
UC San Diego
Technical Reports

Title
Peer-to-Peer Error Recovery for Hybrid Satellite-Terrestrial Networks

Permalink
https://escholarship.org/uc/item/7rh49940

Authors
Weigle, Eric
Hiltunen, Matti
Schlichting, Rick
et al.

Publication Date
2005-10-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rh49940
https://escholarship.org/uc/item/7rh49940#author
https://escholarship.org
http://www.cdlib.org/

Peer-to-Peer Error Recovery for Hybrid Satellite-Terrestrial Networks

Eric Weigle†‡, Matti Hiltunen‡, Rick Schlichting‡, Vinay Vaishampayan‡, and Andrew A. Chien†∗

eweigle@ucsd.edu, {hiltunen, rick, vinay}@research.att.com, achien@ucsd.edu

†Computer Science and Engineering

and Center for Networked Systems

University of California, San Diego

‡AT&T Shannon Research Laboratory

Florham Park, NJ

Abstract

Media companies and other organizations with large

amounts of digital content require transfer of extremely

large files in a short time from a single source to a collection

of geographically dispersed destinations. Due to the high

cost of terrestrial networks of sufficient scope and band-

width, satellite networks are the most common means for

performing such transfers. However, satellite file transfer

relies on expensive error correction based on a combination

of forward error correction and whole-file retransmission.

This paper presents a hybrid solution that combines the

advantages of satellite and terrestrial networks to provide

cost-effective reliable file transfer. Specifically, we propose

a new peer-to-peer (P2P) scheme that exploits fast terres-

trial networks and the availability of multiple receivers to

recover from high loss rates (5% or more) in near real-time

(latency <400ms). This solution is efficient, robust under

variable packet loss and connectivity, user tunable, scales

to hundreds of nodes, and doubles bandwidth compared to

existing approaches. The system has been validated via ex-

tensive simulations using a terrestrial network based on the

AT&T common backbone core network.

Keywords: hybrid network, peer-to-peer, broadcast, con-

tent distribution

1. Introduction

The demand for timely transfer of extremely large data

files between widely-dispersed geographic locations is in-

∗This work is part of the collaboration between AT&T Labs-Research

and the UCSD Center for Networked Systems, and was done primarily

while Eric Weigle was an intern at AT&T Labs-Research. Weigle and

Chien were also supported in part by the National Science Foundation un-

der awards NSF Cooperative Agreement ANI-0225642 (OptIPuter), NSF

CCR-0331645 (VGrADS), NSF ACI-0305390, and NSF Research Infras-

tructure Grant EIA-0303622. Support from the UCSD Center for Net-

worked Systems, BigBangwidth, and Fujitsu is also gratefully acknowl-

edged.

creasing rapidly. Broadcast and media companies are look-

ing to transfer HDTV files to affiliates for end-user broad-

cast or for collaborative editing, computational scientists

need to distribute large amounts of scientific data across

grids, and enterprises want faster and more complete off-

site backups for disaster recovery.

The PlanetLab Grand Challenge with the Public Broad-

casting Service (PBS) [1, 5] provides just one concrete ex-

ample. In this scenario, the PBS requirements include the

need to transfer up to 450 GB per day from PBS headquar-

ters to approximately 180 affiliates scattered across North

America. These affiliates have varying degrees of wired In-

ternet connectivity; and in fact characteristics of this under-

lying network will dictate the feasible solutions for this type

of hybrid broadcast problem.

Approaches using only a terrestrial network may be fea-

sible when all hosts are connected end-to-end with high-

speed links, but such a network is costly– many enterprise

settings have only slow links connecting to their ISP’s back-

bone network (in the range of T1 links at 1.5 Mbps; too

slow to stream at the 20-40Mbps or faster rate required).

Approaches using satellite transponders to broadcast data at

higher speeds (e.g., via 40 Mbps/transponder hardware [5])

avoid terrestrial bottlenecks but suffer from packet corrup-

tion and loss.

To ensure reliable transfers, terrestrial networks can re-

transmit individual lost blocks. Satellites must rely on

forward-error-correction (FEC) that can require utilizing

50% of the channel for redundant information, and fall

back on whole file retransmission if errors are uncorrectable

via FEC. The latter techniques consume unnecessary band-

width and negatively impact the end-to-end transfer time.

This paper describes a new peer-to-peer (P2P) broad-

cast/recovery scheme for reliably transferring large files

from a single source node to a number of geographically

dispersed destination nodes. It takes advantage of both

satellite and terrestrial networks. We divide our mechanism

into two parts (broadcast and recovery) and optimize for

each medium separately– exploiting their unique features

while avoiding their problems.

Unsurprisingly, the broadcast part uses the satellite net-

work for a one-to-many broadcast, while the recovery part

detects corruption/loss and uses the terrestrial network for

many-to-many transmission to recover. Part one may ex-

perience errors or omissions due to weather, insufficient

power, crashes, etc, and error detection in part two is trivial

by use of CRCs or cryptographic hashes.

Part two entails peer-to-peer error recovery in which

receivers exchange data. However, the original sender

(“source” node) may also be able to re-broadcast corrupted

data, which provides a different optimization path than

terrestrial-only networks and hence leads to different solu-

tions than current tools. The two parts are pipelined and

overlap for most of a transmission.

Our approach has the desirable properties that it: (1) cor-

rects for large error rates/loss (5% or more), with arbitrary

distribution; (2) scales in the file size (to gigabytes) and

number of nodes (to 100s); (3) provides low block latency

(<400ms); (4) is efficient (low network, memory overhead,

globally minimizes cost function); (5) is fair (different peers

share equally); (6) and it is user tunable (user may control

peering behavior).

We validate claims 1-6 using “real-world” performance

metrics on realistic networks, including scenarios in which

the terrestrial network is based on the AT&T common back-

bone core network [3]. These tests show efficient, reliable,

fair, low-latency transport of large files even under high

loss.

This paper is structured as follows. First, we discuss the

problem and target environment in more detail. Then we

present our solution, including the algorithms involved and

their implementation. We then evaluate the implementation

in depth using the ns-2 simulator, before concluding with a

brief discussion and related work.

