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Gossip-based protocols are increasingly popular in large-scale distributed applications that dis-
seminate updates to replicated or cached content. GO (Gossip Objects) is a per-node gossip
platform that we developed in support of this class of protocols. In addition to making it easy to

develop new gossip protocols and applications, GO allows nodes to join multiple gossip groups
without losing the appealing fixed bandwidth guarantee of gossip protocols. Our heuristic is based
on the observations that multiple rumors can often be squeezed into a single IP packet, and that
indirect routing of rumors can speed up delivery. We formalize these observations and develop

a heuristic that optimizes rumor delivery latency in a principled manner. We have implemented
GO, and study the effectiveness of the heuristic by comparing it to the more standard random
dissemination gossip strategy via simulation. We also evaluate GO on a trace from a popular
distributed application.

Categories and Subject Descriptors: C.2.4 [Computer Communication]: Distributed Systems

General Terms: Design, Experimentation, Algorithms

Additional Key Words and Phrases: Gossip, Epidemic broadcast, Multicast

1. INTRODUCTION

Gossip-based communication is commonly used in distributed systems to dissemi-
nate information and updates in a scalable and robust manner [Demers et al. 1987;
Kempe et al. 2001; Birman et al. 1998]. The idea is simple: At some fixed frequency,
each node sends or exchanges information (known as rumors) with a randomly cho-
sen peer in the system, allowing rumors to propagate to everybody in an “epidemic
fashion”.

The basic gossip exchange can be used for more than just sharing updates. Gossip
protocols have been proposed for scalable aggregation [Jelasity et al. 2005], moni-
toring and distributed querying [van Renesse et al. 2003], constructing distributed
hash tables (DHTs) [Gupta et al. 2003] and other kinds of overlay structures [Wong
et al. 2005], orchestrating self-repair in complex networks and even for such prosaic
purposes as to support shopping carts for large data centers [Decandia et al. 2007].
By using gossip to track group membership, one can implement gossip-based group
multicast protocols.

Notice that the DHT we cited, Kelips, is less well known than the most widely
popular distributed hash tables, such as Chord and Pastry [Stoica et al. 2001;
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Rowstron and Druschel 2001]. This was deliberate: Kelips is purely based on
gossip, whereas the others are peer-to-peer.

When considered in isolation, gossip protocols have a number of appealing prop-
erties.

P1. Robustness. They can sustain high rates of message loss and crash failures
without reducing reliability or throughput [Birman et al. 1998], as long as
several assumptions about the implementation and the node environment are
satisfied [Alvisi et al. 2007].

P2. Constant, balanced load. Each node initiates exactly one message exchange
per round, unlike leader-based schemes in which a central node is responsible
for collecting and dispersing information. Since message exchange happens at
fixed intervals, network traffic overhead is bounded [van Renesse et al. 1998].

P3. Simplicity. Gossip protocols are simple to write and debug. This simplicity
can be contrasted with non-gossip styles of protocols, which can be notoriously
complex to design and reason about, and may depend upon special communi-
cation technologies, such as IP multicast [Deering 1989], or embody restrictive
assumptions, such as the common assumption that any node can communicate
directly with any other node in the application.

P4. Scalability. All of these properties are preserved when the size of the system
increases, provided that the capacity limits of the network are not reached and
the information contained in gossip messages is bounded.

However, gossip protocols also have drawbacks. The most commonly acknowl-
edged are the following. (i) The basic gossip protocol is probabilistic meaning that
some rumors may be delivered late, although this occurs with low probability. (ii)
The expected number of rounds required for delivery in gossip protocols is loga-
rithmic in the number of nodes. Consequently, the latency of gossip protocols is
on average higher than can that provided by systems using hardware accelerated
solutions like IP multicast [Birman et al. 1998]. (iii) Moreover, gossip protocols
support only the weak guarantee of eventual consistency — updates may arrive in
any order and the system will converge to a consistent state only if updates cease
for a period of time. Applications that need stronger consistency guarantees must
employ more involved and expensive message passing schemes [Pease et al. 1980].
Weak consistency is not always a bad thing, of course. Relaxing consistency guar-
antees has become increasingly popular in large-scale industrial applications such
as Amazon’s Dynamo [Decandia et al. 2007] and Yahoo!’s PNUTS [Cooper et al.
2008].

Gossip also has a less-commonly recognized drawback. An assumption frequently
seen in the gossip literature is that all nodes belong to a single gossip group. Since
such a group will often exist to support an application component, we will also
call these gossip objects. While sufficient in individual applications, such as when
replicating a database [Demers et al. 1987], an object-oriented style of program-
ming would encourage applications to use multiple objects and hence the nodes
hosting those applications will belong to multiple gossip groups. The trends seen
in other object oriented platforms (e.g., Jini and .NET) could carry over to gossip
objects, yielding systems in which each node in a data center hosts large numbers of
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gossip objects. These objects would then contend for network resources and could
interfere with one-another. The gossip-imposed load on each node in the network
now depends on the number of gossip objects hosted on that node, which violates
property P2.

