MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Virtual Direction Routing for Overlay Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bow-Nan Cheng, M. Yuksel, and S. Kalyanaraman. “Virtual Direction Routing for overlay
networks.” Peer-to-Peer Computing, 2009. P2P '09. IEEE Ninth International Conference on.
2009. 61-70. © Copyright 2009 IEEE

As Published: http://dx.doi.org/10.1109/P2P.2009.5284516
Publisher: Institute of Electrical and Electronics Engineers
Persistent URL: http://hdl.handle.net/1721.1/58947

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58947

IEEE P2P'09 - Sept. 9-11, 2009

Virtual Direction Routing for Overlay Networks™

Bow-Nan Cheng
ECSE Department
Rensselaer Polytechnic Institute
bownan@gmail.com

Abstract

The enormous interest for peer-to-peer systems in recent
years has prompted research into finding scalable and ro-
bust seeding and searching methods to support these over-
lay networks. Routing and search in these overlay networks
have ranged from flooding-based unstructured techniques
to structured ones mainly for popular and rate items re-
spectively. In this paper, we propose a new method of es-
tablishing a virtual structure and introduce a technique to
scalably route packets through an unstructured overlay net-
work. We introduce Virtual Direction Routing (VDR). VDR
is a lightweight and scalable overlay network routing pro-
tocol that uses the concept of virtual directions to efficiently
perform node information seeding and lookup. State in-
formation is replicated at nodes along virtual orthogonal
lines originating from each node and periodically updated.
When a path lookup is initiated, instead of flooding the net-
work, query packets are also forwarded along virtual or-
thogonal lines until an intersection with the seeded state
occurs. We show that VDR achieves high reachability with
relatively low seed and search packet TTL even under high
network churn. We also show that VDR scales well with-
out imposing DHT-like graph structures (e.g., trees, rings,
torus, coordinate-space) and the path stretch compared to
random-walk protocols is very good. The tradeoff is added
latency by choosing suboptimal paths.

1. Introduction

The enormous interest for content distribution through
peer-to-peer (P2P) systems in recent years has prompted

*This work is supported by the National Science Foundation under
grants 0627039, 0721452,0721612 and 0230787. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

TBow-Nan Cheng is now with MIT Lincoln Laboratory in Lexington,
MA.

978-1-4244-5067-1/09/$26.00 ©2009 |EEE

Murat Yuksel
CSE Department
University of Nevada - Reno
yuksem@cse.unr.edu

Shivkumar Kalyanaraman
IBM India Research Lab
Bangalore, India
shivkumar-k@in.ibm.com

research into finding scalable and robust seeding, search-
ing and routing methods to support these overlay networks.
P2P systems are attractive for several reasons including 1)
its distributed nature, 2) shared overhead, 3) relatively quick
response to dynamic network changes, and 4) ease of joins
and leaves. One of the biggest challenges in P2P systems
is information replication/dissemination and discovery in
environments of high dynamism, i.e., churn. In order to
locate items in a network of peers, various strategies for
query propagation and information location need to be im-
plemented. To support search queries, robust overlay net-
works with routing policies must be in place as P2P systems
often assume an underlying overlay network.

P2P networks are broadly characterized into two ma-
jor types based on whether or not strict overlay topologies
are enforced: unstructured and structured. Unstructured
P2P systems make little or no requirement on how overlay
topologies are established and are often easy to build and
maintain [5, 2], mainly due to the fact that peers do not have
to inform other peers when they are joining or leaving. On
the other hand, unstructured P2P systems tend to have diffi-
culty in finding rare objects and because overlay topologies
tend to move toward a power-law distribution when it comes
to node degrees, load is often placed on high degree nodes.
Early unstructured systems like Gnutella [6] queried for ob-
jects by simply flooding the network with search queries un-
til an item was found. Flooding and even limited flooding
techniques (e.g., normalized flooding [5] [7]), are typically
prohibitive in large-scale networks as the large messaging
overhead of flooding cannot be accommodated within the
limited available bandwidth. Several techniques have been
been examined to attempt to address the lack of scalability
in flood-based techniques [2].

Because of the inherent lack of scalability in flood-
based schemes, researchers have looked at several hierar-
chical and structured approaches [12][11]. Hierarchical ap-
proaches like Kazaa [9] relied on certain nodes to house
more information and coordinate data for a specific sub-
set. Although effective in their own right, hierarchical ap-
proaches require reorganization in the event of node fail-

61

ure of local leader nodes. Recently, researchers have uti-
lized novel distributed hash table (DHT) techniques to build
virtual structures on overlay networks by mapping nodes
to a specific structure be it a CHORD [12] or a coordi-
nate space [11]. In these self-organizing overlay networks,
neighborhood relations are more strictly controlled than in
unstructured networks and search queries are propagated
along the structure until a match is found. Though these
DHT-based approaches can guarantee locating rare items,
maintaining the structure might become impractical against
high churn as repair techniques that detect a failure (i.e., a
node or item leaving) and replicate the lost data or pointers
incur substantial overhead [2]. Recent research has targeted
to find a balance and focused on attaining “weak” but useful
overlay structures (without requiring a strict/strong struc-
ture) while keeping the unstructured nature of the peers.
Specific proposals used many techniques, e.g., probabilis-
tic search [13], forcing a degree distribution on the overlay
topology [7], adaptive topology establishment [2], and in-
telligent usage of topology and replication patterns in flood-
based searches [5].

