from the cluster receive the right to
perform some action, for instance to disseminate an event corresponding to a resource. In order
to prevent conflicts the cluster management needs to ensure in a decentralised fashion that, in spite
of continuously joining and leaving as well as failing processes, never two processes perform an
action corresponding to the same ticket at the same time. Moreover, one needs to ensure liveness by
providing the possibility to reclaim tickets from processes that have crashed.

In this work we present an algorithm which can manage the cluster in the described way. Be-
sides proving the correctness of the algorithm, we also present an analysis of availability of tickets
depending on the failure rate and the amount of tickets maintained by non-faulty processes.

Structure of the paper. In Section 2 we describe the problem and introduce notation and defini-
tions. Then we present two algorithms implementing a dynamic cluster management. The protocol
of Section 3 works in the absence of failures and illustrates the basic idea, while Section 4 describes
and proves a fault-tolerant membership protocol. In Section 5 we discuss related work on resource
management in peer-to applications and in the subsequent section we conclude with a discussion of
the presented results and future work.

2 Notation and problem statement

Consider a peer-to-peer system supporting a large number processes to join and leave the system
dynamically. The processes are said to form a group denoted by G = {p1, p2, . . .}. Processes in G
maintain a set of resources R = {r1, . . . rl}. We assume the set of resources is partitioned into several
disjoint clusters C1, C2, . . . with ∪iCi ⊆ R. Processes which are interested in certain resources
need to join the respective cluster and will be informed afterwards about events corresponding to all
resources maintained inside the cluster. A process which wish to create events corresponding to a
resource inside a cluster need to obtain a ticket of the cluster. For a cluster C there exists a maximum
of n tickets where n is known to the processes which joined C .

Processes which own a ticket are called coordinators of C . Let CoreC denote the set of coordi-
nators of C . The set of coordinators can change dynamically over time. Throughout the paper we
will use the term events when referring to messages which where sent with respect to a ticket of the
cluster.

An algorithm implementing the dynamic cluster management needs to implement the following
operations:

• Ordinary joining/leaving a cluster. Any ordinary process in G can perform a join or leave op-
eration on C corresponding to the ordinary join and leave operation of the underlying multicast
primitive. With respect to cluster management we will also call these operation join and leave.
An ordinarily joined process will be able to observe events related to resources of a cluster.

• Coordinator joining/leaving the core of a cluster. In order to become a coordinator in a cluster
C , i.e. to become member of CoreC and be able to send events, a process performs an operation
called cjoin. If process p performs a cjoin operation, p becomes assigned to coordinate a unique
ticket of C . When p performs a cleave operation it release its ticket and cannot send events

2

related to resources of the cluster after that. The tickets released by p may then be reused by
any other process performing a cjoin operation.

For correct cluster management it is essential that there are never two or more coordinators that
own the same tickets within the cluster at the same time. The ticket of a process that performed a
cleave or has failed should eventually be reusable for other processes. Moreover, the cluster manage-
ment should perform well even if a large number of processes concurrently perform cjoin operations.

Using a single process for cluster management is the simplest solution. However, if the cluster
manager fails, then no processes can perform cjoin or cleave. Finding a new coordinator reduces to
the agreement problem.

The propagation of events is done by multicast communication. It is not assumed that all processes
of a cluster will receive an event which was multicast, nor does the multicast need to provide any
ordering by itself. Any lightweight probabilistic group communication protocol as appears in the
literature [7, 8, 10] would be suitable. We refer to such protocols as PrCast. PrCast is assumed to
provide following properties:

• An event is delivered to all destinations with high probability.

• Decentralised and lightweight group membership, i.e. a process can join and leave a multicast
group in a decentralised way and processes do not need to know all members of the group.

3 Dynamic cluster management

In the following we present a method that allows interleaved cjoin and cleave operations. The main
idea of our approach is to make every process of the cluster the coordinator of a subset of the tickets
{0 . . . n− 1}. We will ensure that there are never two processes that simultaneously own and coordi-
nate the same ticket. In order to illustrate the basic idea we assume in this Section that communication
is reliable and processes do not fail. In Section 4 we show how to extend the presented ideas under a
realistic failure model.