We believe that this situation argues for a new kind of operating system extension
focused on nodes that belong to multiple gossip objects. Such a platform can play
multiple roles. First, it potentially simplifies the developer’s task by standardizing
common operations, such as tracking the neighbor set for each node or sending a
rumor, much as a conventional operating system simplifies the design of client-server
applications by standardizing remote method invocation. The platform combines
the various styles of gossip, such as aggregation and neighbor-set management,
into a single API focused on rumor-mongering. The application can generate and
interpret rumors as it wishes. Second, the platform can implement fair-sharing
policies, ensuring that when multiple gossip applications are hosted on a single node,
they each get a fair share of that node’s communication and memory resources.
Finally, the platform will have opportunities to optimize work across independently
developed applications – the main focus of the present paper. For example, if
applications A and B are each replicated onto the same sets of nodes, any gossip
objects used by A will co-reside on those nodes with ones used by B. To the
extent that the platform can sense this and combine their communication patterns,
overheads will be reduced and performance increased.

With these goals in mind, we built a per-node service called the Gossip Objects
platform (GO) which allows applications to join large numbers of gossip groups
in a simple fashion. The initial implementation of GO provides a multicast-like
interface: local applications can join or leave gossip objects, and send or receive
rumors via callback handlers that are executed at particular rates. Down the road,
the GO interface will be extended to support other styles of gossip protocols, such
as the ones listed earlier. In the spirit of property P2, the platform enforces a
configurable per-node bandwidth limit for gossip communication, and will reject a
join request if the added gossip traffic would cause the limit to be exceeded. The
maximum memory space used by GO is also limited and customizable.

GO incorporates optimizations aimed at satisfying the gossip properties while
maximizing performance. Our first observation is that gossip messages are fre-
quently short: perhaps just a few tens of bytes. Some gossip systems push only
rumor version numbers to minimize waste [van Renesse et al. 1998; Balakrishnan
et al. 2007], so if the destination node does not have the latest version of the ru-
mor, it can request a copy from the exchange node. An individual rumor header
and its version number can be represented in as little as 12-16 bytes. The second
observation is that there is negligible difference in operating system and network
overhead between a UDP datagram packet containing 10 bytes or 1000 bytes, as
long as the datagram is not fragmented [von Eicken et al. 1995]. It follows from
these observations that stacking multiple rumors in a single datagram packet from
node s to d is possible and imposes practically no additional cost. The question
then becomes: Which rumors should be stacked in a packet? The obvious answer
is to include rumors from all the gossip objects of which both s and d are members.
GO takes this a step further: s will sometimes include rumors for gossip objects
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that d is not interested in, and when this occurs, d will attempt to forward those
rumors to nodes that will benefit from them. We formalize rumor stacking and
message indirection by defining the utility of a rumor in Section 3.

We envision a number of uses for GO. Within our own work, GO will be the
WAN communication layer for Live Distributed Objects (LDO), a framework for
abstract components running distributed protocols that can be composed easily to
create custom and flexible live applications or web pages [Ostrowski et al. 2008;
Birman et al. 2007]. This application is a particularly good fit for GO: Live Ob-
jects is itself an object-oriented infrastructure, and hence it makes sense to talk
about objects that use gossip for replication. We describe the LDO platform in
Section 2.1. The GO interface can also be extended to resemble a gossip-based
publish/subscribe system [Eugster et al. 2003]. Finally, GO could be used as a
kind of IP tunnel, with end-to-end network traffic encapsulated, routed through
GO, and then de-encapsulated for delivery. Such a configuration would convert a
conventional distributed protocol or application into one that shares the same gos-
sip properties enumerated earlier, and hence might be appealing in settings where
unrestricted direct communication would be perceived as potentially disruptive.

Our paper focuses on the initial implementation of GO, and makes the following
contributions:

— A natural extension of gossip protocols in which multiple gossip objects can
be hosted on each node.

— A novel heuristic and a mathematical framework to exploit the similarity of
gossip groups to improve propagation speed and scalability.

— An evaluation of the GO platform on a real-world trace.

2. PLATFORM ARCHITECTURE

We will review the basic architecture of the Gossip Objects (GO) platform, and
the Live Distributed Objects (LDO) platform that was used when developing it.

2.1 Live Distributed Objects

Figure 1 illustrates the basic functions of the LDO system. It displays two applica-
tions constructed as graphs (mashups) of event-oriented components that interact
over typed event channels. The individual object instances often encapsulate some
form of replicated data or functionality abstraction, such as a coordination proto-
col, a fault-tolerant state machine, or a data object that uses atomic multicast for
updates. The objects on any given machine should thus be thought of as proxies

– endpoints of a distributed abstraction. Object proxies for any single object can
peer with one another and exchange messages using standard Internet protocols;
the LDO platform will help them find one-another, performs type checking, assists
in loading the correct object instances, and provides other basic functionality.