Our contribution in this paper is a scheme which is es-
sentially unstructured but uses virtual directions to guide
routing of search queries and potentially data traffic. As
mentioned before, an underlying overlay network with spe-
cific routing strategies must already be in place for each of
the search techniques to work. Routing issues are differ-
ent from search issues in that 1) search does not deal with
path selection but simply with finding objects and 2) search
assumes an underlying overlay network. We present Vir-
tual Direction Routing (VDR), a light-weight node infor-
mation dissemination and routing technique in unstructured
P2P systems. VDR places no restrictions on the underlying
overlay topology and utilizes a novel concept we call virtual
directions to provide efficient route lookup.

\
nH __ VDR Virtual Path".E /
e (B o
Virtual Direction -
Routing: \

Basic Example

“ O == == =
)
N
XD
Nt
| -
\ ‘o
@5
s s
‘\
\
\
1

:
\

\
r2Z)
N
\
\
\

\
\
\
\

Figure 1. Virtual Direction Routing Basic Ex-
ample. Node A sends data along a virtual
path to rendezvous node D which then for-
wards it along a path along a new virtual di-
rection to the destination Node G.

Figure 1 illustrates the basic idea behind VDR. In VDR,
each node i forms a set of virtual interfaces (int;(n)) and
assigns immediate neighbors to an interface based on a hash
of their unique node IDs (e.g. moded with the number of
interfaces). State information is replicated at nodes along
virtual orthogonal lines originating from each node and pe-
riodically updated. When a lookup is initiated, instead of
flooding the network, query packets are forwarded along
virtual orthogonal lines until an intersection with the seeded
data occurs (the Rendezvous Node). The rendezvous node
then generates a route reply packet back to source A and the
data path from node A to rendezvous node D to destination
G is established. If more than one neighbor is assigned to
a virtual interface, ties are broken by selecting the neighbor
with the ID closest to the search ID. In this way, seed and
query packets automatically “gravitate” toward each other
increasing the likelihood of intersect.

Key contributions of VDR include:

e Introduction of the concept of Virtual Directions to
eliminate the need for virtual coordinate space or DHT
structures to provide routing.

o A flat, scalable, and churn-resilient routing algorithm.
We will show that:

e VDR performs much better in state dissemination
and reach than random walk and scales much better
than flood-based techniques such as normalized flood-
ing [5]. These two methods represent standard strate-
gies for unstructured overlay routing (not search).

e VDR performs very well in dense networks. This is
valuable as P2P overlay networks can easily form links
to several other peers/nodes.

e In dynamic networks where nodes frequently go on
and off, VDR significantly outperforms its counter-
parts in terms of end-to-end reachability and through-
put.

To achieve these goals, VDR trades off the end-to-end
path stretch compared to flood-based techniques. Since
most real-world topologies have order log(N) reach (i.e.,
they are less than log(NN) degrees from all nodes), it is
expected that simple flooding techniques will find shorter
paths from source to destination. VDR provides a scal-
able alternative to pure flooding and normalized flooding
techniques. Additionally, state is not evenly distributed
network-wide due to the biasing of dissemination packets.
The rest of the paper is organized as follows: Section 2 out-
lines the concept of VDR including a detailed explanation
of information replication and lookup. Section 3 evaluates
VDR against several protocols under varying conditions of
churn and TTL. Finally, section 4 presents some concluding
thoughts and ideas on future work.

62

2. Virtual Direction Routing

The concept of Virtual Direction Routing (VDR) is sim-
ple: in flat networks, two pairs of orthogonal lines centered
at different points will intersect at two points at minimum.
By seeding state information along orthogonal lines and
performing node lookups along those same virtual direc-
tions, one can ensure successful node lookup in an unstruc-
tured manner without flooding the network as these seed
and search packets intersect. In this section, we outline
VDR and discuss various techniques for mapping neigh-
bors to interfaces in a globally consistent manner, requiring
low maintenance manner under various topologies as well
as state dissemination and lookup techniques.

2.1 Virtual Interface Assignment

In this section, we define the concept of virtual interfaces
as used in VDR. Traditionally, interfaces are physical de-
vices that offer points of connection between other devices.
These devices can be physical connectors or wireless anten-
nas that negotiate links between neighbors. In VDR, each
node partitions its set of one hop (or low latency) neighbors
into an n number of virtual interfaces. The total number
of virtual interfaces per node can be fixed or varied but the
partitioning strategy (i.e. hash functions) must be globally
consistent. We will assume for now that the total number of
virtual interfaces a node has (n) is fixed and globally con-
sistent (i.e. all nodes decide on the same number of virtual
interfaces and this number does not change).