We assume that tickets form a cyclic relation according to their number, i.e. the succeeding ticket
to ticket i is ticket i − 1 mod n, while the preceding ticket to ticket i is ticket i + 1 mod n. Each
process which becomes coordinator of the cluster will own one ticket. Let i be the ticket owned by
process p. The successor of p is the closest process which can be reached by following the chain
of succeeding tickets to i. Accordingly, the predecessor of p is the closest process which can be
reached by following the chain of preceding tickets. Moreover, we define q the dth closest successor
(predecessor) of p, if the process is reachable in d steps from p by following the chain of successors
(predecessors) starting at p.

In order to manage tickets, the processes which own tickets become also coordinator of a subset
of the tickets maintained in a cluster. We define the set of tickets which is coordinated by a process
in terms of successor and predecessor. Let p and q denote two processes owning tickets i and j
respectively and let q be the successor of p. Process p coordinates its own ticket i and all tickets
succeeding its own ticket and preceding ticket i. Let Sp denote the set of tickets coordinated by p.
Formally, we write

Sp = { l | l = i − k mod n, 0 ≤ k < min{m | j = i − m mod n, m > 0}}.

3

t1

t3

t4

t5

t6

t7

t10

t9

t8

t11

t0

t2

p2

p3

p4

p5
p1

Figure 1: Illustration on how processes maintain and coordinate tickets of a cluster. An arrow from process pi

to a ticket indicates that pi is the respective coordinator.

Figure 1 gives an example of how processes maintain and coordinate tickets, e.g. p2 owns ticket 4
and coordinates the tickets {2, 3}.

Lemma 3.1 Let C denote a non-empty cluster ensuring that no two processes in the cluster coordi-
nate the same tickets, then

1. for any pair of processes p, q ∈ CoreC with p 6= q Sp ∩ Sq = ∅,

2. every ticket of the cluster is either coordinated or owned.

Proof. The lemma follows immediately from the definition of coordinated set by a process. 2

4

3.1 A protocol working in the absence of failures

Algorithm 1 and Algorithm 2 present a decentralised solution which can coordinate the tickets of a
cluster if no failures occur. The algorithm ensures that no two processes coordinate the same tickets
at the same time; the key to achieve this is by preserving the successor/predecessor relation between
coordinators. A process p which wishes to become coordinator in the cluster selects an arbitrary
coordinator. To enforce a good load balance of requests to coordinators the selection by p could take
the coordinator of a ticket chosen uniformly at random from the set of available tickets (this can be
known by contacting any coordinator in the cluster). Let q be the selected coordinator then p sends a
cjoin message to q. Before responding to p’s request, q will first serve all previous cjoin and cleave
operations it received earlier by other processes. In this way interleaving cjoin and cleave requests
with respect to the same coordinator become serialised. If q decided to perform a cleave operation or
does not have any available tickets it will reply negatively to p. If q is ready to serve the cjoin request
by p, it will assign a ticket t ∈ Sq to p (possibly reflecting the random choice when determining q as
a suitable coordinator). Let r be q’s successor. Process q will send a message ACKCJOIN to p with
information about t and r to p and will select p as its new successor.

When p receives the message ACKCJOIN, p will select q as its predecessor and r as its new
successor. In order to allow process r to leave the cluster and maintain its predecessor information
correctly, p must, before being able to perform as a coordinator, send a message NEWSUCC to process
r. If r is not intending to leave the cluster, it will reply by sending an acknowledgement ACKSUCC
to p and update its predecessor to be p. Process p can then perform as a coordinator of the cluster.

In the case a process r intends to leave the cluster it first processes all previously received cjoin and
cleave requests and sends afterwards a CLEAVE message including information of the successor of r,
say s to its predecessor say q. If r receives afterwards from another process p a message NEWSUCC
it will again sent a message CLEAVE to p. Process r only leaves the cluster after it has received a
message ACKCLEAVE.

A process p serves a cleave message by r only if r is the current successor of p. In this case p
will sent a message ACKCLEAVE to r. Thereafter p sets s as its new successor and sends a message
NEWSUCC to s. Note that p may have to subsequently serve CLEAVE messages from its new succes-
sor until finally receiving a message ACKSUCC from a successor. However, after each ACKCLEAVE
a process coordinates a larger amount of tickets and hence the number of subsequent NEWSUCC
messages before a process can perform as a coordinator is bounded.