We developed the GO platform using the LDO system because we wanted to
leverage the convenience and simplicity of its component-composition architecture.
LDO applications can often be constructed in a “drag-and-drop” manner, pulling
content (represented by LDO proxies) from various sources, which could include
cloud repositories, peer-to-peer protocols, sensors, media streams, and so forth
[Ostrowski et al. 2008]. Once assembled and type checked, an LDO application
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Fig. 1. Two users running the same application in the LDO system. An application is a set of

components that interact over types channels. Each component can be implemented as a GO

object.

may be saved in an XML representation, then shared perhaps via e-mail or a web
page. When other users open the application, the necessary proxies are created,
connected together, and assisted in contacting their peers. All of these properties
carry over to our gossip objects applications.

2.1.1 Example. Suppose the LDO application in Figure 1 is tracking the loca-
tion of an aircraft. The object at the top of the graph might be responsible for
rendering the airplane against a backdrop such as a map. The two stacks of objects
below it could be tracking relevant information: perhaps, GPS data in the stack on
the left and ground-to-pilot communication in the stack on the right. The object
at the bottom of the graph might be a secure atomic multicast protocol used by
these stacks to replicate GPS coordinate data and interactions between ground and
plane. The multicast objects at the bottom of the stack would interact with their
peers on other machines using, for example, UDP over the Internet.

2.2 The GO Platform

The GO platform is seen in Figure 2.2, which focuses on the key elements of the
system as used on a single host machine. We see an end-user, who interacts with
gossip objects (three of them in this case) through whatever interface is employed
by the object designer. The objects themselves do not send gossip directly: at
whatever frequency was selected by the designer, they initiate rumors for transmis-
sion to their peers. The management of the list of peers and of the rumor buffer
is standardized by GO: each object can use its own gossip-based algorithm for
deciding which peers will be its neighbors, but GO holds the resulting neighbor
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Fig. 2. The GO platform runs on each host and interacts with applications and provides optimized
gossip dissemination by tracking membership and storing rumors.

lists. The gossip application can select the peer with which it will gossip from this
neighbor set, and can generate its own rumors, but those rumors are not sent im-
mediately. Instead, they are stored temporarily in a common GO-managed buffer.
The GO optimization algorithm described in Section 3 of this paper decides which
neighbor to gossip with at each time interval, and which rumors to include in the
UDP packet that will be sent to that neighbor.

3. GOSSIP ALGORITHMS

3.1 Model

As noted, our model focuses on push-style gossip (rumor-mongering) but can sup-
port a wider range of gossip algorithms.

Consider a system with a set N of n nodes and a set M of m gossip objects
denoted by {1, 2, . . . ,m}. Each node i belongs to some subset Ai of gossip objects.
Let Oj denote member set of gossip object j, defined as Oj := {i ∈ N : j ∈ Ai}.
The set Ni denotes the neighbors of i, defined as

⋃

j∈Ai
Oj . For notation, we use

the character i (and i′) to denote users, and j (j′ and j′′) to denote group identifiers
and Oj (Oj′ and Oj′′) to refer to member sets henceforth.

A subset of nodes in a gossip object generate rumors. Each rumor r consists of a
payload and two attributes: (i) r.dst ∈M : the destination gossip object for which
rumor r is relevant, and (ii) r.ts ∈ N: the timestamp when the rumor was created.
A gossip message between a pair of nodes contains a collection of at most L stacked
rumors, where L reflects the maximum transfer unit (MTU) for IP packets before
fragmentation kicks in. For example, if each rumor has average length of 100 bytes
and the MTU is 1500 bytes, L is 15.

We will assume throughout this paper that each node i knows the full member-
ship of all of its neighbors Ni. This assumption is for theoretical clarity, and can
be relaxed using peer sampling techniques [Kermarrec et al. 2003; Jelasity et al.
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2004] or remote representatives [van Renesse et al. 2003]. However, the types of
applications for which GO is appropriate, such as pub-sub systems or Live Objects,
will neither produce immensely large groups nor sustain extreme rates of churn.

3.2 Random Dissemination

A gossip algorithm has two stages: a recipient selection stage and a content selection

stage [Kempe et al. 2001]. The content is then sent to the recipient. For baseline
comparison, we will consider the following straw-man gossip algorithm Random-

Stacking running on each node i.

—Recipient selection: Pick a recipient d from Ni uniformly at random.

—Content selection: Pick a set of L unexpired rumors uniformly at random.

If there are fewer than L unexpired rumors, Random-Stacking will pick all of
them. We will also evaluate the effects of rumor stacking; Random is a heuristic
that packs only one random rumor per gossip message, as would occur in a tradi-
tional gossip application that sends rumors directly in individual UDP packets.

3.3 Optimized Dissemination

As mentioned earlier, the selection strategy in Random-Stacking can be improved
by sending rumors indirectly via other gossip objects. In the following diagram,
nodes infected by a rumor specific to gossip object j are drawn as triangles. The
rumor is now sent from node s to a node d which is only in j′. Node d in turn
infects a node that belongs to both gossip objects.

j j’
s d

We will define the utility of including a rumor in a gossip message, which informally
measures the “freshness” of the rumor once it reaches the destination gossip object,
such that a “fresh” rumor has higher probability of infecting an uninfected node.
If rumor r needs to travel via many hops before reaching a node in r.dst, by which
time r might be known to most members of r.dst, the utility of including r in a
message is limited. Ideally, rumors that are “young” or “close” should have higher
utility.