VDR Neighbor to Virtual Interface Map

Figure 2. VDR Virtual Interface Assignment

The concept of virtual interface assignment is illustrated
in Figure 2. Each virtual interface is assigned an ID from
0 to n — 1 and each one hop neighbor (as determined by
physical neighbors or by a latency constraint) is assigned to
a specific interface. In assigning nodes to an interface, it is
important to keep the assignment globally consistent even
in the presence of high churns. In other words, nodes as-
signed to a specific interface should always be assigned to

the same interface even if they are unreachable for a cer-
tain amount of time. This will minimize the dynamism and
make replicated data less susceptible to network changes.

Assuming each node has a unique identifier (e.g. IP ad-
dress), we employ a simple heuristic to assign neighbors to
an interface: 1) Hash each neighbor node ID to 160 bit IDs
using SHA-1 [4] and 2) Mod the resulting value by the num-
ber of interfaces and assign the node to the interface ID with
the resulting value. By assigning neighbors in the preced-
ing manner, we are able to consistently map neighbors to
the same interface despite network churn. It is important to
note that with these conditions, some interfaces might have
more neighbors assigned to them than others.

After all the neighbors have been assigned to a virtual
interface, a virtual north is randomly chosen for each node
by randomly selecting an interface to be the virtual north.
This selection is important because information is later for-
warded out orthogonal directions with respect to this virtual
north. Note interface hash assignment is NOT the same as
using DHTs to create structures. We simply use the hash for
naming as our technique is unstructured.

2.2. State Information Dissemination

In order to minimize network flooding, each node dis-
seminates its own ID to specific neighbors in the network
to make itself easier to locate. To do this, each node peri-
odically seeds its own ID to nodes along orthogonal paths
with respect to its own virtual north. Each node will select 4
interfaces that are orthogonal to each other and choose the
neighbor along that virtual interface which has the closest
hashed ID match to the source node’s hashed ID.

When the neighbor node receives this seed packet, it will
note the previous hop and source of the packet in its routing
table (storing the source as the destination and the previous
hop as the next hop) and forward the packet out the interface
that is virtually opposite of the receiving interface (until
TTL is reached). The packet is not flooded to all neighbors
assigned to that virtual interface, however, but the neighbor
that has a hashed ID closest to the source’s hashed ID. This
will ensure that the packet forward is biased toward nodes
that are closer in ID to the source so searching for nodes
will form a much higher level of convergence.

A secondary heuristic (in addition to pure random walk)
is used for comparison in our simulations: randomly choos-
ing a neighbor in each virtual direction rather than biasing
it toward the ID of the source.

2.3. Route Query

When a node wants to do a search for another node in
the network, it generates a route request (RREQ) packet
and forwards it along virtually orthogonal interfaces with

63

[10-1]=9

|26 —1| =25
7 Seed Source: Node 1
(ol
(67,
[
{28;
l5-1]=4.57
[M13-1]=12 A\

VDR State Information Replication

14
S 1a-1=13
[22-1] =21

Figure 3. VDR State Information Seeding Example

respect to its virtual north. Upon receipt of the packet, each
neighbor will update its routing table with a “destination
- next-hop” entry based on the RREQ packet’s source and
previous hop and check to see if it has a routing entry to
the node the source is searching for. If not, it will forward
the node to the interface virtually opposite the receiving in-
terface until it reaches a node that has information to the
search destination or reaches its own TTL.

[10-12=2
|26—12| =15 Route Request: Node 12 VDR Route Request

- 10 RREQ Source: Node 1 LT

]

[13-12/=1

[38-12=26 -

Figure 4. VDR RREQ Path lllustration: Pack-
ets are biased towards destination ID.

46/

__. RREQ:Node 12
{48 VDR Route Request

Virtual View

Figure 5. VDR Dissemination and Route Re-
quest Virtual View

If, however, an entry to the destination exists, the node
will send a route reply (RREP) packet which contains the
number of hops to the request destination in the reverse di-
rection, relying on routing table entries of the reverse path to
get back to the source. Under network churn, if a node in the
reverse path is no longer active, VDR will re-select a node
in the same virtual direction that has the closest hashed ID
match to the original source of the RREQ packet to forward.
This ensures a globally consistent biasing of the packets to-
ward the intended destination despite path breakages due to
network churn. Path deviations employ an angle correction
method as described in [3].

2.4. Path Deviation

There are instances when nodes wishing to forward in
a specific interface find that no neighbors are assigned that
virtual interface. VDR employs a strategy to correct for path
deviations in an attempt to maintain virtual straight lines.
The strategy is fairly straight-forward and employs an an-
gle correction method based on encoding a multiplier in the
header based on the number of interfaces deviated from the
intended send direction. More information can be found in

[3].
3. Performance Evaluation

In this section, we provide performance evaluations of
VDR under various parameters and against some basic
random-walk techniques and flooding techniques. The sim-
ulations were performed using PeerSim [1] under a cycle-
driven model. We wire our topology such that each node
has a k out-degree. Because links are bidirectional, it is ex-
pected that each node has an average of 2k one hop neigh-
bors. Although Internet topology is power-law (many nodes
have few connections while some nodes have a large num-
ber of neighbors), we can assume this topology because

64

Table 1. Default Simulation Parameters

Parameter Values
Nodes / # of Virt Int. | 50,000 /8
Simulation Cycles 150
Churn percentage 0% - 50% every 5 cycles
Seed/Search TTL 10 - 100 hops
Seed Entry Expiry 10 Cycles (under churn)
Number of Queries 1000 Randomly Generated

1) peer-to-peer systems are overlay networks and connec-
tions are often virtual, 2) 1 hop neighbors can be physical
one hop neighbors or links with the lowest latency, and 3)
peer-to-peer systems represent a subset of the whole net-
work and small-world examples show relatively flat topolo-
gies [8, 10].