2. The Problem

Here are the defining characteristics that specify the hy-

brid broadcast problem, as found in our target applications:

1. A single source node— the node with data to send in

the beginning— is connected to a large number of des-

tination nodes via a satellite link as well as a terrestrial

network.

2. High data rate— on the order of 100-450 GB/day.

3. Continuous data transmission— little or no inter-

transmission “free” time to recover from problems.

4. Relatively low intra-transmission delay tolerance—

data must be received on the order of a few seconds

after it is initially sent.

5. Loss varies between uplink and downlinks— loss will

tend to be higher on the downlinks than the uplink.

One motivating application is the distribution of a high-

resolution digital television signal to affiliate TV stations.

These data files are large (4-8GB), must be played out by

the destination nodes with low latency (frames displayed

within a few seconds of receipt, inter-frame jitter < 40ms),

and uplink loss is smaller than downlink loss (by as much

as a factor of 10). In this case, the received uplink power is

larger than the received downlink power at an antenna due

to higher transmit power and antenna gain on the uplink.

It is worth noting that error recovery from uplink losses

and downlink losses can be viewed as distinct problems.

Uplink losses mean no node receives that block— in other

words, the set of blocks lost on the uplink are only available

from the source node and must be obtained via the terres-

trial link. Downlink losses differ in that most peers will be

able to provide such a missing block. Historically each has

been solved using a separate mechanism. We show that one

simple, unified solution can solve both with excellent per-

formance.

2.1. Target Environment

Our target environment has high core bandwidth (10-

40Gbps), moderate satellite bandwidth (20-40Mbps), and

low access link bandwidth (1-5Mbps). As we will see,

the exact values are less important than the ratios between

them: the ratio of satellite bandwidth to access link band-

width and the ratio of their costs define the effectiveness of

this approach. We assume all nodes are covered by the satel-

lite and well connected via the terrestrial network; if not, the

hybrid broadcast is either equivalent to the terrestrial-only

problem or simply impossible.

High bandwidth is realistic for the ISP core networks and

upcoming user-controlled optical networks, and essentially

allows us to ignore locality of hosts (terrestrial delay is in-

significant compared to satellite delay). We use the AT&T

core network for our models. Extensive studies show that in

the AT&T Core and similar networks, there is minimal loss

due to congestion [10].

Satellite links are the primary source of loss in this net-

work. This hybrid broadcast mechanism works on either the

simple “reflector” type or more powerful store-and-forward

satellites. In the former case, loss may occur on either the

uplink or downlink transmission, while in the latter most

losses will occur on the downlink. We assume burst errors

occurring uniformly and independently across links using

a standard Gilbert-Elliot model per link. Satellite broad-

cast packets arrive in order, allowing immediate detection

of such loss for most cases.

One common configuration for affiliates is to have T1

links (1.5 Mbps) to a fast core network (gigabits per sec-

Uplink/
Original Source

Peer

Peer

Peer

Peer

High Speed,
Low Loss

High Speed,
Higher Loss

Very High speed,
Very Low Loss

Low Speed
Very Low Loss

Figure 1. Satellite/Terrestrial Configuration

ond), and 40 Mbps satellite transponders. Of that 40 Mb,

17 Mb is for forward error correction and 23 Mb is for user

data. Error rates on satellite links will vary between 0.05%

to 5% depending on FEC and weather. In such an envi-

ronment, the 15:1 ratio between satellite and terrestrial link

speeds is sufficiently dramatic that one must use the satellite

for any large data broadcast.

2.2. Design Decisions

Given the prior discussion, our design resolves to the

questions:

1. metadata (state) management— location of blocks

within a file, host load, etc, and

2. data (transmission) management— how to schedule

transfers, when, from which node, and to which node.

Solutions to the metadata management problem vary be-

tween fully centralized metadata servers to fully distributed

mechanisms based on e.g., distributed hash tables. So-

lutions to the data transmission problem range from cen-

tralized scheduling to distributed transfers based on some

heuristic, or simply randomized transfers.

3. Transmission/Recovery Mechanism

In this section, we explain our solution to the hybrid

broadcast problem. First we give a high level design

overview, providing the answers to the prior questions, then

cover the algorithms involved. In all discussion broadcast is

done with minimal link layer FEC (no additional reliability)

– one source uplink transmits blocks of data to the satellite

which then broadcasts it to all nodes. Recovery is initiated

as soon as nodes detect losses.

3.1. Design

The error recovery mechanism is built using three types

of nodes: a scheduler which collects and maintains meta-

data information, an uplink which is the source node with

the original copy of the data, and peers which are the desti-

nation nodes to receive the data.

First, the scheduler is a single node, ideally located in

the high-bandwidth core of the network. The uplink may

also act as the scheduler (as in Figure 1). Nodes send neg-

ative acknowledgments to the scheduler, which replies with

peers that can provide the missing blocks. Periodic timeouts

handle terrestrial losses by causing the node to send a cumu-

lative ack and re-request information on missing blocks.

A single scheduler node has the benefits of allowing de-

cisions based on global knowledge, ensuring fairness, and

implementation simplicity. The obvious disadvantages in-

clude a single point of failure and limited scalability. This

scaling limit depends on the total loss in the network: for

high loss to a few hundred nodes, for low loss to a few thou-

sand, for zero loss there is obviously no limit.

We can construct a high availability scheduler with stan-

dard fault tolerance and clustering techniques. Similarly,

distributing the scheduler can be done via use of a dis-

tributed hash table such as Chord [15] or Pastry [8] to main-

tain its state. While this is more scalable and has a certain

elegance, it induces higher overhead and latency, makes it

harder to optimize globally, and produces a more complex

system. In short, it is overkill for our motivating application

which uses below 200 nodes: the current design more than

suffices.

Second, there is a single uplink– the original source of

date in the system. This node broadcasts its data over the

satellite and concurrently acts as a peer node in the recovery

algorithm, one which has completed its download.

Third, the peers can receive data in three ways: over the

satellite link from a source broadcast (1), or over the ter-

restrial link from the source node (2) or another peer (3).

Nodes should receive most blocks from the satellite. For the

remainder we wish to, as much as possible, retrieve blocks

from peers rather than the source node. We use a simple

message-based mechanism that globally balances load to

schedule retransmits of lost blocks among peers.

