
On Routing in Distributed Hash Tables ∗

Fabius Klemm, Sarunas Girdzijauskas, Jean-Yves Le Boudec, Karl Aberer
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
There have been many proposals for constructing rout-

ing tables for Distributed Hash Tables (DHT). They can
be classified into two groups: A) those that assume that
the peers are uniformly randomly distributed in the iden-
tifier space, and B) those that allow order-preserving
hash functions that lead to a skewed peer distribution
in the identifier space.

Good solutions for group A have been known for many
years. However, DHTs in group A are limited to use ran-
domized hashing and therefore, queries over whole iden-
tifier ranges thus do not scale. Group B can handle such
queries easily. However, it is more difficult to connect
the peers such that the resulting topology provides effi-
cient routing, small routing tables, and balanced routing
load.

We present an elegant new solution to construct an
efficient DHT for group B. Our main idea is to decouple
the identifier space from the routing topology. In conse-
quence, our DHT allows arbitrarily skewed peer distri-
butions in the identifier space and does not require the
overhead of sampling. Furthermore, the table construc-
tion is cheap and does not require active replacement of
lost routing entries.

To evaluate the performance of routing cost and ta-
ble construction under high churn, we built an efficient
simulator. Using the right data structures, we can easily
process the state of over one million peers in RAM.

1 Introduction

Distributed Hash Tables (DHTs) provide the means
to map identifiers (ids) from a common space onto peers
in an overlay network. Many DHTs have been proposed
in the last years, e.g. [1, 4, 15, 16, 18, 19, 21]. Most of
these DHTs belong to group A, i.e. they assume that the
peers are uniformly randomly distributed in the id space

∗The work presented in this paper was carried out in the frame-
work of the EPFL Center for Global Computing and supported by
the Swiss National Funding Agency OFES as part of the European
project Evergrow No 001935.

of the DHT. Each peer selects typically O(log n) routing
entries to peers with exponentially increasing distance
in the id space (cf. figure 1). The resulting network has
small-world characteristics [8, 12], which guarantees an
expected routing cost of O(log n) between any two peers
in the network.

Figure 1: Each peer fills its routing table with peers with
exponentially increasing distance in the id space.

1.1 Querying Ranges

Many applications require searching for approximate
attribute values or for attribute values in a certain range.
A DHT that requires uniformly distributed peers in the
id space (group A) has to use randomized hashing to
achieve load balancing. Randomized hashing, however,
has the disadvantage that range queries become very ex-
pensive: imagine a range query over 1 million consecu-
tive small id-value pairs in the DHT. With randomized
hashing, the searched range is scattered over potentially
hundreds of thousands of peers in the network.

To efficiently support range queries, it is necessary
to use an order-preserving hash function. In this case,
the range of searched ids will be stored together on a
few peers (if not a single). Order-preserving hash func-
tions, however, can lead to a highly skewed distribution
of load in the id space. Figure 2, contains the order-
preserving hashing of 250,000 unique popular queries
logged by AOL1. To achieve query load balancing in such
a scenario, the distribution of peers in the id space will
also be highly skewed, following the distribution of the
queries. We classify DHTs that allow non-uniform dis-
tributions of peers in the id space in group B.

With our simulator, which we explain in more detail
in sections 4 and 5, we show in figure 3 the routing cost

1The peak between 0.8 and 0.9 is caused by numerous queries
starting with ’www’.

1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: Order-preserving hashing of 250,000 unique popular
queries into the [0; 1[id space.

of a DHT of group A for uniform and skewed peer dis-
tributions. When the peer distribution is uniform, the
routing cost scales O(log n) as expected. However, when
the peer distribution is highly skewed to achieve load
balancing, e.g. following the query distribution in figure
2, the routing cost (of a DHT in group A) is no longer
O(log n), as the peers in densely populated areas do not
choose enough links within a dense area.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

of

 h
op

s

of peers

Average Routing Cost With Growing Number of Peers

skewed peer distribution
uniform peer distribution

Figure 3: The routing cost for a DHT of group A (i.e. a DHT
that assumes a uniform peer distribution) only scales when
the peer distribution is indeed uniform.