3.3.1 Hitting Time. We make use of results on gossip within a single object.
Define an epidemic on s hosts to be the following process: One host in a fully-
connected network of s nodes starts out as infected. Every round, each infected
node picks another node uniformly at random and infects it unless it is already
infected.

Definition 3.1. Let S(s, t) denote the number of nodes that are susceptible (un-
infected) after t rounds of an epidemic on s hosts.

To the best of our knowledge, the probability distribution function for S(s, t) has
no closed form. It is conjectured by [Karp et al. 2000] that E[S(s, t)] = s exp(−t/s)
for push-based gossip and large n using mean-field equations, and that E[S(s, t)] =
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s exp(−2t) for push-pull gossip. Here, we will assume that S(s, t) is sharply concen-
trated around this mean, so S(s, t) = s exp(−t/s) henceforth. Improved approxi-
mations, such as using look-up tables for simulated values of S(s, t), can easily be
plugged into the heuristic code. We use a look-up table for low values of s and t.

Definition 3.2. Suppose a subset of k nodes out of s are special. The expected

hitting time H(s, k) is the expected number of rounds in an epidemic on s hosts
until we infect some node in the subset of special nodes, assuming S(s, t) nodes are
susceptible in round t.

If a gossip rumor r destined for some gossip object j ends up in a different gossip
object j′ which overlaps with j, then the expected hitting time roughly approxi-
mates how many rounds elapse before r infects a node in the intersection of Oj and
Oj′ , the set of special nodes.

Two simplifying assumptions are at work here. First, that each node in Oj

contacts only other nodes in Oj during each round. Second, that r has high enough
utility to be included in all gossip messages exchanged within the group.

Let p(s, k, t) = 1−
(

1− k
s

)s−S(s,t)
denote the the probability of infecting at least

one of k special nodes at time t when S(s, t) are susceptible. We derive an expression
for H(s, k) akin to the expectation of a geometrically distributed random variable.

H(s, k) =

∞
∑

t=1

tp(s, k, t)

t−1
∏

ℓ=1

(1− p(s, k, ℓ)),

which can be approximated by summing a constant number max-depth of terms
from the infinite series, and by plugging in S(s, t) from above, as shown in Algorithm
1.

Algorithm 1 H(s, k, t): approximate the expected hitting time of k special nodes
out of s at time t.

if k = 0 then
return ∞

end if
if t ≥ max-depth then

return 1.0 {Prevent infinite recursion.}
end if
p← exp(log(1.0− k/s)(s− S(s, t)))
return t · (1.0− p) + H(s, k, t + 1) · p

3.3.2 Utility. Recall that each node i only tracks the membership of its neigh-
bors. What happens if i receives gossip message containing a rumor r from an
unknown gossip object j? To be able to compute the utility of including r in a
message to a given neighbor, nodes track the size and the connectivity between
every pair of gossip objects. Define an overlap graph for propagation of rumors
across gossip objects as follows:

Definition 3.3. An overlap graph G = (M,E) is an undirected graph on the set
of gossip objects, and E = {{j, j′} ∈ M ×M : Oj ∩ Oj′ 6= ∅}. Define the weight

Draft, Vol. 0, No. 0, 2010.



GO: Platform Support for Gossip Applications · TBD

function w : M ×M → R as w(j, j′) = |Oj ∩Oj′ | for all j, j′ ∈M . Let Pj,j′ be the
set of simple paths between gossip objects j and j′ in the overlap graph G.

We can now estimate the propagation time of a rumor by computing the expected
hitting time on a path in the overlap graph G. A rumor may be diffused via different
paths in G; we will estimate the time taken by the shortest path.

Definition 3.4. Let P ∈ Pj,j′ be a path where P = (j = p1, . . . , ps = j′). The
expected delivery time on P is

D(P ) =
s−1
∑

k=1

H (|Opk
|, w (pk, pk+1)) .

The expected delivery time from when a node i ∈ N includes a rumor r in an
outgoing message until it reaches another node in j′ = r.dst is

D(i, r) = min
j∈Ai

min
P∈Pj,j′

D(P ).

Algorithm 2 Compute-graph: determine the overlap graph, hitting times and
shortest paths between every pair of nodes.

Require: overlap[j][j′] = w(j, j′) has been computed for all groups j and j′.
for j ∈M do

for j′ ∈M do
graph[j][j′]← H(|Oj |, overlap[j][j′], 0)

end for
end for
Run an all-pairs shortest path algorithm [Floyd 1962] on graph to produce graph-

distance.

Algorithm 2 provides pseudo-code for computing the expected delivery time be-
tween every pair of groups.

We can now define a utility function U to estimate the benefit from including a
rumor r in a gossip message.

Algorithm 3 Us(d, r, t): utility of sending rumor r from s to d at time t.