Another approach is to use block level Forward Error

Correction (FEC) such as erasure codes on the satellite

channel; this is infeasible due to high-latency encoding or

decoding inherent in e.g. Tornado or Luby codes [6, 7] or

other more computationally intensive algorithms. Another

drawback is that FEC consumes satellite bandwidth– reduc-

ing user-available bandwidth. For example, if 50% of the

transmitted data is redundant, it takes twice as long to trans-

mit a file. Other approaches which simply download recov-

ery blocks from the source node directly are also infeasible;

this does not even scale to tens of nodes.

Lastly, we use a message-based transport protocol. Use

of a reliable transport such as TCP is inappropriate for

high-latency environments with low delay requirements.

First, TCP handshaking takes multiple RTTs, which is un-

acceptable. Second, TCP is in-order and 100% reliable, so

when low-value packets are lost, high value packets may be

blocked waiting for it to be retransmitted. Third, data ages

quickly; if a packet is lost, it is better to get a fresh copy

than wait for retransmission of an old, useless packet.

3.2. Error Recovery Algorithm

The error recovery algorithm addresses both the transfer

of metadata (step 1, 2) and the transfer of data (step 3, 4).

Our system uses a “soft” in-order mechanism (Other algo-

rithms are discussed in Section 6.1) that maximizes fairness,

and minimizes both block latency and global termination

time, limited only by metadata accuracy:

1. Node detects data block loss via hole in the broadcast

stream and sends NACK to scheduler

2. Scheduler replies with best (lowest cost) peer that can

provide the missing block, with ties broken randomly

3. Node directly requests block from that peer

4. Peer replies with that block

5. Periodically, nodes provide metadata (load informa-

tion, cumulative acknowledgements), and perform re-

transmission as required.

Data block loss can be detected immediately via a hole

in the incoming packet stream. Handling loss of control

messages is more complicated, so we focus on minimizing

their loss. One way to do so is via prioritizing packets with

more value (those further along in the algorithm, above) and

we also use a token-bucket mechanism to avoid overloading

links.

Again, we use a packet-based rather than reliable byte-

stream approach because the value of metadata drops

sharply with time; on a timeout we do not want to use stale

information to request a data packet, because that node may

currently be experiencing high load (which could in fact be

the cause of the original loss). Instead, we start over by

contacting the scheduler.

“Soft” in-order refers to two things: the fact that these

control messages may be lost, and that there is no synchro-

nization. Due to loss or latency in the network, recovery

data packets may arrive out-of-order. Without total control

over the network we can provide only probabilistic guar-

antees on this behavior, but with sufficiently low loss these

guarantees are quite strong.

More rigorously, let
N = Number of terrestrial nodes

BS = Block size

Pr(L) = Probability of loss on a satellite link

BWs = Bandwidth of satellite bottleneck

BWt = Bandwidth of terrestrial bottleneck

Tsend = Time that a block is sent (absolute)

Dsat = Max Delay on satellite (uplink↔nodes)

Dter = Max Delay between terrestrial nodes

Ds xmit = Max Delay to send a satellite block (BS/BWs)

Dt xmit = Max Delay to send a terrestrial block (BS/BWt)

Dtick = Delay between clock ticks (timeouts)

Using this notation we can calculate aspects of the system

behavior: maximal block delay, termination time, and so

forth.

With uniform independent losses, the chance that a node

immediately gets any particular packet is simply (1 −
Pr(L))2 since packets may be lost on the uplink or down-

link. This is the probability of “ideal” reception at time

Tideal = Tsend + Ds xmit + Dsat. If only one copy

of the packet is lost, it will be detected in at worst one

timeout, then metadata requested from the server, then the

packet requested from a peer and received at time at most

Tideal+Dtick+4·Dter+Dt xmit. When multiple copies of

a block are lost, at most k = ⌊ (Dtick ∗ BWt)/BS⌋ losses

can be recovered per clock tick by each node that has re-

ceived the block. Then, after another (at most) Dter those

nodes can provide the block to others.

In the worst case, (1) a block is lost on the uplink so only

the source has it and (2) the source is on the terrestrial bot-

tleneck. In this case, after one clock tick (plus network de-

lay) k +1 nodes will have the block, after two ticks approx-

imately k2 have it, and so on. At worst, the last node will

receive the block at time Tideal+(Dtick+Dter)·⌈logkN⌉+
4 · Dter + Dt xmit. This is a desirable bound as it grows

very slowly, but it is subject to a few constraints we discuss

below.

3.3. Algorithm Constraints

The first constraint is that Dtick is large compared to

Dt xmit and Dter. If not, the recovery algorithm breaks

down – to make progress, replies to requests must arrive

before the next timeout and its subsequent re-request.

The second is that the satellite loss rate is “streaming-

recoverable”, that is, the terrestrial links are fast enough

to fix the losses on the satellite links within a few RTTs

of when they occur. This is only true when (1 − (1 −
Pr(L))2) · BWs < BWt or equivalently when Pr(L) <
1−

√

1 − (BWt/BWs). This is why it is the ratio between

satellite and terrestrial speeds, rather than their absolute val-

ues, is most important. In practice, the maximum loss rate

recoverable at streaming rates is slightly lower due primar-

ily to congestion loss on terrestrial links and stale data at the

scheduler.

To make this concrete, when losses are streaming-

recoverable, the maximum latency to receive a block in our

simulations is less than half a second. If the satellite loss is

not streaming-recoverable, then losses will accrue and delay

to replace a lost packet will grow without bound. Eventu-

ally, if the satellite transmission completes and there is no

subsequent transmission, the errors can be recovered at the

speed of the terrestrial network.

3.4. Peer Selection Algorithm

The peer selection algorithm is the core of the recovery

mechanism; it selects from whom a given block should be

recovered. The scheduler selects the best peer as follows:

Select a random peer from

the minimal cost peers from

all peers which have the block.

This is, in effect, a specialized database operation which

can be expressed compactly using relational algebra:

σrandom(σminimal cost(σhas block k({all nodes}))).
The first selection is easy; any reasonable pseudo-

random number generator suffices. Similarly, the third se-

lection is easy when information is centralized or other in-

frastructure exists to maintain it.

The second selection’s difficulty depends on a user’s def-

inition of “cost.” Cost can be any formula, but in these sim-

ulations it is just a measure of load: lower load, lower cost.