Once a process may perform as a coordinator it also PrCasts that it became a coordinator in CoreC

and that it owns ticket t. Note that the PrCast operation is only of relevance to inform other processes
about p being a coordinator, but it is not necessary to prevent any pair of distinct processes from
maintaining the same ticket.

In order to verify correctness of the protocol as stated in Theorem 3.1, recall that according to
Lemma 3.1 correctly preserving the relation among successors and predecessors, suffices to guarantee
unique assignment of processes to tickets. This is shown in Lemma 3.2.

5

Algorithm 1 Cluster management in the absence of failures: Part I
VAR

Cviewp: vector of processes
ImmedSuccp: immediate successor of p
ImmedPredp: immediate predecessor of p
statep: state variable

Message types:
CJOIN, CLEAVE, ACKJOIN, ACKSUCC, ACKCLEAVE, REJECT

Initp:
statep = joining
Send 〈CJOIN, p〉 to a known coordinator in CoreC .

Initialisation of variables when cjoin accepted
On p receives 〈ACKCJOIN, i, j, Cview〉 from q

Cviewp = Cview
p becomes the coordinator for all entries Cview[i] until Cview[j − 1]
ImmedSuccp = Cview[j]
ImmedPredp = q
Send 〈NEWSUCC〉 to Cview[j]

Successor acknowledged
On p receives 〈ACKSUCC〉 from q

statep = coordinator
ImmedSuccp = q

Receiving a cjoin request
On p being coordinator of Cview[i] until Cview[j − 1] receives 〈CJOIN〉 from q

if statep 6= coordinator then
Send 〈REJECT〉 to q

else
Process all previously received CJOIN and CLEAVE requests
if |Sp| > 1 then

Select ticket t ∈ Sp.
Cview[t] = q
ImmedSuccp = q
Send 〈ACKCJOIN, t, j, Cview〉 to q

else
Send 〈REJECT〉 to q

end if
end if

6

Algorithm 2 Cluster management in the absence of failures: Part II

A new predecessor
Require: p being coordinator of Cview[i] until Cview[j − 1] receives 〈NEWSUCC〉 from q

if statep = leaving then
Send 〈CLEAVE, Cview[j]〉 to q

else
Send 〈ACKSUCC〉 to q
ImmedPredp = q

end if

Leaving the cluster
Require: p being coordinator of Cview[i] until Cview[j − 1] decides to leave the cluster

statep = leaving
Serve all previously received cjoin and cleave requests
Send 〈CLEAVE, Cview[j]〉 to ImmedPredp

Receiving a cleave request
Require: being coordinator of Cview[i] until Cview[j − 1] receives 〈CLEAVE, r〉 from q

if p is not serving another cjoin and statep 6= leaving then
statep = exclusion
Send 〈ACKCLEAVE, q〉
Send 〈NEWSUCC, r〉
ImmedSuccp = r

end if

Lemma 3.2 Let q be a coordinator in CoreC with successor r, serving a cjoin operation of p. Then

1. any interleaving cjoin operation will take effect earliest after processes p and q successfully
updated their successor and predecessor,

2. an interleaving cleave operation of r will successfully be managed at p and therefore preserve
the predecessor successor relation of CoreC correctly.

Theorem 3.1 Let Σ := σ1, . . . , σm denote a sequence of potentially interleaved operations on a
cluster C where σi corresponds to a cleave or cjoin operation. If Σ maintains CoreC to include at
least one process the algorithm guarantees for any p, q ∈ CoreC

1. unless p = q, Sp ∩ Sq = ∅;

2. unless p = q, p and q maintain different tickets.

