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Abstract

This paper presents GosSkip, a self organizing and fully dis
tributed overlay that provides a scalable support to da@age
and retrieval in dynamic environments. The structure of ks,
while initially possibly chaotic, eventually matches afpet set of
Skip-list-like structures, where no hash is used on datébaities,
thus preserving semantic locality and permitting range rigse
The use of epidemic-based protocols is the key to scalglfdit-
ness and good behavior of the protocol under churn, while pre
serving the simplicity of the approach and maintaining Q(M))
state per peer and O(log(N)) routing costs. In addition, we- p
pose a simple and efficient mechanism to exploit the presaince
multiple data items on a single physical node. GosSkip'sibiein
in both a static and a dynamic scenario is further conveyedxay
periments with an actual implementation and real traces péar
to peer workload.

Keywords: Gossip-based protocols, self-organization,
data structures, skiplist

1 Introduction and Background

Peer to peer networks are distributed networks where no

centralization is used, especially for locating and quegyi

data. The desired properties of such systems include, &ut ar
not limited to, load balancing among participating nodes,
resilience in face of churn and high expressiveness of query
mechanisms. Above all, a peer-to-peer network has to be

scalable, and this is particularly important for the efiicg
of search algorithms and construction costs of overlays.

Generic P2P overlays [15, 16, 17, 21] usually provide

the functionality of a distributed hash table (DHT). They

can be used to efficiently locate an object specified by a key
(e.g, a filename) within a large set of nodes. They ensure
load balancing in terms of hosted objects per node and scal

ability but the search efficiency (usually M(log(

N)), N
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being the number of nodes in the overlay) is a result of the
inherent tradeoff between efficiency and expressiveness in
distributed systems. The fact that the only querying inter-
face is exact-match and that hashing is used to determine
the placement of data to nodes lose the initial ordering of
objects. As a result, the possibility of richer query mecha-
nisms such as range queries or nearest neighbor queries is
restrained, or exhibits crippling costs.

Some work has been done to propose structured over-
lays that keep this ordering on objects names. Mercury [5]
stores objects described by a set of attributes. To each at-
tribute corresponds a ring, on which objects ordering is pre
served, thus providing a support for range queries. To en-
sure load balancing, however, distributed node-count his-
tograms gathering of the naming space have to be per-
formed, and the behavior of this scheme in face of a high
churn rate remains unclear. Another set of distributed data
structures that avoid hashing to ensure load balancing, and
that permit both query efficiency and an expressiveness that
is higher than DHTSs, are based on the Skip-List structure.
A Skip-List is a doubly-linked list where objects with sub-
sequent names are linked on the first level (I&)elSome
pointers at each object permits a Skip List to resemble a bal-
anced tree, forming increasingly sparse linked lists aheac
level. In aperfect Skip lista levelh pointer at a node tra-
verses exactly2nodes, while for Skip-Nets [11] or proba-
bilistic Skip-lists [14], the structure resembles a randred
balanced tree, witld(logN) insertion and querying costs
w.h.p., and a similar top-down querying strategy. However,
a Skip List uses only one linked list per level, thus imply-
ing a high load on nodes participating on upper levels, and
penalizing the whole structure upon deletion of such nodes.
While this was not an issue for centralized data structures,

these two points are a concern for a peer-to-peer data struc-
ture. Skip-graphs [3] are similar to Skip-Lists but use sev-
eral concurrent linked lists for levels 0, to balance the



load of query propagation and ensure fault resilience.-Skip peers.
webs [2] are based on the same concepts for multidimen- GosSkip organizes peers in such a way that they form
sional data. They provide@(log N/ loglog N) query cost  a sorted doubly linked list (or ring). Once a peer has lo-
in single dimension and@(log N) in multiple dimensions.  cated himself in the sorted list, links to level-0 neighbors
However, all these distributed data structures rely on a de-are straightforward to implement. For each peer, additiona
terministic construction of the overlay (and on leavingnsee  longer linksl;, for levels1 < i < log,(N) skip overk’
using a fair leaving procedure) and need additional mecha-peers. These links form a set of perfect skip lists, progdin
nisms to repair themselves in presence of node failures.  the functionality of balanced-ary tree:O(log, N) search