1.2 Our Contribution

After reviewing related work in section 2, we propose
an algorithm to construct a DHT that can efficiently han-
dle arbitrarily skewed id spaces (section 3). Our main
idea is to separate the id space from the routing topol-
ogy. The construction cost of routing tables is cheap
and does not rely on sampling as it uses local knowl-
edge about the distribution provided by peers that are
already in the DHT. Furthermore, we developed a sim-
ulator, which allows us to measure the performance of
our algorithm when building a DHT with over one mil-
lion peers. We present the design of our simulator in
section 4. Our experimental results are presented in sec-

tion 5: we show that our algorithm results in efficient
routing and does not require any active maintenance of
routing tables (except of the ring) under churn. We end
our paper with a discussion in section 6 and conclusions
in section 7.

2 Related Work

DHTs of group A, such as Chord [21] or Pastry [19],
rely on uniform hashing to achieve load balancing and
guarantee low search cost. However, such systems sup-
port only exact-match queries.

DHTs of group B allow order-preserving hashing,
which maintains the semantic relationship among ids.
Range queries are thus very efficient. Some represen-
tatives are CAN [18], Mercury [6], P-Grid [1], skip
graphs [4, 10] and its derivatives [3, 7]. However, these
solutions have several weaknesses: in CAN, for exam-
ple, for an arbitrary partitioning of the id space (called
zones), the search efficiency in terms of overlay hops can-
not be guaranteed. In an extremely skewed id space, P-
Grid has highly imbalanced routing table sizes. The sam-
pling algorithm used by Mercury to determine long-range
links does not scale for complex distributions, which ac-
tually occur in practice. Although Skip graphs share
certain similarities with our approach, the biggest differ-
ence is that each node has to join and maintain exactly
O(log2 n) level rings. In contrast, our approach is more
flexible as each peer can choose the size of its routing
table according to its capacity. Furthermore, we do not
require any active maintenance of routing entries, except
for the direct ring neighbors, which anyway have to be
maintained to achieve a correct id space partitioning.

3 DHT Construction

In this section we describe our new algorithm for effi-
cient construction of routing tables for skewed id spaces.
When a peer joins the network, it has to learn about the
distribution in the id space to build an efficient routing
table. The main idea of our construction algorithm is
that the new peer makes use of local views of the distri-
bution provided by peers that are already in the DHT.

3.1 Identifier Space

We use a one-dimensional id space with range [0; 1[.
Peers are arranged on a ring (see figure 4). Each peer
has an identifier id ∈ [0; 1[. A peer is responsible for the
data that hashes into the range between itself and the
peer on its right-hand side (i.e. turning clockwise) on
the ring.

We use an order-preserving hash function to map data
into the id space. The DHT is load-balanced, e.g. using
strategies proposed in [7, 9, 11, 17]. As a result, the

distribution of peers in the id space can be highly skewed,
i.e. the density of the peer population on the ring can
vary a lot.

Each peer has a routing table with entries to other
peers in the network. Links are bidirectional, as main-
tenance and transport protocols (e.g. TCP) are usually
symmetric. Therefore, when peer A adds peer B to its
routing table, B also adds A.

Routing is greedy: a peer forwards a message for
which it is not responsible to the routing entry that is
closest to the searched id. Note that a message that is
routed through the DHT can on each hop travel in ei-
ther clockwise or counter-clockwise direction as long as
the link brings it closer to its destination.

We use a standard protocol (such as [2, 13, 14, 20])
to maintain a consistent id space partitioning, i.e. each
peer knows its direct left and right neighbor on the ring.

+5

+2

+6

+2

+1
+1

0

0.25

0.5

0.75

+2

B C

A

D

Figure 4: With each (bidirectional) link, a peer associates the
progress in the id space as well as in the hop space.

3.2 Hop Space

We now explain the main idea of our algorithm: in
addition to the id space, there is a hop space. It serves
only for constructing routing tables and not for routing
messages (which is done only in the id space). The hop
space represents the distance of peers in terms of direct
ring neighbor hops. In figure 4, A is a direct ring neigh-
bor of B, which is a direct ring neighbor of C, and so on.
The figure shows some routing entries for peer B: with
each entry, it maintains an estimate of how far the link
reaches in the hop space, e.g. +1, +2, +5 direct ring
neighbor hops. These hop counts are estimates and can
become imprecise when peers join and leave. Neverthe-
less, these values are never actively updated. We shall
see that these, potentially imprecise, hop count estimates
are very useful in helping joining peers to efficiently con-
struct good routing tables.