We treat the uplink as having infinite load. Initially it has

the only complete copy of the data, and will be the most

loaded node so should be avoided whenever possible.

We have claimed this is an optimal algorithm. It is in

fact a trivial instance of the job scheduling or bin pack-

ing problem where all jobs are the same size (transferring

one block). In such a case, minimizing global cost resolves

to globally balancing cost, which is exactly what this algo-

rithm would do if it had perfectly accurate information on

host load and experienced loss as it occurs. In practice, this

information will be slightly stale at any given time due to

network delay.

The delay in metadata propagation means the scheduler

may err by up to the number of requests to arrive in the time

it takes a packet to traverse the network1. The expected

1up to Dt xmit + 4 ∗Dter : Dter to return metadata, Dter to request

the block, Dt xmit to send it, Dter to traverse the network, and Dter to

difference is only a few blocks (below Dtick/Dt xmit) and

will be self-correcting over time: the percent difference

from optimal falls as the transmission size increases. Our

empirical results show this behavior. Randomization avoids

overloading individual hosts during the update period.

3.5. Scheduling and Inaccurate Data

Note how load status information is used in the core of

the scheduling algorithm (the peer selection step) in Section

3.4. To make good decisions, it is critical that this infor-

mation be both correct and up-to-date. Experimental ver-

sions of our system using only “pessimistic” load informa-

tion performed poorly. This information is more accurate,

but also slightly stale – it is from peers indicating the actual

nodes which did provide each data block, rather than “op-

timistic” information, which is the node the scheduler has

decided should provide each data block. While the current

optimistic scheme may overestimate load on certain nodes,

it avoids overloading any one in the short term.

Although not currently used for scheduling, this pes-

simistic load checking mechanism is still be required to

detect underperforming nodes (which may require admin-

istrator attention) and to avoid undesirable user behavior.

“Leeching” is the most prevalent, in which some users

download but do not upload blocks. To detect this in more

malicious environments with colluding users, the scheduler

needs to cross-reference between the information it has pro-

vided and load information returned.

A naı̈ve checking implementation requires O(n2) space

to store a matrix for 〈 sender, receiver, count〉 tuples, but we

can achieve similar results in less space. One O(n) method

is to use a hash table keyed on node ID, whose value is

incremented each time the scheduler sends an information

packet and decremented each time a load packet is received.

A single large positive value means that node is not provid-

ing data (is leeching), a a single large negative value means

one or more peers are providing false load information, and

a high variance means some nodes are consistently under-

performing or colluding in their reporting (groups can be

seen by displaying a sorted histogram of values). When

these are detected it is trivial to track all references to the

offending node IDs and resolve the undesirable behavior.

3.6. Design Implications

This section explains a couple of the results that fol-

low immediately from the design. First, one benefit of the

concept of maximal streaming-recoverable loss rate is that

when loss is dramatically lower, we can exploit that fact

to send less data over the satellite link. These would then

return an ACK to the scheduler.

be treated as losses, and recovered on the terrestrial net-

work. This makes sense when the cost structure is such that

cost(satellite)> ΣN cost(terrestriali), since for every satel-

lite broadcast we must send N terrestrial blocks. This will

reduce the amount of satellite data to be sent by a few per-

cent when loss is low.

For satellites whose level of redundancy can be adjusted,

we should therefore set the FEC level to the minimum toler-

able by the terrestrial error correction. This value is known

from the analysis in the prior section, and with some knowl-

edge of the satellite error rate we can set the level of redun-

dancy appropriately.

Second, one particularly useful cost function for

scheduling in practice is as follows: a simple (linear)

weighted sum of load, link speed, link expense (i.e. cost in

dollars), and distance between peers. Link speed is required

when links differ significantly in speed; however in such a

case global termination will always be determined by the

slowest node in the network given uniform loss. If losses

were more common on faster nodes, we could still perform

well. Link expense ties cost to real-world price. Distance

allows us to minimize latency; in particular for soft real time

systems we can increase the cost of nodes farther away as

deadlines approach.

This approach can also help engineer the minimum cost

hybrid networks that satisfy user requirements. Specifically,

when we know the parameters to the cost function and the

expected/experienced error rates at different receivers (e.g.,

due to climate or being on the boundary of satellite cover-

age), we can determine the terrestrial bandwidth each node

will require. For example, some nodes might only need

DSL lines, while others may require T-3. However, this

must be globally optimized since we must ensure receivers

have sufficient bandwidth the peer with others– techniques

such as linear programming can be used with the cost func-

tions to determine an appropriate global cost minimum.

4. Evaluation

The system was implemented using the ns-2 network

simulator. Due to the expense of satellite transponders, it is

quite difficult to perform this type of large scale exploratory

work in any other way. This section discusses the design

and validation of the simulations, the loss model we use,

and the performance metrics with which we test the system.

4.1. Simulation Design and Validation

Our implementation includes the algorithms discussed in

Section 3 as well as a fair amount of infrastructure including

code for peer connection handling/message passing, block

tracking, message passing, and so forth2. It comprises about

1600 lines of C++ code adding to the simulator itself, 1000

lines of TCL code to set up and test various configurations,

and some shell programming to assist in analyzing results.

One of the most important and yet unexpected require-

ment of the simulation code is the addition of the ability to

generate randomized noise. This comes into play when se-

lecting among equal cost hosts (randomly select one), when

setting timers (randomly add a few percent jitter), and when

dropping packets while overloaded (randomly select among

low-priority packets). Without it, some hosts are determin-

istically overloaded; with it performance improves dramat-

ically (by a factor of 2 or more in some cases). This is

usually not a problem in physical systems, which by nature

include some nondeterminism.

The correctness of the implementation was validated in

three ways beyond the standard ns validation suite. These

measures make us confident that the simulations accurately

capture the salient features of this problem. First, by com-

paring results to the theoretical predictions from the earlier

analysis. Second, by running against a set of small con-

trived configurations and manually reproducing all output.

Third, by visualizing results in the network animation tool

nam and looking for unexpected behavior. Over the course

of development, we also repeated prior tests to verify con-

sistency in results.