The performance metrics evaluated include reachability,
path stretch vs. shortest path, and network-wide state dis-
tribution. We examine these metrics under conditions of
varying seed and query TTL and strategies, average num-
ber of immediate neighbors, number of virtual interfaces,
and network churn. All simulations were averaged over 10
runs under random topologies and 95% confidence intervals
were mapped. 1000 randomly generated source and desti-
nation queries starting between 30 to 100 cycles were used.
Table 1 gives our default simulation parameters.

The search and seed strategies used include VDR, VDR-
Random (VDR-R), and Random Walk Routing (RWR).
VDR is the exact strategy described in Section 2 while
VDR-Random (VDR-R) utilizes the same node to interface
assignment technique, but randomizes the node forward-
ing in a specific direction. In short, if a virtual interface
has multiple nodes assigned to it, VDR-R will choose a
random neighbor associated with that interface rather than
choose the neighbor with the hash closest in distance from
the source node (for seed packets) or query-search node (for
search packets). The random walk strategy (RWR) is not a
pure random walk but each node sends 4 seed packets at
periodic intervals to 4 random neighbors which “walk” the
network. We call these packets “walkers”. When a source
node needs to find a route to a destination, 4 route request
packets (“walkers”) are sent out to 4 random neighbors.
Each of the walkers are essentially random walk packets
and are dropped after a certain TTL.

3.1. Evaluation of VDR in Churn-less Environments

In this section, we examine the effect of search and seed
packet TTL, number of virtual interfaces, and average num-
ber of neighbors per node on reachability, path stretch, and
state distribution under the three seed strategies as listed
above (VDR, VDR-R, and RWR) in a fixed, no churn envi-

ronment. Each of the 50,000 simulated nodes utilize 8 vir-
tual interfaces with out-degree k assigned to 10 (20 neigh-
bors).

For all cases, seed information is sent only once and the
expiry time for each entry is set to the number of simulation
cycles as we assume that the network is not dynamic and
continual send is redundant. This is also important because
under the random walk routing (RWR) technique, contin-
ual sending of the seed packets lead to different neighbors
chosen each time leading to huge confusion in path choices
(essentially, all nodes in the network would know a source
after a set time if the expiry was set high).

3.1.1 Effect of Seed and Search TTL

In this subsection, we examine the effect of search and seed
packet TTL on the metrics above. We expect that VDR
should provide higher connectivity and lower path stretch
than the other strategies (VDR-R and RWR) under smaller
seed/query TTL simply because it biases the packets toward
a specific ID.

Reach Probability vs. Seed/Query TTL

09
08 |
o7}
06 -
05
04
03}
02 VDR w/ Closest ID Match (VDR) —— |

0.1 -) VDR w/ Random ID Match (VDR-R) 4
o & .)))) Random Walk Protocol Q

10 20 30 40 50 60 70 80 9 100
TTL of Seed / Query Packets - 50,000 Nodes (K: 10)

Reach Probability

Figure 6. VDR-R achieves better reachability
within less TTL in comparison to RWR. Ad-
ditional consistency reinforcement with clos-
est ID match (VDR) improves the reachability
further.

It can be seen in Figure 6 that VDR is able to find nodes
with a higher success rate with less query and seed TTL.
This is beneficial because lower TTL lowers the amount of
packets traveling network-wide, freeing up links for data.
It is interesting to note that even with a TTL of 100, VDR
achieves almost 100% reachability in a network of 50,000
nodes. The random walk search (RWR) technique, as ex-
pected, converged the slowest, requiring a much higher TTL
to even come close to VDR. The reason that RWR even
comes close to VDR is because of the fixed network en-
vironment. Under network churns, however, state mainte-
nance would grow dramatically simply because seed dis-
semination would no longer be sent to the same nodes.

65

Avg. End-to-End Path Stretch vs. Seed/Query TTL

VDR w/ Closest ID Match (VDR) +—>¢—i
VDR w/ Random ID Match (VDR-R) Bl
Randqm Walk P‘roloco\ (RYVR) Dt

10 20 30 40 50 60 70 80 90 100
TTL of Seed / Query Packets - 50,000 Nodes (K: 10)

Avg. End-to-End Path Stretch

Figure 7. In VDR, path stretch from source to
actual data (destination) is roughly 15% less
than with random walk.

We see from Figure 7 that path stretch is much less in
VDR. This is due to packets being biased toward the ID
with the closest match. It is interesting to note the high
number of hops traversed through VDR, VDR-R, and RWR
as compared to shortest path. The shortest path in a wired
network grows on order of log(/N) where N is the number
of packets in the network. Therefore, it is expected that
with 50,000 nodes in the network, the shortest path should
be roughly 4.7 hops. It makes sense that these path lengths
increase with increased TTL because source and destination
pairs that are now farther away can be reached and so the
average path length increases with increased reach.