On the other hand, gossip based protocols have proverand insertion costs. In a single skip list, a peer has a proba-
efficient for the construction and maintenance of disteut  bility of being part of each levelequal tog:. This can lead
systems. Gossip techniques have been successfully usetb a high load of query propagation on the top-level nodes.
in many settings [12] including database maintenance [8], In GosSkip, this is not the case as every peer is presentin all
multicast [6], routing tables management [19] and attébut  log, (V) levels and has an equal probability of being part of
based publish/subscribe systems [10]. Their application t any query path. The load of query propagation is thus bal-
the maintenance of overlay networks [7, 18, 20] has shownanced uniformly among all peers.
their ability to gracefully deal with churn, building self- peer management In GosSkip, a peer is associated to
organizing networks able to resist to the loss of a large partone data element. Its management is the responsibility of
of the network without collapsing. Gossip techniques en- the physical nodécomputing entity) that published this el-
able to keep overlay construction algorithms simple yet ef- ement. For the sake of clarity, we assume for now that there
ficient, without the need for explicit overlay reconstrocti is a one-to-one mapping between peers and physical nodes,
mechanism in case of node departures. and we come back to this issue in Section 5. The mapping of
Contributions:  In this paper, we propose the design and Peers to node can be modified to move application objects
implementation of GosSkip, a distributed data structuce pr  according to some heuristics (physical proximity, commu-
viding a better tradeoff between query expressiveness andication patterns) but such techniques do not modify the al-
query efﬁciency than DHTs. As in the above Systems' gorithms and their dESCription is out of the scope of this
GosSkip has the important property of preserving contentPaper.
chality i.n the semantic space. _GosSkip Iingpplica- 3 Overlay Construction
tions objects(rather than computing entities) in a struc-
ture that eventually resembles a set of exact balanced trees In this section, we describe the mechanisms used to cre-
while balancing the load of queries uniformly among peers. ate and maintain the GosSkip overlay.
GosSkip is built using a gossip-based protocol and is re-Joining and leaving the network. When a peer wants
silient to high churn rates. Overlay construction messagesto join the overlay, it simply sendsjaoi n message to a
can be piggy-backed on top beart beatmessages which  peer already participating in the system as in most p2p al-
are in any way present in most distributed systems. An eval-gorithms [15, 16]. The join message progresses in the sorted
uation of GosSkip behavior both in a static and dynamic list until the peer location is found and the peer is then in-
scenarios is performed using a deployed implementation ofserted still preserving the sorted order. Then, as gossip me
the protocol and a real workload of a file sharing applica- sages are exchanged in the system, the peer is gradually in-
tion. The paper is organized as follows: basic principles tegrated in the upper level lists. When a peer wishes to leave
are given in Section 2 and the details of algorithms in Sec- the system, it just stops gossiping messages and will grad-
tion 3. Section 4 gives evaluation results of the protocel us ually be discarded from the neighbor lists. Besides, a peer
ing real traces and in dynamic settings. Section 5 proposedailure is detected by its neighbors which in turn remove it
an approach to leverage the presence of multiple peers on &om their list of neighbors triggering the creation of a new
physical node and improve routing and robustness. level O link instead.

Establishing long links. GosSkip relies on gossip mes-
sages to construct long links. This message can be piggy-
GosSkip is a structured peer-to-peer overlay linking ap- backed over maintenance or applications messages that al-
plication objects in a distributed data structure. We vhills ready exist in the network. To ease description, we will
discuss indifferently of data elements as beiagrsin the denote asight handandleft handneighbors on level the
overlay. Each peer has a name that depicts its semantic fopeer that directly follows (respectively precedes) a peer i
the application. The only necessary property is that thesea list. Each peer periodically sends gossip messages to the
names follow a deterministic total ordering. Then, the posi peers on the right hand side first, as shown in Figure 1.
tion of a data element is fully determined by its name. For  Each message consists of a collection of entries. Each
the remaining of the papefy will denote the number of  entry is composed of an identifiee.¢, IP address; Id1 in