Require: compute-graph must have been run.
distance←∞
res← 0.0
for j ∈ d.groups do

if graph-distance[j][r.dst] < distance then
distance← graph-distance[j][r.dst]
res← S(j.size, t− r.ts + distance)/j.size

end if
end for
return res
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Algorithm 4 Sample(u,R,L): produce a sample S of L rumors without replace-
ment from R = {r1, r2, . . . , rN} such that P[ri ∈ S] ∝ u(ri).

S← ∅
for ℓ = 1 to N do

if ℓ ≤ L, or random(0, 1) ≤ Lu(rℓ)/
∑ℓ

t=1 u(rt) then
ρ← randomly picked rumor from S
S← (S− {ρ}) ∪ {rℓ} {Rumor rℓ will be included in S}

end if
end for
return S

Definition 3.5. The utility Us(d, r, t) of including rumor r in a gossip message
from node s to d at time t is the expected fraction of nodes in gossip object j = r.dst
that are still susceptible at time t′ = t− r.ts + 1 + D(d, r) when we expect it to be
delivered. More precisely,

Us(d, r, t) =
S(|Oj |, t

′)

|Oj |
.

Pseudo-code for approximating the utility function is shown in Algorithm 3. The
code is optimized by making use of the overlap graph computed by Algorithm 2.

3.3.3 The GO Heuristic. The following code is run on node s at time t.

—Recipient selection: Pick a recipient d uniformly at random from Ns.

—Content selection: Let R denote the set of unexpired rumors. Calculate the
utility u(r) = Us(d, r, t) for each r ∈ R using Algorithm 3. Call Sample(u,R,L)
(Algorithm 4) to pick L rumors at random from R so that the probability of
including rumor r ∈ R is proportional to its utility u(r).

Algorithm 4 for sampling without replacement while respecting probabilities on
the elements may be of independent interest. We prove the correctness of the
algorithm after every iteration of the main loop.

Theorem 3.6. After m iterations of algorithm 4, element rh for h ≤ m is

included in the sample S with probability
Lu(rh)
q(m) , where q(m) =

∑m
t=1 u(rt).

Proof. The statement is trivially true for m ≤ L (round all probabilities down
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to 1), so assume m > L. We obtain

P[rh ∈ S] = P[rh picked in iteration h] ·
m
∏

t=h+1

P[rh not discarded in iteration t]

=
Lu(rh)

q(h)

m
∏

t=h+1

(

1−
Lu(rt)

q(t)
·

1

L

)

=
Lu(rh)

q(h)

m
∏

t=h+1

q(t)− u(rt)

q(t)

=
Lu(rh)

q(h)

m
∏

t=h+1

q(t− 1)

q(t)

=
Lu(rh)

q(m)
.

In order to compute the utility of a rumor, each node needs to maintain complete
information about the overlap graph and the sizes of gossip objects. We describe
the protocol that maintains this state in Section 4.3.

The cost of storing and maintaining such a graph may become prohibitive for
very large networks. We intend to remedy this potential scalability issue by main-
taining only a local view of the transition graph, based on the observation that if
a rumor belongs to distant gossip object with respect to the overlap graph, then
its utility is automatically low and the rumor could be discarded. Evaluating the
trade-off between the view size and the benefit that can be achieved by the above
optimizations is a work in progress.

Consider the content selection policies for the Random-Stacking and the GO
heuristic. A random policy will often include rumors in packets that have no chance
of being useful because the recipient of the packet has no “route” to the group for
which the rumor was destined. GO will not make this error: if it includes a rumor
in a packet, the rumor has at least some chance of being useful. We evaluate the
importance of this effect in Section 5.

3.4 Traffic Adaptivity and Memory Use

The above model can be generalized to allow gossip objects to gossip at different
rates. Let λj be the rate at which new messages are generated by nodes in gossip
object j, and Ri the rate at which the GO platform gossips at node i.

For simplicity, we have implicitly assumed that all platforms gossip at the same
fixed rate R, and that this rate is “fast enough” to keep up with all the rumors that
are generated in the different gossip objects. Viewing a gossip object as a queue of
rumors that arrive according to a Poisson process, it follows from Little’s law [Little
1961] that the average rate at which node i sends and receives rumors, Ri, cannot
be less than the rate λj of message production in j if rumors are to be diffused to
all interested parties in finite time with finite memory. In the worst case there is
no exploitable overlap between gossip objects, in which case we require R to be at
least maxi∈N

∑

j∈Ai
λj . Furthermore, the amount of memory required is at least
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maxi∈N

∑

j∈Ai
O (log |Oj |) λj since rumors take logarithmic time on average to be

disseminated within a given gossip object.
The GO platform dynamically adjusts its gossip rate based on an exponential

average of the rate of incoming messages per group. The platform speed is set to
match that of the group with the highest incoming rate, a feature we call traffic

adaptivity. Furthermore, GO enforces customizable upper bounds on both the
memory use and gossip rate (and hence bandwidth), rejecting applications from
joining gossip objects that would cause either of these limits to be violated.