3.1.2 Effect of Number of Virtual Interfaces

In this section, we examine the effect of modifying the
number of virtual interfaces on the metrics listed earlier.
With finer granularity (more virtual interfaces), it is ex-
pected that the difference between VDR and VDR-R will
become smaller because the randomness in neighbor selec-
tion for each interface will be reduced as there would only
be 1 neighbor per interface. Figures 8-9 show our results
for simulating VDR and VDR-R with a search/seed TTL of
50 and 100.

As shown in Figure 8, VDR has much higher reach prob-
ability with lower number of virtual interfaces. This is due
to the biasing of IDs such that there is a better convergence.
Interestingly, when the number of interfaces increase, the
probability that two neighbors will select different virtual
north will be higher. This different virtual views deviate the
consistency of the peers’ view of the network and thus re-
duce the consistency of the “orthogonal” lines. The results
are more pronounced at lower seed/search TTL simply be-
cause there isn’t a saturation of states. The closer VDR gets
to 100% reach, the less TTL will affect the packet reach
probability resulting in less difference in reach. One of the

Reach Probability vs. # of Virtual Interfaces

o9 f ’ B

VDR w/ Closest ID Match (VDR) - TTL: 50 +——>¢—

0.8 VDR w/ Random ID Match (VDR-R) - TTL: 50 1
VDR w/ Closest ID Match (VDR) - TTL: 100 :--g--z

07 VDR w/ Random ID Match (VDR-R) - TTL: 100 &

Reach Probability

04 : .
8 16 24 32

Number of Virtual Interfaces - 20 Average Neighbors

Figure 8. When the number of interfaces are
less than the number of neighbors, the bias-
ing effects of VDR are more pronounced lead-
ing to higher reach.

Path Stretch (Src to Dest) vs. # of Virtual Interfaces

v O VDR w/ Closest ID Match (VDR) - TTL: 50 —— b
15 | - VDR w/ Random ID Match (VDR-R) - TTL: 50 m
VDR w/ Closest ID Match (VDR) - TTL: 100 g
14 - VDR w/ Random ID Match (VDR-R) - TTL: 100 s 1
13 . E
1

10 I I I I
8 24 32

16
Number of Virtual Interfaces - 20 Average Neighbors

Shortest Path to Source (# hops)

Figure 9. Biasing effects are greater seen
when there are more neighbors assigned to
a virtual interface, generating shorter paths.

reasons for greater reach is the lowered path length required
for VDR as compared to VDR-R. This again, is due to the
biasing of packet IDs. It is interesting that the lower the
TTL, the lower the path stretch observed. This is because
there is a smaller fraction of delivery success and only the
paths that succeed (the shorter ones) are measured.

Figure 10 shows the spread of states maintained
network-wide. VDR and VDR-R average around the same
number of states per node. The state deviation (state spread)
pictures how well distributed the states are network-wide.
A smaller spread equates to a more evenly distributed net-
work. We see that although VDR provides higher reach
and better path stretches, the states are spread rather un-
evenly network-wide. This is a result of announcement
packets constantly biasing their information to nodes with
IDs closer to themselves. As a result, neighbors that haven’t
sent seed packets are often left with fewer states to maintain
(only the ones that come in through request packets).

66

Average States Maintained Spread vs. # of Virtual Interfaces
500

S
Q 450 | @ e ®
o3 VDR w/ Closest ID Match - TTL: 50 +—%—
%) VDR w/ Random ID Match - TTL: 50
o 400 |- VDR w/ Closest ID Match - TTL: 100 g 1
] VDR w/ Random ID Match - TTL: 100 &z
£ 350 A - A A
= e A
i) N—
£ a0} e 1
g . ’
» 250 A 4
2 X
© 200 | |
«
(%]
& 150 —
>
X 100 N . . .

8 16 24 32

Number of Virtual Interfaces - 20 Average Neighbors

Figure 10. VDR has high state distribution de-
viation suggesting an uneven distribution of
state networkwide.

3.1.3 Effect of Number Neighbors

In overlay networks, neighbor nodes are often assigned ran-
domly based on the latency from a specific node rather than
physical links. Because of this flexibility in neighbor as-
signment, it becomes interesting to examine how increasing
the number of neighbors per node affects reach, path stretch,
and state distribution in networks utilizing VDR, VDR-R,
and RWR.

In these simulations, we fix the virtual interfaces to 8
and increase the k constant (the number of out-degrees)
from 5 (avg of 10 neighbors/node) to 20 (avg of 40 neigh-
bors/node). Because as k is increased, a greater number of
neighbors will be assigned to each interface, it is expected
that the biasing effect in VDR will yield much more bene-
ficial results over VDR-R for larger k values. As the £ is
increased, we also expect to observe increased path stretch
under lower search/seed TTL simply because the number
of nodes in the network are fixed and if each node has more
neighbors, paths to each node is inherently shorter (lower
shortest path yielding higher path stretch). One would also
expect higher reach with increased k& because end-to-end
paths to all nodes are essentially shorter.