2 GosSkip at a Glance



Figure 1), its associated data item ( d1 in Figure 1) and aleft. Hence peers can forward level-1 messages leftward. If
counter. As in all gossip-based protocols, time at each peetthe level is an even number, the message is forwarded to the
is divided in periods of fixed duration. Each new period, right, else to the left. Once a level-1 message with counter
each peer forwards a subset of the entries it receives durset to O is received by a peer, that peer learns about another
ing the last period. It also adds an entry with its own id, peer on the right that i8 hops away€.g, in Figure 1 peer 1
data item and a counter set to zero along with the forwardedlearns about peer 3 when peer 1 receives a level-1 message
entries. Each peer increments the counter of every entry itfrom peer 3).
receives before forwarding it. Once received, if the counte  Peers with their level 0, 1 and 2 neighbors are shown in
at peemp is equal tok-1 (k is a configurable system param- Figure 1. The lines in Figure 1 depict paths of the messages
eter, gives the number of peers each link skip over, and inand as well as long links between peers. For simplicity,
Figure 1 we considét as 2) the entry is not further gossiped only a limited number of links are shown: in reality each
(by simply removing it from the message) and ppexdds peer has level 0, 1 and 2 neighbors. This scheme can be
the peer associated with the removed entry together with thefurther extended to form links of greater length by gossipin
information associated with that entry to its neighbor list another set of messages among level 2 neighbors and so
(e.g, as in Step 3 of Figure 1, peer 3 adds Id1 to its neigh- on. More precisely, additional links are constructed as the
bor set together with d1). Peers have neighbors on right andsystem size grows. The number of links maintained by a
left hand sides, maintained respectively in rightward- and peer is bounded blog N. If a given peer does ndtear
leftward-neighbor lists. These neighbor lists represkatt from a neighbor before Eime outperiod, it removes the
routing state of each peer. corresponding link.

Note that, as a result of removing entries from messages,
once the counter reaches paramétdr, the size of the gos-  Algorithm 1 Message reception
sip message (in terms of entries) is limitedit@ntries ir- 1: upon RECEIVE (message msg) with msg.levélby
respective of the network size. At the end of this process, peer:
peers know about other peers that Areops away, on the g z)‘;tjlugﬁfiﬂ:s’g%sg o
left hand side. These steps are depicted in Figure 1 where 4 i e.countet= 0 AND [ 4 Othen
is set to 2. Immediate neighbors (i.e., one hop away) peers 5: if L MOD 2=0then
are level-0 neighbors and neighbors that areops away 6: leftward-neighbors.add(e.peer-id,e.peer-value])
are level% neighbors. For example, as in Figure 1, node 1 ; else

: ) : rightward-neighbors.adt[e.peer-id,e.peer-value])
and 2 are level-0 neighbors while node 1 and 3 are level- o end if
1 neighbors. Likewise, each message is associated with a10: end if

if e.counter= k-1 then

level representing the level of the neighbors between which 11 -
12: if . MOD 2=0then

the message Is sent. 13: leftward-neighbors.add{ 1,[e.peer-id,e.peer-value])
e Tl 14: else
T S fﬂiﬁfﬂ; 15: rightward-neighbors.addg1,[e.peer-id,e.peer-value])
//// Level 1 ., 16: end if
g message N .
r SN 17: else
- 2 ™ 18: e.counter— e.countes-1
' O } O :
19: out-buffef < out-buffey U {e}
i I %\/ ~— 20:  endif
<1d1,d1, 0> <1d1,d1, 1> <lddh > 21: end for
<Id2, d2, 0> <Id2, d2, 1>
Level 0 messace <Id3, d3, 0>
Level 0 message
Level 0 message

Algorithm 2 Message emission

1. Atpeers:
2: for all neighbors in level € [0..l;42] dO
for eacht * (I + 1) secdo
msg«— out-buffer
e «— [myID,myValue,0]
msg«— msgu {e}
msg.levek— [
if { MOD 2=0then
send msg to immediate rightward-neighbor at lével

Node 3 drops entity of
node 1 & adds node 1
as a neighbour at
Level 1

Figure 1. Gossip-based construction

Higher level gossip messages.GosSkip is fully built by
iterating on this algorithm at each level. To set additional