3.3 Building Routing Tables

We now explain how peers join the DHT: a new peer
first chooses a unique identifier as explained in section
3.1. It contacts any peer in the DHT (e.g. a bootstrap
peer, which is known from an external mechanism) and
starts a search for its own id. The new peer joins the
network by connecting to the peer that is currently re-
sponsible for its own id and its direct right-hand neigh-
bor.

3.3.1 Size of Routing Tables

Having joined the ring, a new peer has to choose the
correct routing entries to guarantee low routing cost in
the DHT. How many routing entries a peer should choose
depends on the current size of the network, the amount of
churn, or a peer’s capacity. A practical approach would
be to set the table size to be large enough to allow for
efficient routing in a DHT with a certain expected size,
e.g. 30 entries are sufficient for network to up to 1 billion
peers.

3.3.2 Choosing Where to Link

Once a peer has decided on the number of routing entries,
it has to find the right links to guarantee efficient routing
in the DHT. It therefore calculates how far each routing
entry should reach in the hop space.

Many P2P overlays (e.g. Chord [21] or Kademlia [16])
use a strategy of halving the id space with each hop, i.e.
the number of routing entries r is exactly log2 n. With
the number of peers n = 2r, the distance in the hop
space of an entry di is then:

di = 2i−1, i = 1...r

For n = 1024 and r = 10 we get: d1 = 1, d2 = 2,
d3 = 4, d4 = 8, d5 = 16... d10 = 512.

In our DHT, we allow a peer to choose any table size
r ≥ log2 n. A peer with high capacity can thus choose
to have a larger routing table. We now explain how we
select the routing entries in this case.

In the following proofs, we deal with the skewed id
space I by stretching it to the uniform space I ′ as in
[8]. The uniform space I ′ is equivalent to the hop space
Ihop: i.e. I ′ ⇒ Ihop, i.e. ∀u, v : dIhop

(u, v) = round(n ·
dI′(u, v)) and idhop(u) = round(n·id′(u)). Therefore, we
can make all the necessary proofs in the uniform space
I ′.

According to the continuous Kleinberg’s approach [5,
8, 15] for the construction of a routing-efficient network
in the 1-dimensional space, each peer has to choose its
direct ring neighbors and several long-range neighbors.
A peer u chooses its neighbors v with the following prob-
ability density function (pdf) g(x):

g(x) =
∫ 1

1
n

1
x ln n

dx (1)

where x = dI′(u, v). It has been proven in [8, 15] that
in such a network a greedy routing algorithm requires on
expectation only a polylogarithmic number of hops.

If we partition the identifier space into loga n par-
titions A1, A2, ..Aloga n, such that the distance between
the peer u and any other peer v in Ai is bounded by
ai−loga n−1 ≤ d(u, v) < ai−loga n, the peer v will have
equal probability to be chosen from any of the resulting
partitions. The probability that v will be chosen by u in
some interval Ai is exactly 1

loga n and does not depend
on i:

P (v ∈ Ai) =
∫ ai−loga n

ai−loga n−1

1
x ln n

dx =
1

loga n
(2)

Choosing r = loga n links on the boundaries between
neighboring logarithmic partitions, i.e. at ai−loga n−1 po-
sitions in the identifier space, results in a routing-efficient
network (proof in section 3.3.3), given r ≥ log2 n.

With a = n
1
r , we can calculate the distances di in the

hop space, i = 1, 2, ...r, for which a peer has to create
links:

di = ai−loga n−1 · n = ai−1 = n1/r·(i−1) = n(i−1)/r

As the distances in the hop space are integers, we get:

di = round

[
n

(
i−1
r

)]
(3)

All links are bidirectional. Each peer therefore
chooses half its entries to its left and half to its right
side on the ring.

Example: For a network with n = 10, 000 peers, and
r = 14 routing entries, a peer chooses 7 entries each
to its left and right side with distances calculated for a
network size n/2:

di = round

[
5, 000

(
i−1
7

)]
, i = 1...7 (4)

We get: d1 = 1, d2 = 3, d3 = 11, d4 = 38, d5 =
130, d6 = 439, and d7 = 1.481. The joining peer thus
establishes 14 new connections (7 to its right and 7 to
its left) using these distances in the hop space.