Rumors are stored in a priority queue based on their maximum possible utility
over all neighbor choices; if the rumors in the queue exceed the memory bound then
the least beneficial rumors are discarded.

4. PLATFORM IMPLEMENTATION

As noted earlier, GO was implemented using Cornell’s Live Distributed Objects
technology, and inherits many features from the Live Objects system. GO runs on
all nodes in the target system, and currently supports applications via an interface
focused on group membership and multicast operations. The platform consists of
three major parts: the membership component, the rumor queue and the gossip
mechanism, as illustrated in Figure 2.2.

GO exports a simple interface to applications. Applications first contact the
platform via a client library or an IPC connection. An application can then join

(or leave) gossip objects by providing the name of the group, and a poll rate R.
Note that a join request might be rejected. An application can start a rumor by
adding it to an outgoing rumors queue which is polled at rate R (or the declared
system-wide poll rate for this gossip object) using the send primitive. Rumors are
received via a recv callback handler which is called by GO when data is available.

Rumors are garbage collected when they expire, or when they cannot fit in mem-
ory and have comparatively low utility to other rumors as discussed in Section
3.4.

4.1 Bootstrapping

We bootstrap gossip objects using a rendezvous mechanism that depends upon a
directory service (DS), similar to DNS or LDAP. The DS tracks a random subset
of members in each group, the size of which is customizable. When a GO node
i receives a request by one of its applications to join gossip object j, i sends the
identifier for j (a string) to the DS which in turn returns a random node i′ ∈ Oj

(if any). Node i then contacts i′ to get the current state of gossip object j: (i) the
set Oj , (ii) full membership of nodes in Oj , and (iii) the subgraph spanned by j
and its neighbors in the overlap graph G along with weights. If node i is booting
from scratch, it gets the full overlap graph from i′.

4.2 Gossip Mechanism

GO’s main loop runs periodically, receiving gossip messages from other nodes and
performing periodic upcalls to applications, which may react by adding rumors to
the rumor queue. Each activity period ends when the platform runs the GO heuris-
tic (from Section 3.3.3) to send a gossip message to a randomly chosen neighbor.
The platform then discards old rumors.
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Fig. 3. Membership information maintained by GO nodes. The topology of the whole system on
the left is modeled by the node in center as (i) the set of groups to which it belongs and neighbor
membership information (local state), and (ii) the overlap graph for other groups, whose nodes

are depicted as squares and edges are represented by thick lines (remote state).

4.3 Membership Component

Each GO node i maintains the membership information for all of its neighbors,
Ni (local state). It also tracks the overlap graph G and gossip group sizes (remote

state), as discussed in Section 3. Figure 4.3 illustrates an example of system-wide
group membership (left) and the local and remote state maintained by the center
node (right). The initial implementation of GO maintains both pieces of state via
gossip.

4.3.1 Remote state. After bootstrapping, all nodes join a dedicated gossip ob-
ject j∗ on which nodes exchange updates for the overlap graph. Let P be a global
parameter that controls the rate of system-wide updates, that should reflect both
the anticipated level of churn and membership changes in the system, and the
O(log n) gossip dissemination latency constant [van Renesse et al. 1998]. Every
P log |Oj | rounds, some node i in Oj starts a rumor r∗ in j∗ that contains the
current size of Oj and overlap sizes of Oj and j’s neighboring gossip objects. The
algorithm is leaderless and symmetrical: each node in Oj starts their version of
rumor r∗ with probability 1/|Oj |. In expectation, only one node will start a rumor
in j∗ for each gossip object. If multiple rumors are started for the same gossip
object, information from the initiator with the lowest IP-address is kept.

4.3.2 Local state. GO tracks the time at which each neighboring node was last
heard from; a node that fails will eventually be removed from the membership list
of any groups to which it belongs. When node i joins or changes its membership,
an upcall is issued to each gossip object in Ai as a special system rumor. We rate-
limit the frequency of membership changes by allowing nodes to only make special
system announcements every P rounds.

In ongoing work, we are changing the GO membership algorithm to bias it in
favor of accurate proximal information at the expense of decreased accuracy about
membership of remote groups. The rationale for this reflects the value of having
accurate information in the utility computation. As observed earlier, rumors have
diminishing freshness with time, which also implies that the expected utility of
indirect routing via a long path is low. In effect, a rumor sent indirectly still needs
to reach a destination quickly if it is to be useful. We conjecture that the GO
heuristic is insensitive to information about remote groups and membership — i.e.,
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Mechanism Platform Traffic Content selection

support adaptivity

GO Yes Yes GO heuristic

Platform with utility Yes No GO heuristic
Platform with traffic Yes Yes Random-Stacking

Platform skeleton Yes No Random-Stacking

Random-Stacking No No Random-Stacking

Random No No Random (1 rumor/message)

Table I. The dissemination mechanisms we evaluate. Mechanisms without platform support gossip
independently for each group joined at the native gossip rate. In the Random-Stacking heuristic,
each group runs at its own native gossip rate, sending its own rumors but also including additional
randomly selected rumors up to the message MTU size, without regard for the expected value of

those rumors at the destination node.

several hops from a sender node — but highly sensitive to what might be called
proximal topology information. It would follow that proximal topology suffices for
efficient dissemination.