N R®

else
long links (that skips over more peers), peers gossip simila 11: send msg to immediate leftward-neighbor at ldvel
set of messages but only among level-1 neighbors. Note12: end if
that level-0 messages are forwarded from left to right: as a ﬁ; enfj”fgrfor

result, peers on the right come to know about peers on the



3.1 Gossiping Algorithm Efficient and fault-tolerant spreading. While routing
Algorithm 1 and Algorithm 2 show the pseudo-code of Provides the very same exact-match interface as a DHT,

the gossip construction of links. In the pseudo-cqubsr- GOSSkIp preserveg the ordering of data items in the |ISt
valuerefers to the data item associated to an external peerThis permits to define a more general query model, that is
andmyValuerefers to the local peer’s data item. aspreading algorithmwhich is both used as a range query

Message reception. Algorithm 1 describes the steps car- Mechanism and to propagate messages among peers with
ried out by a peer when it receives a message of level the same value. This algorithm is designed to cope with dy-
Once a gossip message is received, one out of two possinamicity. While some links at each level may be missing,
ble link types are created. In the first link type, links skip a Of some peers may fail or some transient routing failures
number of peers as discussed earlier. These links are conPetween peers may exist, the spreading still reaches all non
structed if the counter of a given entry is sektd: thenthe ~ failed peersin the given range. The spreading algorithm ex-
associated value is added to the relevant (either left bt+ig ~ Ploits the multiple balanced trees structure of GosSkipbot
ward) neighbor list (lines 11-17) and the entry is no longer to speed up the multicast process and to provide resilience
gossiped. For example, if the level of the message is anto failures. The first peer satisfying the query (joined by
even number, the leftward neighbor list is updated( for routing to any point in the range) is responsible for initiat

a message at level 0, a neighbor at level 1 is added to left-ing the multicast process to all teatching area

ward list if the counter has reachéell). If the counter is Each encountered peer follows Algorithm 3. The key
less thark-1, the counter of the entity is incremented (line ideais, at each peer, to divide the spanning space using high
18) and it is added to the out-going buffer (out-buffeor- level links up to a level, and to delegate each neighbor on
responding to the levél(line 19). this level a sub-space of the matching area. When a peer

The second link type connects immediate neighbors in forwards a query to one of its neighbors at lebet 1, it
a given level. For example, peer 1 and 3 are immediate@ssigns it the task of spreading it, in the same direction, to
neighbors at level 1. Whenever the counter of a given entry€very peer between itself and its next immediate neighbor
e is set to 0,e corresponds to an immediate neighbor at at levell. Each query for spanning a region contairie\eel
level I. Then, depending on whethéis odd or even, the  upper bouncand anoffset The level indicates how many
corresponding neighbor list is updated as shown in line 4- levels the peer as to deal with, and the offset is used to avoid
10 (level O links are managed when nodes join and leave). overlapping when repairing failed links. gpread message
Message emission. Algorithm 2 shows the message for- Consists in spreading a query(@“*“'*! — 1) — offset im-
warding algorithm. For all the neighbors at each level mes- mediate neighbors in a given direction. Figure 2 depicts
sages are forwarded periodically in the relevant direction a@n example. Let peers 0 to 8 be a subset of the matching
The period of forwarding depends on the level: lower level area and peer 0 be the first reached target of the routing.
messages are gossiped more frequently than higher levePeer O spreads the query on its right: it sends simultane-
ones. As a result, lower level links are maintained with ously spreading messages to his neighbors (peers 1,2,4 and
more accuracy (in terms of link length) in the presence of 8)- Peer 1is in charge of itself only, peer 2 is in charge of
join/leave of peers than higher-level links. itself and peer 3, etc. Thus, the maximum load for a query

The out-buffey data structure contains the entries re- Propagation on a peer 8(log V) (maximum! messages)
ceived during the last period: a message is constructed conand a peer receives the query one time only. This algorithm
taining all the entries of this buffer (line 4). An entry cor- builds efficiently a spanning tree using alive GosSkip links
responding to peeris also added to the message (line 5-6) for all peers in the matching area with a high resilience to
with the associated counter set to 0 (line 5). The level of failures.
the message is set accordingly (line 7). Each message has A7 oad (AXLEVEL)
direction according to its level (line 8-12): for exampls, a T
in Figure 1, level 0 messages are sent rightward. @ T S =T
3.2 Routing and Spreading