4 Supporting link and process failures

In the following we present an algorithm which extends the previous framework of Section 3.1 to
deal with link and process failures. It is assumed that processes fail by stopping, we do not con-
sider Byzantine faults. Links may be slow or failing. Communication between pairs of processes is

7

Algorithm 3 Decentralised and fault tolerant cluster management
VAR

Lp: set consisting of 2k + 1 predecessors p received from its immediate predecessor
Rp: set consisting of p and 2k predecessors successfully sent to its immediate successor
ALIVEp: set of processes which sent an ALIVE message to p during a round
Cviewp: vector of processes
ImmedSuccp: immediate successor of p
ImmedPredp: immediate predecessor of p
TempRoundsp: indicates the number of rounds for which a process is not sending UPDATE messages
Pexclude: probability to start exclusion algorithm after weakly detecting a faulty successor

Message types:
CJOIN, ALIVE, UPDATE, ACKJOIN, EXCLUDE, REQCOORD, ACKEXCLUDE

Initp:
Send 〈CJOIN, p〉 to a known coordinator in CoreC .

Main loop of the coordinator algorithm
Do in every round (duration longer than PrCast)

if |ALIVEp ∩ Lp| < 2k + 1 then
ThinkIamDisconnected = true
exit loop

end if
Send 〈ALIVE, p〉 to 2k + 1 closest successors in Cview.
if TempRoundsp = 0 then

R = {r ∈ Lp | r is among the 2k closest predecessors of p} ∪ p
STATUS = Send 〈UPDATE, R〉 to ImmedSuccp

if STATUS is OK then
Rp = R

else
Run exclusion algorithm with probability Pexclude

end if
else

TempRoundsp = TempRoundsp − 1
end if

connection oriented. Let δ denote the maximum tolerated message delay and let p and q denote pro-
cesses. Connection oriented communication guarantees: if p sends a message, say M , to q, p expects
to receive a status about M at the latest after time δ. If status of M is OK then q has received M at the
latest after time δ. Otherwise p has no knowledge whether q received the message or not; we say then
that p weakly detects q as faulty. Since the algorithm works in rounds, we also assume that processes
have clocks which maintain approximately the same speed. Let T denote a time period larger than
the maximum tolerated message delay. If m processes periodically with period T send messages to p
, then p will receive m− ε < m′ < m + ε messages during any time interval of length T which starts
after p has received the messages sent in the previous period by the m sources, when none of the m
processes failed.

The algorithm performs in rounds, where the time between two consecutive rounds is assumed to

8

Algorithm 4 Handling of messages

Initialisation of variables when cjoin succeeds
On p receives 〈ACKCJOIN, L, i, j, Cview〉 from q

Cviewp = Cview
Lp = L
Rp = ∅
p becomes the coordinator for all entries Cview[i] until Cview[j − 1]
ImmedSuccp = Cview[j]
ImmedPredp = q
TempRoundsp = 0
Send 〈ALIVE, p〉 to 2k + 1 closest successors in Cviewp.

Handling of UPDATE messages
On receiving 〈UPDATE, R〉

Lp = R

Receiving a cjoin request
On p being coordinator of Cview[i] until Cview[j − 1] receives 〈CJOIN〉 from q

if (|Sp| > 1) ∧ (TempRoundsp = 0) then
Select ticket t ∈ Sp.
Cview[t] = q
ImmedSuccp = q
R = {r ∈ Lp | r is among the 2k closest predecessors of p} ∪ p
STATUS = Send 〈ACKCJOIN, R, t, j, Cview〉
if STATUS is OK then

Rp = R
else

Run exclusion algorithm with probability Pexclude
end if

else
Send 〈REJECT〉 to q

end if

be long enough to host a PrCast, i.e. to inform members of the cluster C about a successful cjoin
operation (if any has happened). The algorithm is described in pseudocode (cf. Algorithm 3 and
Algorithm 5), and below we present the ideas informally. During a round the algorithm maintains the
following two invariants:

1. Any non-faulty process p in CoreC which does not perform a cleave operation remains in
CoreC as long as p knows about at least k + 1 of its 2k + 1 closest predecessors which have
not experienced any process or link failures.

2. Failed processes will eventually be excluded from CoreC and processes which perform cjoin
subsequently may reuse the respective tickets.

The first invariant is achieved by the processes in CoreC sending ALIVE messages to their 2k + 1
successors in each round. A process that receives less than k + 1 ALIVE messages during a round
thinks that it is considered as failed and immediately leaves CoreC .