We use ns to perform tests varying different aspects

of the algorithm, error rates, error distribution (correlation

across hosts), link speeds, link costs, network topology,

block size, and transfer sizes. Some of these parameters

turn out to be insignificant, and thus we present only the in-

teresting data. Our results validate the six claims made in

Section 1.

Most tests are performed on a small relatively sim-

ple topology meant to provide the equivalent of micro-

benchmarks. This topology connects access links to a sin-

gle backbone router, creating a terrestrial star topology. The

satellite links are 23Mbps and terrestrial links are 1.5Mbps

T1 links.

Other tests are on a larger, realistic topology using the

AT&T core US network [3] (covering a significant portion

of the core Internet in the United States) and the informa-

tion from the PBS/Planetlab Grand Challenge [5] corre-

lated with station/location information from the PBS web

site [14]. This is a concrete, realistic topology and shows

that our approach provides an alternative solution to many

issues in the grand challenge problem.

2Ironically, the lack of some desired features in the simulator means

that that much of the work to create a “real-world” implementation is com-

plete.

4.2. Loss Modeling

The discussion in Section 3.3 assumed loss in terms

of packets, which we use in our simulations. This is a

terrestrial-centric view where loss is due to congestion.

Loss in a satellite network is usually due to bit errors, which

is somewhat more difficult to model accurately with ns. In

particular, it has the additional problem that loss rate be-

comes a function of block size. In a hybrid network we

must account for both features.

In fact, loss rate, block size, and overheads of packet

headers, connection set-up and tear down (in TCP based

systems), and memory for book-keeping are all related and

represent a particular design point amongst a set of trade-

offs. The larger the block size, the higher the chance of cor-

ruption but the lower the overhead. Terrestrial-only peer-to-

peer systems use blocks of size 64KB to 8MB– which re-

duces book keeping and TCP connection startup/shutdown

overhead, but would be infeasible with high bit error rate.

We use a block size of 1KB, which is particularly conve-

nient because blocks and packets are roughly interchange-

able.

Figure 2 captures a few of these trade-offs. It shows the

“Effective Goodput” as a function of block size; the proba-

bility that a packet will be received uncorrupted multiplied

by the proportion of useful data in the packet. That is, for a

small block the probability it will be received uncorrupted is

high, but most of the data sent is overhead, while for a very

large block the overhead is low but the probability of cor-

ruption is high. This is under the assumption that the block

size of the block-code does not scale with the size of the

data block. When the block length of the code is allowed

to scale with the data block (using concatenated codes for

example) it will be possible to use larger data blocks than

indicated in Figure 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

E
ffe

ct
iv

e
G

oo
dp

ut

Block Size (Bytes)

10^-7 BER
10^-6 BER
10^-5 BER
10^-4 BER

Figure 2. Block Reception and Overhead

With uniform losses the probability of receiving a block

correctly is proportional to (1− loss rate)block size, and we

use a maximal packet size of 1500 bytes for this graph. This

explains the drop at multiples of 1500 as blocks fragment

into multiple packets. This graph shows peaks at the ideal

block size for various loss rates— note how our 1024 byte

block size is ideal for bit error-rates on the order of 10−5.

Lastly, in practice, bit errors tend to occur in non-

uniform bursts. This means fewer packets will actually be

corrupted, and hence this graph slightly underestimates the

ideal packet size. This is a reasonable tradeoff to build a

robust system.

4.3. Performance Metrics

Our algorithm builds in an explicit performance metric

for peer selection (Section 3.4), which is unsurprisingly re-

lated to our overall performance model. We are primarily

interested in:

• global transfer termination time– simulated seconds;

when the last peer receives the last block required

• fairness– Jain’s metric; how evenly distributed cost is

among peers

• streaming latency– percent completion (in aggregate,

total blocks) as a function of time; a measure of how

good the system is at streaming

• raw bandwidth– megabits/second; a simple measure of

system speed

• link utilization– percent of aggregate or individual

links; a simple measure of efficiency.

The only metric worth further discussion is fairness, us-

ing Jain’s measure from [11]. In this case, x is the cost in-

curred on the uplink by counting the number of blocks they

have provided, or equivalently the amount of work done on

behalf of other peers which is of no direct benefit to a given

node:

fairness =
(
∑

xi)
2

(n ·
∑

x2

i
)

We want this value to be close to 1 (completely fair) to both

provide incentive for users to participate and because fair-

ness is a good measure of global performance: spreading

load evenly leads to the fastest termination. We exclude the

initial source node from this calculation, as it will by defi-

nition be transmitting an order of magnitude more data.

Together, our system attempts to maximize broadcast

link utilization, minimize access link utilization, minimize

latency to receive each block, and maximize global aggre-

gate goodput in the system.

5. Results

We present the results for our performance experiments

for the micro-benchmark topology and the AT&T core net-

work topology. First, we demonstrate the system perfor-

mance and efficiency as a function of the satellite link loss.

We also demonstrate the robustness of the protocol under

correlated losses due to loss on the satellite uplink. Sec-

ond, we demonstrate the scalability of the approach both in

terms of file size and number of receiver nodes. Third, we

demonstrate that the approach meets the goal of low latency

by measuring the end-to-end latency for each block. Fourth

we demonstrate the efficiency of the approach in utilizing

the access links, both in the case where the transmission is

streaming-recoverable and when it is not. Finally, we con-

clude the tests with results showing that our metadata up-

date mechanism is very efficient and the protocol as a whole

is very fair.

5.1. Loss Recovery

The first question concerns how much loss we can re-

cover using this system. Figure 3 shows a graph of loss rate

over the satellite links and completion time for a 100MB

broadcast to 10 nodes.

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

C
om

pl
et

io
n

T
im

e
(s

)

Loss (Percent)

100MB Transfer

Figure 3. Loss Rate vs. Completion Time

As we expected there is a sharp knee showing the point at

which streaming recovery is no longer possible. According

to our calculations in Section 3.2 the maximal theoretical

streaming-recoverable loss rate is 6.5%, but we see the ac-

tual maximum at 5%. This is about 75% efficiency, with the

difference primarily due to in-order request of blocks; those

lost on the uplink exist on only one node and require mul-

tiple iterations to propagate throughout the network while

other lost blocks may be available to download.