Figures 11 and 12 show our results for reachability while
increasing k for each of the query and seed strategies at 50
TTL and 100 TTL. It can be seen that with VDR, as the
number of neighbors increase, higher reach occurs. Un-
der the same conditions, we see that VDR-R and RWR
yield significantly less reach than VDR. Comparing VDR
to VDR-R, we see that as the number of neighbors in-
crease, VDR-R reach remains relatively constant. This is
due in part to the forwarding mechanism found in VDR-R.
In VDR-R, although the number of neighbors (and thus the
number of neighbors assigned to each interface) increases,
its decision-making strategy is still to choose a random
neighbor in a specific virtual interface direction.

Reach Probability vs. Average # of Neighbors (2k)

0.9

08 -

0.7 -

0.6

0.5 -

04 -

03+ @

Search Success Rate

VDR w/ Closest ID Match (VDR) +=—>¢— |
VDR w/ Random ID Match (VDR-R)
02)) Randc(m Walk Routing (RWR) Q
’ 10 20 30 40
Average # of Neighbors (2k) - Seed/Query TTL: 50

Figure 11. VDR has higher reachability than
VDR-R and RWR with increased neighbors
and search/seed TTL of 50 hops because of
biasing packets toward the query destina-
tion.

Reach Probability vs. Average # of Neighbors (2k)

Reach Probability

VDR w/ Closest ID Match (VDR) —>é— |
VDR w/ Random ID Match (VDR-R)
Rando‘m Walk Routing (RWR) !--Q--!

0.65 L L
10 20

30
Average # of Neighbors (2k) - Seed/Query TTL: 100

40

Figure 12. VDR has higher reachability than
VDR-R and RWR with increased neighbors
and search/seed TTL of 100 hops because
of biasing packets toward the query destina-
tion.

The assignment of nodes to a virtual interface negatively
impacts the options available to send and therefore the gains
by simply having more neighbors (and thus shorter end-to-
end paths) are offset by the losses due to assigning neigh-
bors to rigid virtual interfaces. Because VDR-R still ran-
domly chooses nodes in a specific interface direction, this
results in a relatively constant reach even under increased
k.

Figures 13 and 14 shows the results for end to end path
stretch while increasing k for a query and seed TTL of 50.
It’s interesting that overall, the path stretch increases with
increased number of neighbors. This makes sense because
paths chosen are less efficient due to the greater number of
neighbors assigned to each interface. Comparatively, how-
ever, VDR still yields only slightly shorter path stretch than
VDR-R and RWR with increased number of neighbors.

67

Path Stretch vs. Average # of Neighbors (2k)

= i
S 4t @ A
o i
= J
[ZERERS i
.C
® 12 i
o
e
@ 1 4
o}
(=]
o 10r 1 g N
e ol >*‘/ VDR w/ Closest ID Match (VDR) —3%¢— |
@ o8 VDR w/ Random ID Match (VDR-R)

H Random Walk Routing (RWR) Q

8 T L L
10 20 30 40

Average # of Neighbors (2k) - Seed/Query TTL: 50

Figure 13. Path stretch increases with more
neighbors because in a network of fixed num-
ber of nodes, with more connections to and
from each node, the average end to end
shortest path decreases.

Path Stretch vs. Average # of Neighbors (2k)

VDR w/ Closest ID Match (VDR) —>¢—
VDR w/ Random ID Match (VDR-R) 4
Rande Walk Routing (RWR) ;..Q..;

40

£ 2t A
g=r o
2 E
= P

O o220t L D 4
< e O

® 9 A e R
o

— 18r 4
D

@ 17+ g
o

o 16f NS |
= T

o

<

L2

13 L I
10 20

30
Average # of Neighbors (2k) - Seed/Query TTL: 100

Figure 14. Path stretch increases with more
neighbors because in a network of fixed num-
ber of nodes, with more connections to and
from each node, the average end to end
shortest path decreases.

3.1.4 Evaluation of State Distribution

Its interesting to examine how evenly the state is spread
network-wide because in flat topologies, even distribution
suggests no single point of failure. Because VDR is essen-
tially a biased random-walk technique, it is expected that
state is fairly evenly distributed throughout the network. To
simulate state distribution, we generated a fixed overlay net-
work with an average of 20 neighbors each. Keeping this
overlay network fixed, we ran the simulation 10 times with
varying initial virtual orientations and took snapshots of the
state throughout the simulation, averaging the state per node
for each run over all 10 runs. A histogram of the frequency
of a average states maintained is shown in Figure 15.

As Figure 15 shows, the average states maintained is less
evenly distributed in VDR compared to VDR-R and RWR.

Frequency of States Maintained Networkwide
35000

VDR w/ Closet ID Match (VDR) &===
VDR w/ Random ID Match (VDR-R) £==—=3
Random Walk Routing (RWR) -

T

30000

T

25000

20000 VDR: Avg States: 389.7, Std. Dev: 204.7 -

VDR-R: Avg States: 397.8, Std. Dev: 108.0
15000 | RWP: Avg States: 357.8, Std. Dev: 56.6
3
2,

T

10000

Number of Nodes

5000

Average Number of States (10 Runs - 50,000 Nodes)

Figure 15. VDR has high state distribution de-
viation suggesting an uneven distribution of
state networkwide.