9

Algorithm 5 Exclusion Algorithm
Do

STATUS = FALSE
while (p 6= succ(ImmedSucc)) ∧ (STATUS is FALSE) do

ImmedSucc = succ(ImmedSucc) {Finds the next possible successor from Cview}
STATUS = Send〈EXCLUDE, p〉 to ImmedSucc

end while
if (STATUS is True) ∧ (p receives 〈ACKEXCLUDE, Lq〉 from q) then

Send〈REQCOORD, Epq〉 to all processes in Lq ∩ Rp

Wait for time 2δ for replies of type ACKCOORD
if p receives ≥ k + 1 replies of type ACKCOORD then

{Do not send UPDATE messages while some excluded processes may still be alive}
TempRoundsp = dist(p, q) − 1

else
ThinkIamDisconnected = true
exit loop

end if
else

ThinkIamDisconnected = true
exit loop

end if

On q receives 〈EXCLUDE, p〉
Reply〈ACKEXCLUDE, Lq〉

On r receives < REQCOORD, Epq >
if r 6∈ Epq then

Send 〈ACKCOORD〉 to p
Remove processes in Epq from Cview

end if

In order to manage the exclusion scheme, a process p maintains two sets denoted by Lp and
Rp. The set Lp is used to store p’s “knowledge” on its 2k + 1 predecessors (this information is
received from its immediate predecessor), while Rp contains the information on p’s last successful
transmission to p’s immediate successor consisting of the 2k closest predecessors of p and p itself.
Both sets are needed to determine whether a range of coordinators can be excluded. When p joins
CoreC , Lp is initialised by the coordinator performing the cjoin operation for p. The set Rp is initially
empty. Each process also maintains an array denoted by Cviewp which is p’s local view on the set of
coordinators CoreC , i.e. if Cviewp[i] = q holds, then p assumes q to be a coordinator owning ticket
i.

In each round p proceeds if it has received during a round at least k + 1 ALIVE messages from
processes in Lp (otherwise p thinks that it is considered as failed; cf below for this case). If p also
received a successfully transmitted UPDATE message from its direct predecessor proposing a new set
L′

p, which includes 2k + 1 predecessors of p, then p sets Lp = L′

p.
If p may proceed, it creates 2k+1 ALIVE messages and sends them to the 2k+1 closest successors

known from Cview. Moreover, it sends to its direct successor an UPDATE message consisting of a

10

set denoted R′

p. R′

p contains the 2k closest predecessors in Lp and p itself. If p succeeds in sending
UPDATE(R′

p) to its direct successor, then p will set Rp = R′

p.
Assume a process weakly detects its successor r to be faulty, for instance because it could not

establish a connection to r for some time. In order to release the tickets owned and coordinated by r,
which is potentially faulty, p will try to contact the next closest successor in Cview reachable, i.e. not
detected weakly faulty. Let q be the next closest successor reachable by p then q will reply by sending
Lq. Process p will request from all processes in Rp ∩ Lq to be the new coordinator of all entries
preceding q and succeeding p denoted by Epq. Only if p receives k + 1 messages from destinations
in Rp ∩Lq acknowledging the request, p becomes the temporary coordinator, otherwise p thinks it is
considered as failed.

While being temporary coordinator, p behaves like an ordinary coordinator, however it does not
attempt to change Lq by sending an UPDATE message and it does not serve cjoin requests. All
processes in Epq which neither have failed nor think they are considered to have failed are said to be
alive. Once, there does not exist any alive processes in Epq, p behaves like an ordinary coordinator
again. Note that the time for a process remaining a temporary coordinator is bounded to at most the
distance from p’s to q’s ticket since in every round the closest alive process in Epq is guaranteed to
think it is considered to have failed at the end of the round.

Processes which are requested to acknowledge an exclusion interval Epq only acknowledge if
their ticket is not contained in Epq. Processes which acknowledged the exclusion of a process will
remove processes in Epq from Cview and prevent any updates of entries corresponding to Epq for
dist(p, q) rounds.

4.1 Correctness

In order to prove correctness of the membership algorithm of Section 4, we need to show that even
in the occurrence of failures i) two processes will never create conflicting events and ii) the algorithm
invariants are maintained.