The above graph shows the aggregate loss when loss

rates are equal on uplink and downlink. That is, a uni-

directional loss rate of k% leads to a loss rate above of

1 − (1 − k/100)2. There is no reason to expect the loss

rates to equal; in fact, uplink losses will tend to be lower as

described above.

Consider Figure 4, which for a fixed loss (10%) varies

the proportion of the loss incurred on the uplink versus the

downlinks. In all cases, the total number of blocks to be re-

covered is the same; all that varies is the correlation of the

errors. This is equivalent to varying the location of the orig-

inal blocks from which to be recovered or the proportion of

losses in the “must globally retransmit” case.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
om

pl
et

io
n

T
im

e
(s

)

Proportion of Loss on Uplink (Percent)

100MB Transfer, 10% loss

Figure 4. Effect of Uplink/Downlink Loss

As more losses occur on the uplink (loss correlation

among peers grows), more must be globally rebroadcast

on the terrestrial network. This leads to overloading of the

source node, and requires multiple iterations of the peer-to-

peer recovery mechanism to get the block to all nodes.

Put another way, the set of losses which occur on the up-

link must be rebroadcast on the terrestrial network, as in the

PlanetLab grand challenge. The difference in performance

between none and all of the loss occurring on the uplink

is the improvement in performance by exploiting the hybrid

network. These differences would be magnified ten-fold us-

ing only the terrestrial network (10% satellite loss → 100%

satellite loss).

The deeper cause of this performance difference is more

subtle. With a uniform loss distribution on the downlink,

as the number of nodes grows the probability that no node

has a given block (the probability that it must be retrieved

from the source) grows proportional to loss raten. On the

other hand, the number of losses and the capacity to recover

losses grows proportional to n. This means that as the num-

ber of nodes grows, we have an excellent chance of being

able to recover using a peer-to-peer mechanism. Thus we

should minimize uplink losses if at all possible for good

performance. In the limit (no uplink losses), the best ap-

proach to recover a lost block is to (1) randomly select a

peer (2) weight the selection away from local nodes (since

losses will be locally correlated due to weather), and (3)

add a simple load-balancing mechanism to ensure global

fairness.

5.2. Scalability

The second question concerns scalability; in terms of file

sizes and in terms of system size (number of nodes). Ideally,

completion time should be linear in the file size. Similarly,

as the number of nodes grows the completion time should

stay constant (below the streaming point) and grow slowly

above it (as nodes become overloaded).

To test the former, we broadcast files of size 1MB to 1GB

under various amounts of loss (above and below the knee in

the prior graph), and present the results normalized to the

percent of ideal time (for no loss on the satellite link).

 100

 150

 200

 250

 300

 350

 400

 1e+07 1e+08 1e+09

C
om

pl
et

io
n

T
im

e
(P

er
ce

nt
 o

f I
de

al
)

File Size (B)

12% loss
8% loss
4% loss

Figure 5. Completion Time vs. File Size

For 1-8MB transfers network latency and other overhead

dominates, since the ideal is on the order of 1-2 seconds.

Above that size, overhead is insignificant. For low loss we

can effectively meet the ideal transfer time and for higher

loss we differ by a constant factor.

Larger files were not simulated due to time constraints;

even were the system to not scale beyond 1GB such files

could be transferred in 1GB chunks to give this desirable

performance behavior. Similarly, since results are linear

above 8MB, use of 100MB transfers for other results we

present is a reasonable choice.

To test scalability in terms of nodes, we test a 100MB

broadcast to varied number of nodes. Figure 6 shows com-

pletion time for increasing numbers of nodes under the same

loss conditions as the prior figure.

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100

C
om

pl
et

io
n

T
im

e
(s

)

Number of Nodes

12% loss
8% loss
4% loss

Figure 6. Completion Time vs Node Count

The first thing to note is that the curves grow very slowly.

The streaming-recoverable curve’s increase is negligible.

The others grow approximately with the log of the num-

ber of nodes, as expected– this is due to block propagation

requiring an additional iteration with each doubling of the

number of nodes.

There is a small drop in the curve around 8 nodes. This

is the point at which peer nodes begin to be useful; for 2-4

nodes the peer-to-peer transfer is ineffective as there are too

few peers to adequately share blocks.

As this graph shows, the system is insensitive to the

number of nodes, so our use of 10 nodes in the results we

present is a reasonable choice. Larger numbers of nodes

were not simulated due to time constraints. We reiterate that

it was never our goal in this proof-of-concept to scale be-

yond the order of hundreds of nodes, and within this range

we perform quite well. For larger numbers of nodes, one

would have to move to a slightly different design; giving up

slightly on performance to gain the extra scalability.

5.3. IntraTransfer Performance

The next logical question is how the system is perform-

ing within a transfer; how the different parts of the transfer

progress and whether we are meeting our latency goals.

Figure 7 shows the blocks received via the satellite and

terrestrial networks over time, for 10 nodes under high-loss

(10%) conditions. Data is aggregated over all nodes, and

thus the graph is very smooth.

The ideal curve transfers all data over the satellite link

with no loss. Our actual performance is effectively a lin-

ear combination of the degraded satellite signal and terres-

trial recovery transmissions. For low-loss cases, both ter-

minate at same time. For higher loss cases such as this, we

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

B
lo

ck
s

R
ec

ei
ve

d
(p

er
ce

nt
)

Time (s)

Satellite/No loss
Aggregate Sat/Terr

Satellite
Terrestrial

Figure 7. Initial Transfer and Recovery Phases

spend time after the satellite transmission has completed to

recover the errors.

This graph shows that while the system is able to recover

higher losses at low cost, the satellite link may be underuti-

lized. In such a case we need to increase the forward error

correction slightly to bring the net satellite errors down; oth-

erwise the per-block latency grows unacceptably (up to 32s

for the last block lost in this test).

The normal latency for blocks is captured in Figure 8,

which shows the difference from the expected time of ar-

rival for the blocks in a 100MB broadcast to 10 hosts with

2% satellite loss.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20000 40000 60000 80000 100000

D
el

ay
 A

fte
r

E
xp

ec
te

d
(s

)

Block Number

Block Delay

Figure 8. Block Delay Due to Loss

The vast majority of the blocks (98%) are received when

expected from the satellite. The 2% lost are recovered via

the peer-to-peer mechanisms, with latency up to 450ms but

on average about 175ms. Each doubling of the number of

hosts increases the worst-case latency we observe by ap-

proximately 50ms. The total latency incurred is of the same

order as the baseline latency to reach and return to a geosyn-

chronous satellite.