Routing to a peer according to its value (or routing to
the peer that has the nearest value, if it does not exist), is o
similar to querying a value in a balanced tree. The process [1=3: . 8
begins at the higher level linked list, and goes down to lower
levels when, at a peer, the current level link skips too many
peers. This require®(log N) routing steps. If the query
has to be further spread over several peers, for arange quer$.3 Failure Recovery
or if many peers share the same data element description, Nodes in the overlay can fail or leave without notifica-
we use the spreading protocol that we describe in the nextion: we refer to them simply as failures (we do not ad-
paragraph.

Figure 2. Spreading algorithm principles



Algorithm 3 GosSkip Spreading — Upon receptionigread-msgat
level I with offset on peem

Require: level > —1,0ffset > 0
Ensure: Spreads the query to every matchi@f¢vel™1 — 1) — offset

left neighbors

to resolve issues that can arise when one physical computer
executesk or more number of peers that are contiguous in
the overlay. The maintenance Bfneighbors is done using
the level 0 messages itself: these messages arddizgt

1: 1 — level beatmessages between these nodes. If peer fails, the

2: while I > 0 A 2" < offset do {compute the highest destination level peer n. will replace n..; with n,, » to form a level 0 link.

. acc%’d'?g 0 tgf’ offset conrectign As a result, if R consecutive peers do not fail simultane-

. ojJjset «<— ojjset — .

4 le—1-1 ous!y, the overlay fpnctlons properly.' To tole.rat.e morentha

5: end while R simultaneous failures around a given point in the over-

6: lmatching < highest-level matching neighbar,(:ching < 1) lay, we use the long higher level links. For example, if the

7: if level = Maxlevel — 1then ; ; ; ; ;

8: send ISpread-msy{vel,0) to immediate leftward-neighbor at level n.Ode n exper-lences fallur.es amongits ne|ghbors, Itcan use
Lmatehing higher level links to multicast recovery messages to other

9: else neighbors in the close vicinity. Once the alive nodes in

10:  if latching = level then {the target level is reachable  the vicinity responds, peer,ridentifies the closest level

1 r?;gﬂblosrp;?e(\j:g@@d — Loffset) to immediate leftward- g paighhor and establishes a new connection. Recovery

matchin . . . . .
12:  else fehing using the multicast approach is more time consuming and
13 send ISpread-msigiel,offset 4 2') to immediate leftward- comparatively complex to implement than the first solution
neighbor at level,,.a:ching based on knowing set of neighbors.

14:  endif

15: end if 4 Evaluation

16: llast — lmatching

g: for ! *im;tecdhi;g Igft{/vtgrg zﬁggblo‘rj‘;t bl In this section, we describe experimental evaluation of
n - ) : ;

19 if n existsthen GosSkip. We present our expgrlmental sett!ngs and'perfor-

20: if ljgst = L+ 1 then {the following neighbor is valif mance evaluations both in static and dynamic scenarios. We

21 send ISpread-msg- 1,0)ton. . also give results on the behavior of GosSkip in presence of

22:  else {some following neighbors are broken  ngqjes failures. For evaluating the performance of GosSkip

23 send ISpread-mdgf; — 1,2°)ton . . .

24 end if we implemented the algorithm and carried out a set of ex-

25: Last — 1 periments on a distributed platform, using computers that

26 Zﬂd if are distributed within EPFL campus and Grid’5000 [1]. We

27: end for ; ;

28: if n = null then {uses the last valid neighbor to spread to the first used 2.56 processors, each execgt!ng .Several instances of

broken neighbors GosSk|p peers to increase thg participating peers up to 1000

29:  send rSpread-mdg{,, — 1,0) to immediate leftward-neighbor at  in the overlay. The parametgis set to2 and the gossip pe-
levellq s riod is set to 20 seconds.

30: end if

dress malicious peers in this paper). Failures are handlecf
along two directions: (1) establishing new links between .
new neighbors instead of failed ones, (2) use of alternative
links instead of failed links to forward messages befork ful

recovery.