4.4 Rumor Queue

As mentioned in Section 3.4, GO tracks a bounded set of rumors in a priority
queue. The queue is populated by rumors received by the gossip mechanism (remote
rumors), or by application requests (local rumors). The priority of rumor r in
the rumor queue for node s at time t is maxd∈Ni

Us(d, r, t), since rumors with
lowest maximum utility are least likely to be included in any gossip messages. As
previously discussed, priorities change with time so we speed up the recomputation
by storing the value of argmaxd∈Ni

D(d, r).

5. EVALUATION

GO is implemented as a Windows Remoting service using the .NET framework.
The focus of our experiments is on quantifying the effectiveness of GO in compar-
ison to implementations in which each gossip object runs independently without
any platform support at all. We evaluate the dissemination mechanisms listed in
Table I.

Our first experiment highlights the usefulness of the various components of the
GO dissemination mechanism. We run GO on a synthetic scenario to evaluate the
utility-based GO heuristic and traffic adaptivity.

We then evaluate GO on a trace of a widely deployed web-management applica-
tion, IBM WebSphere Virtual Enterprise (WVE). This trace shows WVE’s patterns
of group membership changes and group communication in connection with a white-
board abstraction used heavily by the product, and thus is a good match with the
kinds of applications for which GO is intended.

5.1 Synthetic Scenario

We evaluated the benefits of the two components of the GO dissemination mech-
anism (traffic adaptivity and the utility-based heuristic) on the topology shown in
Figure 4. The scenario constitutes a group j that contains nodes s and d in which
s sends frequent updates for d. Both nodes also belong to a number of other gossip
objects that overlap so that they share common neighbors, in this case four. The
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Fig. 4. The topology used in first experiment. Each edge denotes a group of two members.
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(d) Message rate over time.

Fig. 5. Synthetic scenario. The GO heuristic with traffic adaptivity and utility-based dissemina-

tion successfully delivers all rumors (top-left), yet using fewer messages than when traffic adap-
tivity or utility-based dissemination are disabled (top-right). The utility function takes advantage
of indirect paths (bottom-left). GO’s message rate is bounded (bottom-right).

scenario is constructed such that the neighbors of s and d are in a position to propa-
gate messages intended for other gossip objects. At every time step, nodes generate
10 rumors for each of the gossip objects to which they belong, and s and d generate
10 additional rumors intended for one another. We assume a platform rate of 1
gossip message per round unless traffic adaptivity is enabled, that 15 rumors can
be stacked in every packet and that nodes can fit at most 100 rumors in memory.

We count the total number of “fresh” rumors that were received by interested
nodes, by which we mean rumors that nodes had not previously seen. We plot the
total number of fresh rumors over time and as a function of the number of messages
that were used to deliver them.
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Fig. 6. IBM WebSphere Virtual Enterprise (WVE) trace. GO disseminates rumors efficiently
compared to other approaches while sending substantially fewer messages at a controllable rate.
The nodes using the random heuristics gossip once per-group every round, whereas GO sends a
single gossip message per round.

5.2 Real-World Scenario

5.2.1 Trace Details. IBM WebSphere Virtual Enterprise (WVE) is a widely de-
ployed commercial application for running and managing web applications [IBM
2008]. A WebSphere cell consists of a (possibly large) number of servers, on top
of which application clusters are deployed. Cell management, which entails work-
load balancing, dynamic configuration, inter-cluster messaging and performance
measurements, is implemented by a form of built-in whiteboard, which in turn in-
terfaces to the underlying communication layer via a pub-sub interface [Bortnikov
et al. 2009; Eugster et al. 2003]. To obtain a trace, IBM deployed 127 WVE nodes
constituting 30 application clusters for a period of 52 minutes, and recorded group
subscriptions as well as the messages sent by every node via the whiteboard ab-
straction. The rate of message generation in the trace is shown in Figure 6(a). An
average process subscribed to 474 groups and posted to 280 groups, and there were
a total of 1364 groups with at least one subscriber and one publisher. The group
membership is strongly correlated. On the one hand, 26 groups contain at least
121 of the 127 nodes. On the other hand, none of the remaining groups contained
more than 10 nodes. The details of the trace are discussed in [Vigfusson 2009].
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5.2.2 Experimental set-up. We deployed GO on 64 nodes, and ran two parallel
instances of the platform on each node. We used the WVE trace to drive our simu-
lation by assigning a gossip group to each group. Each gossip round corresponds to
one second of the trace. All publishers and subscribers or a group are members of
the corresponding gossip group. Each rumor is assumed to be 100 bytes, meaning
that 15 rumors may be stacked in a single message. Rumors expire 100 rounds after
they were first sent to limit memory and bandwidth use.

Our experiment simulates a “port” of WVE to run over each of the dissemination
mechanisms listed in Table I.