In Lemma 4.1 we first consider the behaviour of the algorithm when no failures occur.

Lemma 4.1 Let neither process failures, link failures, or slow links occur and processes always
receive sufficiently many ALIVE messages. For any sequence of interleaving cjoin operations the
membership scheme is equivalent to the membership protocol of Section 3.1.

Proof. Both algorithms show only different behaviour if p executing Algorithm 3 weakly detects its
immediate successor r to be faulty. Since neither processes, nor links do fail p must have detected
r as faulty because r thinks it has been considered to be failed. This implies that r did not receive
sufficiently many ALIVE messages or decided to leave the cluster, which is a contradiction to our
assumption. 2

The critical case to analyse is after process p initiated the exclusion of Epq. Lemma 4.2 states that
during a round the closest successor in Epq will fail.

11

Lemma 4.2 Let Epq denote the set of processes to be excluded where p coordinates the exclusion
and q is the new successor of p. Further, let A denote the set of processes which received sufficiently
many ALIVE messages in the current round. Let r denote the closest process in Epq which is still
alive. Then

A ∩ (Lr − Epq − Rp) = ∅.

Proof. We can associate the passing of an UPDATE message with a token. We say process q received
a token from p if there is a chain of consecutive UPDATE messages originating in p and ending in q.
We define a relation ≺ where p ≺ q if q has received a token from p when it was created (i.e. the time
it performed the cjoin operation), while p 6≺ q if q did not receive a token from p at the time it was
created.

Consider case p ≺ r: In this case Lr−Epq−Rp is either empty or it contains destinations which where
in a previous Cview of p. However, when p successfully updated Rp, the respective destinations were
guaranteed to be excluded by the predecessors of p. Hence, this case yields A∩ (Lr −Epq −Rp) = ∅

Let p 6≺ r: Any token originated by p and received by q must have been received by r. In particular
if Cview of q was influenced by p, also r must have received influence by p. Then we can reason the
same as before.

The difficult case remains where q did not receive any influence from p. We define for two processes
p′ and q′, p′ to be the parent of q′ if p′ coordinated q′ to enter the cluster. Further, we define ancestor by
the transitive closure of the parent relation. If q did not receive any token from p, but share a common
influence, then q must have received a token from an ancestor of p. Let s denote the ancestor of p
which succeeded last in sending a token to q.
Case r received the respective token: If r received the respective token, then it shares the same
influence as q. Every consecutive token which origins from set Epq, has no impact on A ∩ (Lr −
Epq − Rp). However, every token originating outside Epq by transitivity will affect Lp once p has
joined the cluster. Hence, no vertices in Lr − Epq − Rp are alive after p determined its set Rp.
Case r did not receive the respective token: There must be an ancestor which received the respective
token. If there was not we would conclude Epq = ∅. Then again p on its creation would share all
influence by s on the ancestor of r and by transitivity to r itself. Hence, again all tokens which did
not influence p originate from the set Epq. Therefore no processes in Lr − Epq − Rp are alive, once
p has updated Rp. 2

Lemma 4.2 immediately implies Corollary 4.1 which states how long a process p needs to be
temporary coordinator until at least i alive processes in Epq have failed.

Corollary 4.1 The ith successor of p in Epq will fail latest i rounds after p was acknowledged.

Proof. The immediate successor of p clearly fails because all ALIVE messages r can expect according
to Lemma 4.2 are inside Rp (suppose p maintains a copy of send Lp) and at most k messages did not
acknowledge p. Assume now that until round i − 1 the closest i − 1 successors have failed. Then
in round i the only candidates for sending ALIVE messages are in L. However, there are at most k
candidates which did not acknowledge the exclusion of the ith successor. 2

12

Theorem 4.1 Algorithm 3 guarantees that two processes never have common tickets they either own
or coordinate.

Proof. Lemma 4.1 shows that only exclusion could cause any such conflicts. Assume that during an
execution two alive processes r and s, are two processes coordinating common tickets. This implies
that one process, say r was failed to be excluded, while s was inserted. Let p be the process which
failed to exclude r and inserted s.