5.4. Network Efficiency

To show system efficiency we must have high access

link utilization over the duration of the transmission (the

core network is lightly loaded relative to its total capacity).

Figure 9 shows the percent of access link capacity utilized

by data; that is, not including packets corrupted, metadata,

or packet header overhead on a 100MB transfer with 10%

satellite packet loss.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

U
til

iz
at

io
n

(P
er

ce
nt

)

Time (s)

Satellite Links
Terrestrial Links

Figure 9. Percent Utilization of Access Links

with 10% Satellite Loss

Satellite utilization is very high. Nearly 100% is initially

used to transmit data packets, but we have 10% loss for this

test. Terrestrial utilization is also high, between 70-80%.

About 25% of this is idle due to in-order requests of blocks

which can not be immediately satisfied, the remainder for

control and metadata packets. Also note how utilization is

more random during the satellite transmission phase; this is

because losses on the satellite links create high but transient

demand for some blocks, while afterward system state is

known and behavior is more uniform.

Note that the data to be sent by each node, and hence the

utilization of links, is controlled by the token-bucket mech-

anism discussed in section 3.2. Currently, it allows 100%

of the link to be used for recovery, but the protocol is user-

tunable. Users can trivially limit this to any desired propor-

tion to avoid competing with other higher priority traffic.

This effect on performance is exactly as though the node

had a slower link.

How do results on this small topology compare with the

larger AT&T (Internet) configuration? Figure 10 gives link

utilization for a larger 1GB transfer and 2% loss rate on

this network, parameters which represent a realistic sce-

nario (which is streaming-recoverable).

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

U
til

iz
at

io
n

(P
er

ce
nt

)

Time (s)

Satellite Links
Terrestrial Links

Figure 10. Percent Utilization of AT&T Access
Links with 2% Satellite Loss

The first thing to notice is that since the losses are

streaming-recoverable there is no phase where the satellite

is idle. both networks are utilized to the end of the transfer.

Second, the losses only require about 30% of the data ca-

pacity of the terrestrial network– this is in fact what makes

the transfer streaming-recoverable. Third, the results are

not qualitatively different than those on the simpler config-

urations. This has held true for all our tests. The primary

difference is that the backbone structure creates a higher

variation in the data; visible here as a 30Mb±10Mb terres-

trial utilization, compared to the prior 75Mb±5Mb terres-

trial utilization.

In general, demand for access link bandwidth is directly

proportional to satellite loss, and satellite utilization (good-

put) is inversely proportional to loss. The 10% loss rate for

Figure 9 implies high demand for recovery bandwidth and

that figure shows efficient use of resources to satisfy the de-

mand. The lower loss rate of 2% in Figure 10 correspond-

ingly shows higher satellite utilization and lower access link

utilization. The point at which transient access link utiliza-

tion reaches 100% is the point at which streaming recover-

ability becomes impossible.

5.5. Metadata Update Efficiency

There are two reasons a node may be unable to satisfy a

data request. First is load limitation- if it is heavily loaded

and has no tokens available (as in the prior section). Second

is lack of up-to-date metadata information. Metadata must

be fresh for effective transfer scheduling— the Scheduler

needs to know which blocks have been lost at which nodes.

Figure 11 shows the unacknowledged blocks (blocks

whose status is known to the receivers but not yet to the

Scheduler) as a function of time. Recall that blocks are

implicitly marked ‘acknowledged’ at the Scheduler when

a NACK comes in for a lost block after them, or when

a cumulative acknowledgment arrives (one or the other is

sent on every timeout). This figure shows how efficient the

metadata update mechanism is, and hence the freshness of

Scheduler data.

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

S
ta

le
 p

ac
ke

ts
/H

os
t

Time (s)

Packets Unacknowledged

Figure 11. Number of Unacknowledged

Blocks

This graph shows that the Scheduler information lags

about 180 blocks behind actual state of node receptions.

This resolves to about 60 milliseconds of simulated time,

of which block timeouts make up 10-20ms, network latency

about 30ms, and the remainder is due to lost metadata pack-

ets and queuing delay. We conclude that our metadata up-

date mechanism is efficient; with most of the delay due to

unavoidable physical constraints.

5.6. Fairness

Finally, fairness under Jain’s measure has been very high

in all cases. For the simple topologies and blocks sent it

was uniformly over 0.999, meaning all nodes sent out al-

most the same number of blocks. Similarly, for recovery

blocks received it was over 0.999, in this case due to the

global termination constraints and uniform loss behavior.

Under nonuniform loss, by definition some nodes will un-

fairly load the system to recover their data, but the blocks

sent will still be evenly allocated (i.e. no tit-for-tat behav-

ior).

The more realistic AT&T topology had fairness values

consistently around 0.987, also very high but somewhat

lower than the simpler topology. The difference was again

due to the structure in the core network; some nodes were

closer to the Scheduler. This implies the Scheduler data

was consistently more fresh for those nodes, and they would

tend to have slightly higher load.

In sum, these results coincide with our prior analysis and

support our claims as to the system’s performance under a

variety of conditions.

6. Discussion and Related Work

There is a large body of work on content distribution,

multicast tree construction, data distribution over unreliable

transports, and peer-to-peer file transfer. It falls into three

categories: terrestrial only, based on a set of point-to-point

transfers, satellite only, based on a global broadcast mecha-

nism, and other hybrid solutions based on use of both satel-

lite and terrestrial systems.

Content distribution networks such as Akamai [2] fall

into the first category. They have many of the same goals

as this work, but focus on putting smarts “in the network”

and the use of careful engineering to get caches close to

the expected user base. For example: in our tests, if one

places the source node on a very fast link there is no need

for peer-to-peer transfers as the source can provide all error-

correction information.

Multicast trees or meshes (such as Bullet [12]) and cur-

rent P2P solutions (such as BitTorrent [9]) also fit here. In

the prior case they solve the problem of scalable one-to-

many transfer, but induce problems such as ACK implo-

sion, node churn, agreement, etc. which we avoid entirely.