3.3.3 Expected Routing Cost

The expected number of hops is 0.5 · logb n, where b =

n

(
1
r

)

n

(
1
r

)
− 1

assuming table sizes of at least log2 n.

For the example with n = 10, 000 and r = 14, the
expected routing cost is 6.31 hops.

Proof We sketch the proof assuming that every peer in
the network has r = loga n links assigned in the above de-
scribed manner. Let us assume that a message is issued
at a peer u with destination peer v. The message greed-
ily approaches the target v in logarithmically decreasing
steps. Let us assume that there can be at most logb n
steps to reach the target, where at each step i the mes-
sage covers a logarithmic partition Bi of size b−i+1−b−i.
In the worst case, the message has to take the longest
link, i.e. it decreases the distance to the destination by
a−1, which is equal to the largest partition B1. We have:

a−1 = 1− b−1 ⇔
b = a

a−1

As a = n
1
r , we get

b =
n

(
1
r

)

n

(
1
r

)
− 1

.

The expected routing cost c is half the maximum cost:

c = 0.5 · logb n

3.3.4 Finding Entries

When a new peer joins the DHT, it first connects to its
immediate right- and left-hand neighbors on the ring. It
then has to find the entries for its routing table. The new
peer does not have any knowledge of the distribution of
peers in the id space. However, using the hop space, it
can efficiently fill its routing table with the right entries.

As links are bidirectional, a peer chooses half of the
entries towards its right-hand side and half towards its
left-hand side. We use eq. 3, which returns distances
d1, d2, etc. in the hop space. To establish a connection,
the peer sends a connect request for a certain distance
di, which is routed in the hop space. Routing in the
hop space is completely oblivious of the id space and its
distribution. Consider again figure 4: if peer B needs a
left-hand side +7 link, it would send a connect request
via its +5 link. The peer that receives the request then
resolves the remaining 2 hops. The destination of the
request returns a reply to the requester (i.e. peer B).

3.3.5 Adding a new Entry

When a new connection is established, both peers add
each other to their routing tables with the according hop
count. Note that the hop count for the new link might be
imprecise when the request has traveled along links with
imprecise hop count values. We shall see, however, that
the resulting topology still has very low routing cost.

When a peer receives a connect request, it is very
likely that it already has a link with the same hop count
value (unless the corresponding entry was deleted due to
the departure of a peer). In this case, the peer marks
the older entry as ”outdated” and uses always the newer
hop count when routing connect requests. However, the
”outdated” link is still used when routing messages in the
id space. This way, the hop count values are passively
updated each time a joining peer opens a connection.

Furthermore, to limit the maximum table size, a peer
can reject a connect request. In this case, the joining
peer does not take any further measures to find a re-
placement.

3.4 Estimating the DHT Size

The hop space can also be used to estimate the cur-
rent size of the DHT in an easy and efficient manner: a
peer that wants to estimate the size first chooses a ran-
dom meeting point idm. It then sends two size requests
to idm, one is routed in clockwise direction and one in
counter-clockwise direction. Routing in only one direc-
tion works as follows: each peer forwards only via links in
the given direction and without jumping over the target.
On each hop, the hop count value of the link is added to
a counter in the size message. The peer that is responsi-
ble for idm returns the two received size messages to the
originator. The sum of the counters in the two messages
is the current size estimate. As a side effect, the peer
responsible for idm also knows the size estimate. The
routing cost of the two size requests is each O(log n).
The precision of the size estimate depends on the preci-
sion of the hop count values. In section 5, we study the
effect of churn on DHT size estimation.

Similarly, it is possible to estimate the number of
peers that fall into a given range in the id space.

3.5 Range Multicast

A range multicast sends a message to all peers that
fall into a given id range. When a peer has to process
a range multicast, it first cuts out the range for which
itself is responsible. The remaining one or two ranges
are processed as follows: the peer takes all routing en-
tries that fall into the range plus the entry that is closest
to the start of the range. It then sends a replica of the
multicast message with the according partition of the

remaining range to each selected entry. With O(log n)
routing entries chosen as described above, the time for
the multicast scales with O(log nr), where nr is the num-
ber of peers that fall into the range.

3.6 Leaving the DHT

When a peer leaves, all routing entries to it by other
peers are deleted (links are bidirectional, e.g. using
TCP). There is no explicit table maintenance to replace
lost entries. Holes are passively filled again when peers
join the network and establish new connections.