After p initiated the exclusion of Epq with r, s ∈ Epq, p switches state to become temporary coordi-
nator for dist(p, q) rounds. During this time p could not have inserted s. However, when p switches
state to become active coordinator and inserts s, Corollary 4.1 guarantees that r thinks it is considered
to have failed, contradicting that both r, and s were active. 2

4.2 Performance and liveness properties

Message overhead. Note that the duration of a round is assumed to be longer than the time of a
PrCast. PrCast is used to inform all processes which joined a cluster about an event regarding the
resources of the cluster. The overhead which is induced by the membership protocol corresponds
to the number of sent ALIVE messages. In each round a process sends and receives at most 2k + 1
messages. Hence, the cluster management protocol can be considered as lightweight, i.e. it only adds
a low number of additional messages while performing in combination with an application using the
cluster management protocol. In addition every successful ticket acquisition is followed by a PrCast
which involves all processes which joined the cluster.

Availability. An interesting performance measure is how well the algorithm manages to grant new
processes access to tickets in the occurrence of failures and dependent on the amount of tickets main-
tained by non-faulty processes. Let α denote the fraction of tickets taken by non-faulty processes.
Moreover, let pf denote the probability for a process to fail in a round. Whenever a process q fails,
the predecessor, say p is trying to reclaim the tickets maintained by q. While running the exclusion
algorithm p performs as a temporary coordinator and does not release any tickets.

Observe that CoreC consists of the processes which have not been excluded and processes which
perform correctly, i.e. we know |CoreC | ≥ αn. Since there exists at most n tickets the expected
number of tickets maintained by each coordinator of CoreC is smaller or equal to 1/α. Hence, the
time to reclaim tickets from a failing process is expected to take time less or equal to 1/α.

Assume that i) α remains constant, and ii) the exclusion algorithm needs 1/α rounds. Then the
expected number of failing processes which needs to be excluded is pfn because in each round αpfn
processes are expected to fail. By applying the Chernoff bound [12], one can bound the probability
that in a round of the algorithm’s execution there exist more than 2pfn to be strictly smaller than
(e/4)2pf n. That means a process can acquire a ticket w.h.p. if pf < 1/2(1 − α).

5 Related Work

Many distributed applications like collaborative environments (e.g. [11, 9, 6]) use event-based dis-
semination to interact on a distributed shared state. In order to perform well for many processes, such

13

systems rely on a middleware which provides scalable group communication, supports maintenance
of membership information according to processes interest as well as fast dissemination of events in
the system.

Recent approaches for information dissemination use lightweight probabilistic group communi-
cation protocols [5, 7, 8, 10, 13, 4]. These protocols allow groups to scale to many processes by
providing reliability expressed with high probability. In [13] it is shown that probabilistic group
communication protocols can perform well also in the context of collaborative environments. How-
ever, to guarantee a delivery with high probability one needs a control mechanism for the number of
concurrently disseminated events as achieved by the cluster management protocol.

Alternatively, recently proposed dissemination systems implement the publish/subscribe paradigm
in combination with structured peer-to-peer systems [16, 19] For each region of interest the protocols
construct an application level multicast tree. Also these protocols assume a maximum number of
concurrently disseminated events. Otherwise the dissemination system may overload the source of a
multicast-tree and perform unstable thereafter.

The way structured peer-to-peer systems share information in the system (cf. e.g. [17, 3, 14, 15,
18]) has been of relevance and inspiration to this work. Note, however, that uniform hashing, as
used in many peer-to-peer systems, is not suitable to solve the cluster management problem since the
number of processes is expected to be larger than the number of available tickets in a cluster. Even
in the situation of network partitioning the cluster management needs to ensure that no two processes
will create an event with respect to the same ticket.

One may notice some similarity between the problem in this paper and the l-exclusion problem [1,
2]. However, to the best of our knowledge, the solutions to the l-exclusion problem do not satisfy the
cluster management problem requirements. Nevertheless, the solution to the cluster management
problem proposed here could also serve as solution basis to the l-exclusion problem.