The latter, are pull-based mechanisms for relatively small

files (<4GB) with high delay tolerance, due to the use of

randomization, rarest-first, erasure coding, and other mech-

anisms. Neither can exploit hybrid networks, and assume

little or no trust between peers. The algorithms used also

differ; see Section 6.1.

Commercial media distribution networks (ClearChannel,

CNN, etc) fall into the second category. They are propri-

etary systems which involve custom hardware and software

at all levels, specialized and dedicated to whatever they

transmit (e.g. AM or FM radio signals, PAL or NTSC TV

signals, HDTV, etc).

Much work in this category has centered around mech-

anisms for error detection and correction, focusing on FEC

and TCP’s well-known performance problems with loss be-

ing treated as congestion. Similarly, error detection after-

the-fact is trivial via checksums, CRCs, or stronger crypto-

graphic hashes. Again, these approaches can not take ad-

vantage of a side channel (the terrestrial network) for error

recovery information.

The third category has one closely related project; a

peer-based recovery mechanism for satellite transmission

by Awal et al [4]. Differences from our work include an

assumption of no terrestrial link to the source; meaning

there is no way to communicate with the original source

and hence no guarantee that nodes will receive the complete

file. Also, error recovery is only done when the satellite

broadcast is completed, thus, no concept of block latency

or streaming-recoverability. Finally, they do not address the

optimizations of link utilization or system cost as we have.

6.1. Other PeertoPeer Recovery Algorithms

In contrast to the peer selection algorithm discussed in

Section 3.4, most other systems use a thresholded random

rarest first algorithm to select the peer and block to down-

load. That is, for blocks that are “rare enough” (fewer

known to be in the network than some arbitrary threshold)

they are requested from a random peer which has the block.

Various heuristics are used to weight the random selection

toward faster/more local hosts. Above the threshold, blocks

are selected by other mechanisms, either in-order or ran-

domly from the fastest hosts available.

Abstractly, such approaches select a block first based on

estimations of block distribution in the network and then

a host based on their expected bandwidth. Our approach

selects a block first based on the next block required in the

stream, and then a host based on globally balanced cost.

The difference is in the tradeoffs being made between

latency, bandwidth reliability, and transfer locality. Rarest

block first works well for latency tolerant systems with large

number of hosts arriving/departing, but poorly for stable,

latency intolerant systems. Ours works well in systems

with relatively stable networks and good short-term behav-

ior (implying small blocks) but poorly in unreliable net-

works with large churn.

Similarly, some systems use erasure codes [6, 13] and

special-case end-of-file behavior to avoid problems with

block scheduling and “stragglers.” In the prior case, the

problem is again latency as it may take reception of the

entire file to decode the first block. We also use slightly

less bandwidth; we receive no redundant data but send more

metadata. The second case is generally a problem only with

large numbers of hosts. In both cases, it is hard to capture

the true costs in simulation: CPU utilization, disk thrashing,

and so forth.

7. Summary and Future Work

We have presented a simple, flexible, robust, fair, and

minimal cost mechanism for low-latency data transmission

over hybrid satellite/terrestrial networks. Analysis and sim-

ulations have shown excellent performance in both specially

contrived and realistic environments under a variety of con-

ditions. One can easily include arbitrary link cost models

and still achieve globally maximal performance.

The performance of this approach is sensitive to the ratio

between satellite and terrestrial link speeds (fewer losses

can be recovered at speed when the ratio is high) and re-

quires good connectivity to the scheduler node.

On the other hand, performance is insensitive to (is ro-

bust under changes in) network topology, absolute link

speeds, link latency, and error correlation. It is particularly

useful when satellite errors are low; it requires no compli-

cated infrastructure or large memory footprint (e.g. multi-

cast trees, erasure coding), and recovers the original data

stream in almost real time.

Future directions for this work include implementation

of a fully distributed scheduler to more fully explore the

tradeoffs we have discussed here, integration of an auto-

matic congestion control mechanism based on feedback

rather than the current token bucket system, and if possible

experiments on real-world hybrid networks.

References

[1] PlanetLab Consortium. http://www.planet-lab.org/.

[2] Akamai Technologies Inc. Akamai content distribution sys-

tem. http://www.akamai.com/.

[3] AT&T. Global IP network. http://ipnetwork.bgtmo.ip.att.-

net/pws/index.html.

[4] M. Awal, Y. Tsuchimoto, and K. Kanchanasut. An approach

of peer-based packet recovery using edbit for unidirectional

satellite environment. In Proceedings of the Workshop on

Asia-Pacific Networking Technology, Jan 2005.

[5] M. Bowman, J. Sedayao, and R. McGeer. Bake-

offs. http://www.planet-lab.org/Talks/2005-05-01/-

Bakeoffs final.ppt, Sep 2005.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital

fountain approach to reliable distribution of bulk data. In

Proceedings of ACM SIGCOMM, pages 56–67, 1998.

[7] J. W. Byers, M. Luby, and M. Mitzenmacher. Accessing

multiple mirror sites in parallel: Using tornado codes to

speed up downloads. In Proceedings of INFOCOM, pages

275–283. IEEE, March 1999.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.

One ring to rule them all: Service discovery and binding in

structured peer-to-peer overlay networks. In Proceedings of

the SIGOPS European Workshop, Sep 2002.

[9] B. Cohen. The BitTorrent file sharing protocol.

http://bittorrent.com/.

[10] S. Floyd. Measurement studies of end-to-

end congestion control in the internet, 2002.

http://www.icir.org/floyd/ccmeasure.html.

[11] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of

fairness and discrimination for resource allocation in shared

systems. Technical Report TR-301, Digital Equipment Cor-

poration, Littleton, MA, 1984.

[12] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:

High bandwidth data dissemination using an overlay mesh.

In Proceedings of ACM SOSP, 2003.

[13] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A.

Spielman, and V. Stemann. Practical loss-resilient codes. In

Proceedings of the ACM Symposium on Theory of Comput-

ing, pages 150–159, 1997.

[14] Public Broadcasting Service (PBS). PBS — Station Finder.

http://www.pbs.org/stationfinder/index.html.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proceedings of ACM SIGCOMM

2001, pages 149–160, Aug 2001.