5.3 Experimental results

We first discuss the results from the synthetic scenario. The importance of the
utility-based heuristic in GO is shown in Figure 5(a). After 200 rounds, both
GO and Platform with utility were keeping up with the message load in the
system whereas the heuristics deploying random content selection delivered at most
55% of the messages. Figure 5(c) plots the number of rumors that were delivered
indirectly over time, clearly showing that utility-based GO outperforms myopic
random delivery.

Now consider the case for traffic adaptivity. After 200 rounds in Figure 5(a),
the utility-based heuristics GO and Platform with utility have both delivered
roughly 21,000 rumors with no loss. However, we learn from Figure 5(b) that
the traffic-aware GO delivered these rumors in 25% fewer messages than the non-
adaptive mechanism. The message rates are shown in Figure 5(d), where regular
GO converges to a lower value than the alternative policies.

Next we discuss the results of the WVE trace experiment. Figure 6(c) shows the
total number of rumors received by nodes in the system over time as the trace is
played. A surge in messages of the WVE trace beginning at round 3000 causes the
different mechanisms to diverge from one-another. We observe that both Random-
Stacking and GO are able to successfully disseminate all the messages sent in the
trace, whereas Random and Platform with traffic fall behind. The message
rates between Random and Random-Stacking are identical, as shown in Figure
6(b), allowing us to conclude that stacking is effective for rumor dissemination in
the WVE trace.

Now consider the discrepancy in performance between the GO platform with and
without using the utility based GO heuristic. The surge in the trace starting at
round 3000 consists primarily of messages being sent on groups of size two (unicast

traffic). Without carefully handling such traffic patterns, unicast rumors pile up
while the platform gossips with nodes that have marginal benefit from the rumors
exchanged, and gradually time out. We see that the GO heuristic avoids this
problem as it packs relevant rumors into the messages, whereas randomly selecting
rumors for inclusion in those same messages is insufficient.

An important benefit of GO can be seen in Figure 6(b), which shows that the
GO platform limits message rates — sending at most 250 messages/round in total
whereas the random approaches send on average roughly 600 messages/round with
spikes up to 1100 messages/round. This corresponds to the goal set out in the
introduction of bounding platform load despite the number of groups scaling up.

An even bigger win for GO can be seen in Figure 6(d), which shows the number of
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new rumors delivered versus the number of messages exchanged. The GO platform
sends 3.9 times fewer messages than the greedy per-group Random-Stacking
dissemination strategy, while delivering rumors just as rapidly.

5.4 Discussion

There are two take-away messages from the first experiment. First, rumor stacking
is inherently useful even when using Random-Stacking without a utility-driven
rumor selection scheme. Second, we see a substantial gain when using the GO
utility-based heuristic to guide the platform’s stacking choices. When processes
exhibit correlated but not identical group membership there may often be indirect
paths that can be exploited using message indirection. GO learns these paths by
exploring membership of nearby groups, and can then ricochet rumors through
those indirectly accessible groups. The non-utility policies lack the information
needed to do this.

Focusing on the WVE experiment, the benefits of coupling utility based dissemi-
nation with traffic adaptivity is apparent from Figure 6(c), where the GO heuristic
successfully accommodates the load surge in the trace at time 3,000, as shown in
Figure 6(a). The results support our belief that the GO platform is able to cope
with real-world message dissemination at a rate close to that of a näıve implemen-
tation without losing the fixed bandwidth guarantee discussed in the introduction
while using substantially fewer messages than a non-platform approach.

6. RELATED WORK

We are not aware of any prior work on creating a platform or operating system
for gossip. The pioneering work by Demers et al. [Demers et al. 1987] used gossip
protocols to enable a replicated database to converge to a consistent state despite
node failures or network partitions. The repertoire of systems that have since
employed gossip protocols is impressive [Balakrishnan et al. 2007; van Renesse
et al. 1998; van Renesse et al. 2003; Eugster et al. 2003; Decandia et al. 2007;
Rodrigues et al. 2003], although this work is focused on application-specific use of
gossip instead of providing gossip communication as a fundamental service.

Optimized gossip dissemination has been considered in sensor networks, for in-
stance for gossip aggregation [Dimakis et al. 2006], although the focus is on single
gossip objects. The authors of Ricochet [Balakrishnan et al. 2007] consider multiple
groups in the context of reliable message dissemination, and propose a scheme that
is based on partitioning overlapping groups.

7. CONCLUSION

The GO platform generalizes gossip protocols to allow them to join multiple groups
without losing the appealing fixed bandwidth guarantee of gossip protocols, and
simultaneously optimizing latency in a principled way. Our heuristic is based on the
observations that a single IP packet can contain multiple rumors, and that indirect
routing of rumors can accelerate delivery. The platform has been implemented, but
remains a work in progress. Experimental evaluation shows that indirect message
delivery using our utility based scheme as well as adaptivity to different traffic rates
outperforms several other natural platform and non-platform based approaches.
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Our vision is that GO can become an infrastructure component in various group-
heavy distributed services, such as a robust multicast or publish-subscribe layer,
and an integral layer of the Live Distributed Objects framework.
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