6 Discussion and future work

This paper presented and analysed a solution for a dynamic and fault-tolerant cluster management
for event-based peer-to-peer dissemination systems. Since the protocol guarantees that never two
processes perform some action corresponding to the same ticket of a cluster, the protocol is suitable
for several coordination tasks, such as resource management, controlling the number of concurrently
disseminated events, as well as consistency management for replicated distributed objects. The cost
of combining the presented solution with an application is low since the duration of a round is longer
than the time of a multicast and in each round only a low number of messages are sent. Moreover we
have shown how the protocol guarantees access to tickets in spite of failing processes.

Current and future work deals with integrating the cluster management with existing peer-to-peer
dissemination algorithms in order to increase reliability as well as achieve decentralised ordering of
messages by maintaining small distributed vector timestamps.

References

[1] U. Abraham, S. Dolev, T. Herman, and I. Koll. Self-stabilizing l-exclusion. In Proceedings of the Third
Workshop on Self-Stabilizing Systems, pages 48–63. Carleton University Press, 1997.

14

[2] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. A bounded first-in, first-enabled solution to the `-
exclusion problem. ACM Transactions on Programming Languages and Systems (TOPLAS), 16(3):939–
953, May 1994.

[3] L. O. Alima, A. Ghodsi, P. Brand, and S. Haridi. Multicast in DKS(N; k; f) overlay networks. In
Proceedings of the 7th International Conference on Principles of Distributed Systems (OPODIS ’03),
volume 3144 of LNCS, pages 83–95. Springer-Verlag, 2003.

[4] S. Baehni, P. T. Eugster, and R. Guerraoui. Data-aware multicast. In Proceedings of the 5th IEEE
International Conference on Dependable Systems and Networks (DSN 2004), pages 233–242, 2004.

[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Transactions on Computer Systems, 17(2):41–88, May 1999.

[6] C. Carlsson and O. Hagsand. DIVE - a multi-user virtual reality system. In Proceedings of the IEEE
Annual International Symposium, pages 394–400, Seattle, Sept. 1993.

[7] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN 2001), pages 443–452, July 2001.

[8] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Scamp: Peer-to-peer lightweight membership service
for large-scale group communication. In Proceedings of the Third International COST264 Workshop,
volume 2233 of LNCS, pages 44–55. Springer-Verlag, 2001.

[9] C. Greenhalgh and S. Benford. A multicast network architecture for large scale collaborative virtual
environments. In Proceedings of the Second European Conference on Multimedia Applications, Services
and Techniques - ECMAST’97, volume 1242 of LNCS, pages 113–128. Springer-Verlag, 1997.

[10] B. Koldehofe. Buffer management in probabilistic peer-to-peer communication protocols. In Proceedings
of the 22nd Symposium on Reliable Distributed Systems (SRDS ’03), pages 76–85. IEEE, Oct. 2003.

[11] D. C. Miller and J. A. Thorpe. SIMNET:the advent of simulator networking. In Proceedings of the IEEE,
volume 8 of 83, pages 1114–1123, Aug. 1995.

[12] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, june 1995.
[13] J. Pereira, L. Rodrigues, M. Monteiro, and A.-M. Kermarrec. NEEM: Network-friendly epidemic multi-

cast. In Proceedings of the 22nd Symposium on Reliable Distributed Systems (SRDS ’03), pages 15–24.
IEEE, Oct. 2003.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network.
In ACM SIGCOMM Computer Communication Review, volume 31, pages 161–172, 2001.

[15] A. Rowstron and P. Druschel. Pastry: scalable, decentralized object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), volume 2218 of LNCS. Springer-Verlag, Nov. 2001.

[16] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The design of a large-scale
event notification infrastructure. In Proceedings of the Third International COST264 Workshop, volume
2233 of LNCS, pages 30–43. Springer-Verlag, 2001.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proceedings of the ACM SIGCOMM 2001 Conference, pages
149–160, New York, Aug. 2001. ACM Press.

[18] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, and A. D. Joseph. Tapestry: A resilient global-scale
overlay for service deployment. IEEE Journal on Selected Areas in Communications, 22:41–53, 2004.

[19] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: an architecture
for scalable and fault-tolerant wide-area data dissemination. In Proceedings of the 11th international
workshop on Network and operating systems support for digital audio and video, pages 11–20. ACM
Press, 2001.

15