This suggests that some nodes have more information than
other nodes. We suspect this is due to certain nodes with
hashed IDs closer to the average being chosen as an appro-
priate “next hop” more than the other nodes.

3.2. Evaluation of VDR in Dynamic Environments

In this section, we examine the effect of network churn
on reachability, end-to-end path stretch, overall network
load and state distribution under the three seed/search
strategies as listed above (VDR, VDR-Random, and Ran-
dom Walk). We simulate churn in the following manner:
First, all nodes are connected by assigning an average of
k out nodes from each node. Because the links are bi-
directional, each node generally has roughly 2k neighbors.
We then “turn off” half the nodes in the network probabilis-
tically essentially dropping the average number of neigh-
bors to k. The inactive nodes now serve as “raw material”
for new connections and nodes currently in the original set
can be either turned off or on per simulation cycle.

For our simulations, we fix the number of nodes active
to be a constant at half the total available nodes and every
5 cycles, randomly activate a percentage of nodes with re-
spect to the active nodes and deactivate the same number
of nodes randomly. When nodes are deactivated, all the
packets in their incoming queue are dropped and routing
tables emptied. When they are activated, the connections
that were originally formed with neighbor nodes remain the
same. Thus, nodes can be active and inactive at any point in
the simulation and have essentially maintain the same state.

The simulator keeps track of all the nodes that have ever
been active and queries are generated based on any node
that has ever been active. This makes sense as in an overlay
network, resources that have never been allocated will never

68

be able to be found. Expiry time for each routing entry is
set 10 cycles which is the same as the seed/announcement
packet send interval. As per the VDR algorithm, search
queries are sent out virtual orthogonal directions until they
intersect a node with a path to the destination in their routing
table. When this occurs, a search reply packet is generated
and sent in the reverse path. In the event of reverse path
nodes no longer being up, a node in the same virtual direc-
tion is chosen with an ID closest in match to the source of
the search query (the destination of the search reply). Un-
der RWR, another node is randomly chosen. In our scenar-
ios, we simulated 25,000 active nodes with a total pool of
50,000 nodes under various churn percentages. The TTL
of the seed/announcement packets was set to 150 and each
node contained an average of 20 one-hop neighbors.

We examined how the percentage of network churns af-
fect route query success. We consider a successful query
to have occurred when a route request is initiated and it re-
ceives a route reply from a rendezvous node. It’s expected
that VDR outperforms VDR-R and RWR simply because
it orders neighbors into a more structured fashion with vir-
tual interface assignments. With the RWR, four route re-
quest packets (“walkers”) are sent out to random neighbors
in search for seed information planted by four seed dissem-
ination/replication packets. These seed packets are sent out
periodically to different neighbors so while at some point
there might be more state network-wide, the expiry of the
routing information removes stale routes quickly. Our re-
sults are shown in Figures 16 and 17.

Reach Probability vs. Network Churn

Reach Probability
o

07l Lo T H |
D— ...
065 [P Qv O-... I
VDR w/ Closest ID Match (VDR) —>¢— T — O
06 - VDR w/ Random ID Match (VDR-R) N
A

Raqdom Walk Protocql [

0 10 20 30 zio 50
Network Churn (% of Network) - 25,000 Nodes (K: 10, TTL: 50)

Figure 16. VDR maintains much higher reach-
ability than VDR-R and RWR with increased
percentage of network churn. It also much
more robust to network churn, dropping only
5% reach for 50 seed/search TTL compared
to VDR-R and RWR which dropped 12-15%
going from 0% to 50% network churn for a
seed/search TTL of 50.

As Figures 16 and 17 show, VDR has the highest per-
centage of search success/reach under the same network

Reach Probability vs. Network Churn

Reach Probability

VDR w/ Closest ID Match (VDR) ——
VDR w/ Random ID Match (VDR-R)
Random Walk Routing (HWI‘R) Dt))
0 10 20 30 40 50
Network Churn (% of Network) - 25,000 Nodes (K: 10, TTL: 70)

Figure 17. VDR maintains much higher reach-
ability than VDR-R and RWR with increased
percentage of network churn. It also much
more robust to network churn, dropping only
2% reach for 70 seed/search TTL compared
to VDR-R and RWR which dropped 7-8% go-
ing from 0% to 50% network churn for a
seed/search TTL of 70.

churn rate compared to VDR-R and RWR. It outperforms
VDR-R because of the biasing effect of the neighbor send.
Because each node has about 15 neighbors and 8 virtual in-
terfaces, there is a possibility that if a neighbor is down (or
swapped), VDR will choose another neighbor that is atleast
biased toward the search query source (search reply destina-
tion) whereas VDR-R will simply randomly choose a node.
VDR outperforms RWR simply because in sending search
replies, if a previous hop is no longer available, then it must
randomly choose a neighbor to forward. If it was forced
to perform a random walk until it reached the search query
source, it would most definitely result in a packet loss the
majority of the times. However, because the random walk
need only intersect a node with a path in its routing table to
the search query source, there is still relatively high reach
(~81% even for 50% network churn with a search/seed TTL
of 70).