4 Simulation

To analyze the performance of our routing table con-
struction algorithm, we created a simulator (in Java 1.6),
which we describe in this section. In the current ver-
sion, we are able to keep the state of slightly more than
1,000,000 peers in RAM on a machine with 2 GB of
RAM. Efficiently processing such a large number of peer
state requires the operations on the state to be of either
constant or of O(log n) cost. We now explain the data
structures that we use in the simulator to organize and
modify the state of the DHT.

Selecting a random peer: We keep an array of ref-
erences to each peer object, which allows us to select
a random peer with constant cost. Selecting a random
peer is necessary when sampling the routing table size
and routing cost. Joining peers, i.e. adding references
to the array, has amortized constant cost. Leaving peers
requires a randomly selected reference to be deleted from
the array, which has O(n) cost in the simulation. How-
ever, the constant of array operations is fairly low.

Finding a peer to join: A joining peer selects its
position on the ring according to a certain distribution
(e.g. the query distribution of figure 2). Once the peer
has chosen an id, we need a reference to the peer that
is currently responsible for this id. We find this peer
by performing a lookup operation on the DHT, which
costs on average O(log n). The lookup is guaranteed to
succeed as each peer has at least one neighbor (its direct
ring neighbor) that brings the lookup request closer to
the searched id. We start the lookup at a random peer.

Maintaining the Ring: A peer is added by joining
the ring between the peer that is currently responsible for
its id and its right-hand neighbor. This cost is constant
as it requires only updating the neighbor references of
the three peers. The same holds for a leave operation.

Constructing a routing table: Each peer has
O(log n) routing entries. Each entry first requires to find
a reference to the corresponding peer, which, using the
hop space as explained in section 3, has cost O(log n).

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 0 20 40 60 80 100 120 140 160 180

#
 o

f
p

e
e

rs

time

Number of Peers over Time

(a) 20% joining and 5% leaving peers per
time unit until we reach 1 million peers.
Then 10% joining and 10% leaving.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

#
 o

f
h

o
p

s

time

Average Measured Routing Cost and Theoretical Cost

measured
theoretic minimum

(b) The average routing cost measured in
the DHT is slightly higher than the theo-
retic cost (based on the sampled avg. table
size and assuming perfect wiring).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

#
 o

f
e

n
tr

ie
s

time

Average and maximum Table Size over Time

max. table size
avg. table size

(c) The number of routing entries per peer
drops slightly when the DHT stops grow-
ing. The maximum table size is limited to
40 entries.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
 o

f
p

e
e

rs

space

Distribution of Peers on the Ring

(d) Distribution of peers in the ID space
following the order-preserving hashing of
250,000 popular unique AOL queries.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35

%
 o

f
q

u
e

ri
e

s

of hops

Distribution of Routing Cost

(e) Distribution of the routing cost.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 40 60 80 100 120 140 160 180

e
rr

o
r

in
 %

time

Mean Size Estimation Error in %

(f) Relative estimation error of the DHT
size. Balanced churn improves the correct-
ness of the hop space.

Figure 5: Summary of the simulation results for a growing DHT.

We choose to keep each peer’s routing table in a (sepa-
rate) array. We do not maintain any specific order of
the routing entries and thus have amortized constant
cost for adding elements and O(table size) cost for re-
moval. However, the maximum size of a routing table is
very small (at most 40 entries). To forward a message in
the hop or id space, we compare the searched distance
or id with all table entries (O(table size)), as the entries
are not ordered. When routing in the hop space if there
are several entries with the same hop count estimate, we
take the last one, which is the most recent one.

Leave: We select a random peer (at constant cost) to
leave. Ring maintenance is constant. We then have to
delete O(log n) routing entries referencing to the leaving
peer. As we have bidirectional links, we can directly ac-
cess all peers for which we have to remove a routing entry.
Removal from the routing table costs O(table size).

Lookup cost sample: We uniformly select two peers
p1 and p2 (constant cost) and measure the number of
hops required for routing a query from p1 to and identi-
fier p2 is responsible for (O(log n)).

5 Experimental Results

In this section, we present the results of the perfor-
mance evaluation of our routing table construction algo-
rithm using the simulator presented in section 4.

