

Abstract—The efficient scheduling of streaming data delivery

in a peer-to-peer (P2P) network is a hard problem due to the
Internet’s lack of support for resource allocation and
performance guarantees. In particular, the bandwidth resources
available to a peer is constantly in flux and the future bandwidth
availability is very difficult, if not impossible, to predict
accurately. This work proposes to tackle this problem from a
different angle. We investigate the use of erasure codes to encode
the media data and then schedule multiple peers to stream the
encoded data simultaneously to a receiver. By exploiting the
order-invariant property of erasure codes this approach enables
the sending peers to fully utilize their available bandwidth
resources and yet does not need to estimate or predict their
bandwidth availability. Moreover, we develop distributed
scheduling algorithms to juxtapose the data transmissions from
multiple peers so that the coding and storage complexities can be
kept at practical level in scaling up the system. This paper
describes the motivation, architecture, and design of the proposed
coding/scheduling algorithms; develops a performance model to
characterize the algorithms’ performance bounds; and evaluates
them through simulation as well as experiments.

Index Terms—Erasure codes, media streaming, multi-source,
peer-to-peer, scheduling

I. INTRODUCTION
HE rapid growth of multimedia contents in the Internet has
put much strain on the content providers. In particular, the

conventional centralized server architecture has increasingly
becoming the bottleneck in larger-scale content distribution due
to the immense bandwidth required. The recent developments
in distributed content delivery systems such as peer-to-peer
(P2P) and hybrid P2P open up new ways to tackling this
bandwidth-scaling problem.

Common to these new architectures are the use of peers,
distributed across the Internet, individually capable of serving
whole or part of the content, and together can provide sufficient
bandwidth to serve a huge number of concurrent users. This
distributed approach can achieve far better scalability by
recruiting peers to serve as servers.

As a result, P2P have grown tremendously over the past
decade, enabling the distribution of large files efficiently across
the Internet. Beyond file download, the next frontier is in
streaming contents such as audio and video. Unlike file
download, streaming media is often decoded and played back
while the data are being transferred. Thus, hiccups in data
distribution may lead to playback interruption, often in the form
of sudden playback pauses or in some cases, audio-visual

degradation of the decoded media.
Fundamentally, if data delivery failure is a result of

insufficient bandwidth (across the whole system), then the only
solution would be to adapt the contents to fit the amount of
bandwidth available using techniques such as scalable video
codec [1], [2] or real-time transcoders [3], [4]. However, even if
there is sufficient bandwidth available across the system the
required media data may still fail to be delivered to the client in
time for playback. Specifically, given a number of peers
available for streaming media data, the client will need to
determine which peers to employ and what part of the media
stream each should transmit and at what time. Given that the
Internet does not guarantee bandwidth availability nor is there a
reliable way to predict future bandwidth availability, this task is
far from trivial.

This work tackles this resource allocation problem from a
different angle. Instead of attempting to predict bandwidth
availability and then developing algorithms to adaptive to it, we
propose the use of erasure codes to encode the media data and
then transmit them from multiple peers simultaneously to the
client. By exploiting the order-invariant property of erasure
codes this approach completely eliminates the need of
estimating or predicting the bandwidth availability in the data
transfer process. The peers simply transmit data at the
maximum rate allowed by the transport protocol, the network
path, and any other arbitrary constraints, and the client can
simply wait until sufficient amount of encoded media data are
received, irrespectively of which peers they came from, and
then decode the data to obtain the original media data for
playback. This approach also solves the problem of peer churn
common in P2P systems as the bandwidth void created from
peers leaving the system will automatically be filled up by the
extra transmission from the remaining peers.

Nevertheless, two challenges remain when scaling up
multi-source erasure-coded streaming to a large user population
over P2P networks. First, the computational complexity of
many erasure-correction codes such as Reed-Solomon (RS)
codes [5] increases super-linearly with the size of the coding
space, i.e., the size of the peers’ population. For large systems
with potentially hundreds, if not thousands, of source peers, the
erasure encoding process will become the system bottleneck.
Second, to guard against malicious peers from injecting bogus
data into the data stream it is essential to have a way to verify
the data fragments as they are received from the many different
peers.

Multi-Source Scheduling in Streaming
Erasure-Coded Video over P2P Networks

M. L. Ma and Jack Y. B. Lee, Senior Member, IEEE

T

978-1-4244-7139-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

276

Original Data

Erasure-Coded Data

Received Data

Original Data

Encoding

Transmission

Decoding

Fig. 1. The process of the erasure-correction coding.