Establishing New LinksEstablishing long links consist

Real workloads. We used a real p2p trace to construct a
ample set of data elements and queries. This trace was col-
ected from a modified FastTrack ultra-peer, implemented
in the MLDonkey multi-network file-sharing p2p client [9].
FastTrack is a hybrid p2p network where peers can act as
ultra-peers, an ultra-peer being responsible for a setgpf re
ular peers. Regular peers send their shared files lists and
requests to their ultra-peer. Ultra-peers forward queries

in repairing level O links. Once these links are established among themselves and answers queries they receive with
between new neighbors, the higher level links will be even- the address of the corresponding regular peer. The trace we
tually constructed as aresult of the gossip process. Nate th ysed was collected during four days (Oct 14 to 18 2004)
even if the higher level links are faulty just after a failure and contains more than 6 GB of raw data (all applications
the forwarding of queries can take place as we will describe messages that passed over the ultra-peer). Collected mes-
shortly. In the presence of multiple simultaneous node fail sages include (i) search queries issued by peers, defining
ures, two complementary approaches can be taken for fail-constraints on pre-defined attributes and (ii) cache caonten
ure recovery. advertising by peers to the ultra-peer.

A node keeps information about distinct neighbor We used the trace to generate the workload as follows.
nodes (i.e., nodes having different IP addresses) in the im-Every data element has a multidimensional representation
mediate vicinity. TheR set of neighbors is similar to the that we map to a single dimension using lexicographic lin-
leaf setstructure in Pastry [16]. The use of distinct IPs helps earization. While FastTrack client applications may sfyeci
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several attributes for files they publish in the networkyonl

avery few of ”‘e*.“ are broadly used, others being used_ Onlyfew of them using up to 9 hops to deliver the query. This
by a very few client's search requests. Early a”‘f’"y.s's of shows the ability of GosSkip to efficiently route messages,
the trace has shown that search requests are specn‘ymg keyc'onfirming the expecte@(log, N) routing property, while
words 09.9% of requests), genre (among predefined genres . overloading any peer in the overlay.

in id3 tags of mp3 audio files) and language (again in the Next we show a complementary set of performance re-

predefined list of id3 tags). Lexicographic ordering of the " .
three attributes we used is as follows: language then genresun& More specmca_lly, we examine the performange ofthe
and finally keywords set. Not surprisigly for a real work- GosSkip in a dynamic setting and in presence of failures.

load, both genres and languages follow a zipf distribution.  Routing performance in a dynamic scenario.This ex-
Lexicographic ordering is an application-based assump-Periment shows how GosSkip deals with dynamic scenarios
tion, but one can use any linearization technique [4, 13] to CONCerning routing efficiency. We evaluate how the queries
map multidimensional data to the GosSkip model, provided Would be routed to a recently joined peer. To this end, we
that elements can be ordered without ambiguity. first construct an overlay with 300 peers (less than 1/3 of
The following experiments, if not specified explicitly, eventual total of peers). Once the network stabilizes with

are based on a 1000 peers overlay and 1000 queries, botH1iS initial set of peers, we did the following steps: 1) at
based upon the real trace. We first examine performance§ach cycle, add anew peer and let it joins the overlay 2) just
of GosSkip with static settings and then in a dynamic sce- after this peer establishes level-0 links a query that nesich
nario in presence of peer failures. the new peer’s data element is injected into the overlaye(not

Overlay construction and maintenance We first mea- that by this time the new peer has no other links to and from
sure the amount of messages used to construct and mairlt Other than level-0i.e. no long links). 3) We then count
tain the links in the overlay. Each peer gossips with its e number of hops to deliver this query to the new peer.
neighbors to create and maintain its neighborhood and long/APOVe 3 steps are carried out till the total number of peers
links.We observe that distribution of number of gossip mes- In the network is equal to 1000.
sages among peers is between 2 to 5 messages per minute. In this experiment we use a total of 700 queries that