5.1 Simulation of a Growing Network

The simulation starts with a DHT of 64 peers. Each
time unit 20% new peers join and 5% leave, which results
in an exponential growth of the DHT. Using an order-
preserving hash function, we map 250,000 unique queries
logged by AOL into the [0; 1[id space. When a peer joins,
it chooses its id according to this distribution. Leaving
peers are randomly chosen among all peers.

To evaluate the behavior of the DHT under non-
growing conditions, we stop adding new peers once the
DHT has reached a size of over 1 million peers. We then
continue the simulation with a churn of 10% joining peers
and 10% leaving peers per time unit.

Each time unit we first perform the join and leave
operations and then estimate the current routing cost
and average table size. The average routing cost is es-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160

#
 o

f
h

o
p

s

time

Average Measured Routing Cost and Theoretical Cost

measured
theoretic minimum

(a) Routing Cost.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
 o

f
p

e
e

rs

space

Distribution of Peers on the Ring

(b) Distribution of peers at time 115, i.e.
during the transition from the query log
distribution in figure 2 (with peak at 0.88)
to a distribution following Zipf’s law (peak
at 0.5).

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

%
 o

f
q

u
e

ri
e

s

of hops

Distribution of Routing Cost

(c) Distribution of routing cost at the end of
the simulation.

Figure 6: Simulation results when the distribution in the id space changes radically.

timated by performing 5,000 requests: for each request
we uniformly randomly choose two peers and measure
the search cost from one peer to an id the second peer
is responsible for. The searched ids have thus the same
distribution as the peers in the id space. The average
table size is sampled using 5,000 random peers.

Figure 5 summarizes the results: figure 5(a) shows
how the DHT increases over time until it has reached
the size of 1 million peers.

Figure 5(b) shows that the average routing cost grows
linearly with an exponentially growing DHT and stabi-
lizes once the DHT stops growing. It also shows the
theoretic minimum routing cost based on the sampled
average table size. The theoretic minimum assumes a
perfect wiring, which would be very expensive to main-
tain under high churn. Given the high amount of churn
and that our algorithm never actively repairs neither the
hop space nor lost routing entries, the routing cost is very
close to the theoretic minimum.

Figure 5(c) shows the average and maximum sampled
routing table size. While the DHT is growing, more peers
are joining than leaving. The average routing table size
per peer is therefore larger than under balanced churn.

Figure 5(d) shows the distribution of peers on the ring,
which corresponds to the distribution of queries seen in
figure 2.

Figure 5(e) shows the distribution of the routing cost
at the end of the simulation. The distribution is close
to the ideal case. There is only a very small percentage
of queries with a routing cost that is considerably higher
than the expected cost.

Figure 5(f) shows the mean error of 1,000 DHT size
estimates (per time unit) performed by randomly cho-
sen peers. During positive churn (i.e. when the DHT
is growing), the size estimate has a mean error of up

to 200%. During balanced churn, the errors in the hop
space are (passively) corrected and the DHT size esti-
mate becomes very precise.

5.2 Simulation Of Changing Id Space Dis-
tributions

In this experiment we study the behavior of our al-
gorithm when the distribution of peers in the id space
changes. We simulate a radical change from the query
log distribution to a distribution, where peers choose to
join following Zipf’s law: we divide the id space into
1000 areas and rank the popularity of the areas following
Zipf’s law with α = 0.8. The first rank is the area from
0.5 to 0.501. Figure 6 shows the results: we first let the
DHT grow following the query log distribution of figure
2. From time 105, all new peers join following Zipf’s law.
We can see in figure 6(a), that the routing cost slightly
increases for a short time when the distribution changes.
At time 115, many peers have already joined at the new
peak around id=0.5 (see figure 6(b)). At the end of the
simulation, the routing cost has decreased again.

6 Discussion

Churn introduces failures into the hop space. How-
ever, the negative effect of these failures on the routing
cost seems to be limited, in particular, they do not seem
to change the O(log n) complexity of routing.

An important advantage of our algorithm is that it
is very flexible with respect to the number of routing
entries each peer maintains: in small-world networks, we
can tradeoff large routing tables with low routing cost.
Each peer should be able to support a minimum amount
of routing entries, e.g. 20-30, to assure efficient routing
for network sizes between 1 million and 1 billion peers.