It is also important to understand the rate at which reach
drops with respect to the percentage of churns. As can be
seen from Figures 16 and 17, VDR drops only 5% in reach
from 0% to 50% network churn for a search/seed TTL of
50 and only 2% for a search/seed TTL of 70. This is impor-
tant because even with 50% nodes turning off and new ones
being added, there is still a high degree of reach and robust-
ness to search. VDR-R and RWR, on the other hand, drops
about 12-15% in reach for 50 TTL and 7-8% in reach for
70 TTL simply because of the random nature of their send
as described before: if a search query reply packet finds the
next hop inactive, it must retrace its path without any kind
of “hints”.

69

3.3. Summary of VDR Performance Evaluations

Below we summarize our findings in performance eval-
uations for VDR:

e VDR reaches 3.5% more nodes than VDR-R and 9%
more nodes than our modified random walk routing
strategy (RWR).

e VDR-R produces the same reach and path stretch
results with increasing number of virtual interfaces.
VDR increases reach with fewer number of virtual in-
terfaces because of its biasing technique. Gains dis-
appear if the number of neighbors is smaller than the
number of interfaces.

e Increasing the number of neighbors generally in-
creased reach and end-to-end path stretch. This was
probably due to more node choices per neighbor to bias
information.

e VDR states are not well distributed.

e VDR shows a 3-4X reach retention rate going from
0% to 50% network churn compared to VDR-R and
RWR, showing itself to be much more robust to net-
work churn.

e VDR does not spread state or load evenly.

e VDR paths exhibit high path stretch compared to
shortest path but good path stretch compared to pure
random walk.

Most of our reported simulation results start with 8 vir-
tual interfaces because it is the minimum required to per-
form angle correction. Subsequent tests with fewer inter-
faces (not reported in this paper) seemed to yield even better
results. It seemed that when directions reflect actual physi-
cal topology (such as in wireless networks), more interfaces
offer greater granularity. With virtual directions, however,
fewer interfaces offer better results.

4. Conclusion

In this paper, we presented Virtual Direction Routing
(VDR), a scalable overlay network routing protocol that
uses the concept of virtual directions to efficiently perform
node information dissemination and lookup. State informa-
tion is disseminated to nodes along virtual orthogonal lines
originating from each node and periodically updated. When
a path lookup is initiated, instead of flooding the network,
query packets are also forwarded along virtual orthogonal
lines until an intersection with the seeded state. Both seed
and search packets are biased toward the originator ID and

search ID respectively. We show that in a small-world, un-
structured, flat topology, VDR provides high reach even
with low seed/query TTL (~98% reach for a TTL of 100
for a 50,000 node network) and that VDR is robust to churn
(dropping only 2% in reach going from 0% to 50% network
churn). We also show that VDR scales well without im-
posing DHT-like graph structures (e.g.: trees, rings, torus,
coordinate-space, etc.) and the path stretch compared to
random-walk protocols (the traditional method to route in
unstructured overlay networks) is very good. VDR trades
off the gains by not having an even distribution of state.
This is due to the biasing of state dissemination packets
such that certain neighbors consistently receive state infor-
mation while others do not. Path choices are also subopti-
mal compared to flooding techniques due to the two phased-
biased random-walk nature of VDR.

References

[1] PeerSim: A Peer-to-Peer Simulator. http://peersim.
sourceforge.net.

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like systems scalable. In Pro-
ceedings of ACM SIGCOMM, 2003.

[3] B. Cheng, M. Yuksel, and S. Kalyanaraman. Orthogonal
rendezvous routing protocol for wireless mesh networks.
IEEE/ACM Transactions on Networking (ToN), 17(2):542—
555, April 2009.

[4] D.Eastlake and P. Jones. Us secure hash algorithm 1 (shal).
RFC 3174, September 2001.

[5] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search
schemes for unstructured peer-to-peer networks. In Pro-
ceedings of Conference on Computer Communications,
2005.

[6] Gnutella Inc. http://www.gnutella.com, 2004.

[7]1 H. Guclu and M. Yuksel. Limited scale-free overlay topolo-
gies for unstructured peer-to-peer networks. IEEE Transac-
tions on Parallel and Distributed Systems, 20(5):667-679,
May 2009.

[8] A.Iamnitchi, M. Ripeanu, and I. Foster. Small-world file-
sharing communities. In Proceedings of Conference on
Computer Communications (INFOCOM), 2004.

[9] KaZaA Inc. http://www.kazaa.com, 2004.

[10] J.Kleinberg. Navigation in a small world. Nature, page 845,
2000.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Pro-
ceedings of ACM SIGCOMM, 2001.

[12] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Tran. on Networking, 11(1):17-32, Feb 2003.

[13] W. Terpstra, J. Kangasharju, C. Leng, and A. Buchmann.
BubbleStorm: Resilient, Probabilistic, and Exhaustive Peer-
to-Peer Search. In Proceedings of ACM SIGCOMM,2007.

10

70