Load at each peer.We define the load at a pee(load,) match newly joined peers. Figure 4(a) depicts the number
as the ratio between the number of queries it sees for routingdf hops taken to deliver queries. The upper bound for hops
purposes and the number of queries that match its data elefor the initial set of peersi.g., 300 peers) is 8.22: the upper
ment. The distribution ofoad, shows if the load of prop-  bound for hops for the eventual total of peeire.(1000) is
agating queries is balanced among peers. Figure 3(a) de9.96. As seen in Figure 4(a) some queries take more step
picts this distribution in the static scenario. GosSkigat§ ~ than this: butin general GosSkip performs well in this kind
from a single skip list as it distribute load of propagatidn o of dynamic scenario.
gueries among peers: there is a low imbalance in the distri- Query spreading. We first evaluated the resilience to
bution of this load, as no peer is loaded with more than two failures of the spreading algorithm. Our results match
times of the mean loaddad, = 13, 5). the expectedD(logm) (m is the size of the matching

Routing performance. We also count the number of area)complexity. We evaluate the failure resilience of the
hopsto deliver queries to a matching peer or to a peer that algorithm by measuring the proportion of peers reached by
has sufficient local knowledge to know that the message hasa query when each peer may fail at each round with a proba-
to be discarded. Figure 3(b) presents the hop-count distri-bility p. We compare our algorithm to a basiearest neigh-
bution for 1000 queries. Most queries reach correspondingbor algorithm which spreads queries using legelinks
peers in our 1000 peers overlay in less than 6 hops, a veryonly and anext neighboalgorithm which forwards queries




' GosSkip Spread NodeFail Resistance (1000 nodes) " Tomical Routing
120 T T T T LI T T T X X
Next Neighbour —— Physical Routing ------

100 = oe- Nearest Neighbour - 15 E
— | “~~.____ GosSkip Spread ----- o
S s e : g
s \ ) g 1 b
= 60pR g % 10
= S
2 40\ . =
= \ 5 .

20 N -

0 | e S s s H S 0 1 | | |
0 01 02 03 04 05 0.6 07 0.8 09 0o 2 ¢ 8 10 14 16 18 20
Crashed Node Proportion (p) Hops

Figure 5. Spreading robustness Figure 6. Physical routing impact

to the lowest level alive neighbor. These algorithms spread

queries in linear time. The two latter methods are obvi- are not delivered to the peers that exist in the overlay. All

ously better since they consider different level links a.we ~Other queries are delivered using alternative links inespit

However, we observe that the GosSkip spreading a|gorithmfailures. This shows the very robust nature of the GosSkip

outperforms the nearest neighbor algorithm as the propor-Which is a result of the redundancy of links.

tion of falled nodes increases, t.hus confirming its ability t 5 Leveraging Physical Locality

deal with more dynamic scenarii.
Massive nodes failures.We performed an experiment So far, we assumed a one-to-one mapping between a

to check the performance of our system in presence of maspeer and a physical node. However, several peers might

sive failures. To that end, we consider the following fedlur be hosted on the same physical node. In this section, we

scenario: after a number of nodes join, form the overlay propose to leverage this property in order to improve rout-

and stabilize, we lef{% of nodes crash simultaneously: ing efficiency. We assume that the routing information on

we consider three different cases whéfe= 25%, 35%, one physical node is accessible to all logical peers hosted

and 45%. Right after the failure we start injecting queries on that node.

into the overlay and we measure the performance. This iSppygica| routing  Communications between peers hosted
an advgrse failure scenario such as non mdepend_entﬁylureon a same physical node are instantaneous since they do
(e.g, failure of number of nodes due to a power failure ina ot require network communication latency. We use this
given geograph|crleg|on). . . property to improve routing. To this end, we modify the
Aftgr such a fallur.e, the overlay will recqnstruct links proximity measure on the overlay. When choosing the next
repIaC|r_1g the faulty I|_nks and ne|ghk_)ors: this would take peer for a query propagation, we do not only consider that
a certain amount of time. Our goal is to measure the Per-peer's neighbor, but also other peers present on the physi-
formance of the overlay before the recovery of the overlay ¢4 nodes as natural candidates. The distance between two

takes place. In other terms, we measure the performance Oﬁeers(pl,pg) that lie on two different physical nodes is es-
the query forwarding before any recovery action takes place;jmated onpy asd(p1, p2) = (2bwr — 2linr), wherel
5 - 3 ’ sup