Peers with plenty of resources can choose to maintain
considerably larger tables (e.g. up to 1000 entries), to
help further bring down the routing cost.

We have seen that balanced churn, i.e. churn for
which the size of the DHT does not change, repairs er-
rors in the hop space. In this paper, we presented only
simulation results of our algorithm without any active
hop space correction. In an environment with constantly
strongly growing and shrinking churn, it would be possi-
ble to introduce mechanisms to actively update the hop
space. Such mechanisms are part of future work.

7 Conclusions

We proposed an efficient routing table construction al-
gorithm for DHTs with arbitrarily skewed identifier dis-
tributions. Its main properties are: cheap and easy con-
struction, lost routing entries do not have to be replaced
(except for the direct ring neighbors), flexible table sizes
matching peer capacities, and last but not least low rout-
ing cost in the presence of churn. We also showed how to
build an efficient simulator, which allows us to evaluate
the performance of routing table construction algorithms
for network sizes of over one million peers.

For future work we are planning to develop a theoretic
model to better understand the implications of churn on
the correctness of the hop space. Furthermore, we are
evaluating our algorithm using a real deployment.

References

[1] K. Aberer. P-Grid: A self-organizing access structure
for P2P information systems. Sixth International Con-
ference on Cooperative Information Systems, 2001.

[2] D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. Fast
construction of overlay networks. In In 17th ACM Sym-
posium on Parallelism in Algorithms and Architectures,
2005.

[3] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load bal-
ancing and locality in range-queriable data structures.
In PODC, 2004.

[4] J. Aspnes and G. Shah. Skip graphs. In Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 384–393, 2003.

[5] L. Barriere, P. Fraigniaud, E. Kranakis, and D. Krizanc.
Efficient routing in networks with long range contacts.
In DISC, pp 270-284, 2001.

[6] A. R. Bharambe, M. Agrawal, and S. Seshan. Mer-
cury: supporting scalable multi-attribute range queries.
In SIGCOMM, pages 353–366. ACM Press, 2004.

[7] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
balancing of range-partitioned data with applications to
peer-to-peer systems. In Proceedings of the 30th VLDB
Conference, 2004.

[8] S. Girdzijauskas, A. Datta, and K. Aberer. On small
world graphs in non-uniformly distributed key spaces.
In ICDEW ’05: Proceedings of the 21st International
Conference on Data Engineering Workshops, page 1187,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp,
and I. Stoica. Load balancing in dynamic structured
P2P systems. In Proc. IEEE INFOCOM, 2004.

[10] N. J. A. Harvey, Jones, M. B., S. Saroiu, M. Theimer,
and A. Wolman. Skipnet: A scalable overlay network
with practical locality properties. In Proceedings of the
4th USENIX Symposium on Internet Technologies and
Systems, March 2003.

[11] D. R. Karger and M. Ruhl. Simple efficient load balanc-
ing algorithms for peer-to-peer systems. In SPAA ’04:
Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 36–43,
New York, NY, USA, 2004. ACM Press.

[12] J. Kleinberg. The Small-World Phenomenon: An Algo-
rithmic Perspective. In Proceedings of the 32nd ACM
Symposium on Theory of Computing, 2000.

[13] X. Li, J.Misra, and G. Plaxton. Active and concurrent
topology maintenance. In In the 18th Annual Conference
on Distributed Computing (DISC), 2004.

[14] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger.
Analysis of the evolution of peer-to-peer systems. In
PODC2002, New York, USA, 2002.

[15] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
distributed hashing in a small world. In USITS’03, pages
10–10, Berkeley, CA, USA, 2003. USENIX Association.

[16] P. Maymounkov and D. Mazieres. Kademlia: A peer-
to-peer information system based on the xor metric. In
IPTPS ’01, pages 53–65, London, UK, 2002. Springer-
Verlag.

[17] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp,
and I. Stoica. Load balancing in structured p2p systems.
In IPTPS, pages 68–79, 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
SIGCOMM ’01, pages 161–172, New York, NY, USA,
2001. ACM Press.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware),
2001.

[20] A. Shaker and D. S. Reeves. Self-stabilizing structured
ring topology p2p systems. In Fifth IEEE International
Conference on Peer-to-Peer Computing (P2P’05), 2005.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proceed-
ings of ACM SIGCOMM, 2001.