after the failure. is the maximum level at which the associate neighbgr,of

The performance is measured in terms of (1) number of i peforep, in the ordering (respectively the minimum level
hops taken by an message before being delivered or termiys 5 neighbor that isfter p, for 1;,, /). The distance between

nated (2) number of messages that are not delivered to nodegny two peers that are on the same physical notlesimce

that exist in the overlay and match the query. Note that be- 4 ting between these two nodes incurs no communication.
cause of failures the number of hops can be larger than in the

case when there are no failures and that there can be querids'iciency  To evaluate the impact of physical routing on
which cannot be forwarded because of any anomalies thafuting efficiency, we distributed o@ physical nodes uni-

can exist in the overlay just after the simultaneous crash of OrMly at random10® peers. Figure 6 shows that using
nodes. To forward queries after the failures peers use alter Physical routing permits a shift to a lower value of the mean

native links instead of faulty ones. Figure 4(b) shows the route Iength, yvhile keeping Fhe load balanced: most queries
number of hops taken to deliver/terminate queries after the@'® Sent within 4 hops, while 6 hops were needed for the
failure. As seen, the number of hops are larger than the"®gular routing mechanism.

O(log N) (which is equal to 9.96 hops) upper bound: but Robustness Physical routing also helps to make GosSkip
still it is limited to a relatively small values in spite ofrige more resilient to failures, as if a logical peer has no alive
percentage of peer failures. In the case of 25%, 35%, andcandidates among its neighbor to forward the query, it can
45% peer failures the number of queries that could not beuses the neighborhood of the other peers on the same phys-
delivered to the existing interested peers are 6, 18, and 53cal node. Experiments show the impact on routing if, at
respectively. That is, only a very small fraction of queries the same time, all physical nodes have a probabjlitf



crashing. Each physical node amobgs given some logi-
cal peers uniformly drawn fromd0® logicals peers in the

network. A large number of queries for peers that were
originally in the overlay are performed: some will fail due

(3]

J. Aspnes and G. Shah. Skip graphs.Faurteenth Annual
ACM-SIAM Symposium on Discrete Algorithipages 384—
393, Jan. 20083.

[4] S.Berchtold, C. Bohm, and H.-P. Kriegel. The pyramititec

to the absence of the corresponding peer, some other may

fail due to non existent direct routing path. Figure 5 shows
that using physical routing raises the hit ratio by 10 to 15
percent by diminishing the number of these non existent

(5]

routing paths, due to the greater number of alive neighbor [6]

choices at each step.
6 Concluding Remarks

Traditional approaches for designing peer-to-peer over-
lays link physical nodes in a distributed data structure pro
viding a distributed hash table interface. While such sys-
tems provide nice properties in term of routing efficiency,
their ability to handle complex queries is low, due to the

(7]

(8]

hashing used to map objects to node. On the other hand, [9]

some work has been done to propose distributed data struc-
tures based upon the Skip List principle that do not present [1
this drawback. However, these approaches were mostly in-
terested in the data structure itself, and did not provide an

implementation details or solutions to deal with dynamic- [11)

ity. The explicit construction mechanism may be an issues
In this paper, we follow an ap-

be if the churn is high.

proach that is quite similar to the latter, and we connect [12]

application objects in an efficient and load balanced data
structure that eventually resemble a set of perfect SkifsLis

We step away from traditional explicit construction mech- [13]

anism by using gossip-based construction algorithms. This
permits the overlay to be highly resilient to nodes failures

and arrivals (churn). Moreover, a spreading algorithm that [14]

deal with node permanent or transient failures is proposed.

Using a real implementation and a trace from a file shar- [15]

ing system workload, experimentations conveyed the good
behavior of GosSkip, both in a static and dynamic sce- [16]
nario. Finally, extensions of the routing protocol to lever
age the presence of multiple logical peers on a physical

node are proposed. Experiments demonstrate the positivg17]

impact on the routing performance. We are currently work-
ing on the extension of GosSkip to deal with more complex

application patterns, and to adapt the approach to multi- [18]

dimensional description of application objects.
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