This is most commonly done by creating a hashed key for

each data fragment and distributing the hash key from a trusted
server. The client can then verify the authenticity of the data
fragments received by comparing its hash with the hash key
from the trusted server. While this works well in existing
systems such as Bit-Torrent (BT) [6], our study revealed that
the hash-generation process’s computational complexity and
storage requirement increases exponentially when applied in
the erasure-coded environment, thereby limiting the system’s
scalability.

This paper tackles these two challenges by introducing a
novel scheduling algorithm to decouple the dimension of the
coding space from the number of source peers in the system.
This enables the use of small coding space which are both
computationally efficient and storage efficient. The underlying
principle is to allow data duplications in the encoding process,
which reduces the coding space size, and then schedule the
peers’ data transmission in such a way to reduce the amount of
collisions (i.e., transmission of duplicate data). Our initial
findings confirmed that using multi-source scheduling it is
possible to reduce the coding space size from the number of
sources to three and yet maintain an average collision rate of
less than 1%.

The rest of the paper is organized as follows: Section II
reviews some previous related works; Section III presents the
details of our proposed scheduling algorithm; Section IV
analyzes the performance of the proposed scheduling
algorithm; Section V presents the simulations and experimental
results; Section VI summarizes our work and outlines some
future work.

II. BACKGROUND AND RELATED WORK
In a conventional media streaming system, the encoding of

media data (e.g., video compression) is typically orthogonal to
the way data are delivered over the network to the client. Given
the media encoded data rate, the streaming protocol will need to
ensure that media data can be delivered to the client in time for
playback. As discussed in Section I, the Internet’s inherent
bandwidth fluctuations is a major challenge to this end and
most of the existing solutions rely on pull-based protocols. The
client react to bandwidth and peer quality fluctuations by
dynamically rescheduling the data delivery process among
multiple peers to compensate for any bandwidth deficiencies
[7]-[10] or exploit path diversities in streaming data over
multiple network paths [11]-[12].

Pull-based protocols can and do work well in practice for file
sharing applications, e.g., BT. However, extending these
protocols to media streaming is more challenging due to the far

more stringent time constraints of streaming media. As
pull-based protocols work by reacting to network resource
fluctuations, it is essential to first detect such fluctuation and
then react to it by reconfiguring the system accordingly.
However, despite more than a decade of research, the challenge
of bandwidth estimation along a network path is still not yet
fully resolved. The nature of the Internet and the dynamics of
competing traffics severely limit the accuracy of bandwidth
measurement tools, especially over a short time scale.

In this paper, we explore an alternative approach to the
problem by combining erasure codes with scheduling. The
principle is to substitute bandwidth estimation and prediction
by erasure codes and multi-source media streaming. This
enables the system to utilize the available network resources
fully without a priori knowledge of their availability.

A. Erasure-Correction Coding
Fig. 1 illustrates the process of erasure-correction coding.

We first divide a segment of data into n data blocks. These n
data blocks are then fed into an erasure-code encoder (e.g., RS
codes encoder) which produces as output n/r encoded data
blocks. The parameter r (r<1) is called the code rate and it
controls the amount of redundancy in the encoded data. The key
idea is that the client can recover the original n data blocks
whenever any n blocks out of the n/r encoded data blocks are
successfully received.

This last property can be exploited to solve the network
resource estimation problem. Specifically, a segment of data is
first distributed to k different peers. Upon receiving a request
from the client, each peer encodes its data into n/r encoded data
blocks and begins transmitting the encoded data blocks to the
client. Thus, all k peers transmit data to the client
simultaneously at a rate determined by their respective network
resource availability. In other words, peers with more resources
(i.e., fast peers) will transmit more data at a given time
compared to slow peers. Moreover, the client can simply
perform erasure correction to obtain the original n data blocks
once it receives exactly n encoded data blocks from any
combination of the peers. The exact number of encoded data
blocks received from each of the peers no longer matters, thus
eliminating the need to estimate network resource availability
and to schedule data transmission among the peers.

This advantage does come with a price – the erasure
encoding/decoding process is computation expensive. Worst
still, the computation complexity of the traditional erasure
codes such as RS codes increases exponentially with coding
space size, which is proportional to the data length. For
example, using Cauchy-based Reed-Solomon Codes [13] to
encode a 1-MB data, for 1-KB packet size, the encode rate and
decode rate achieved by a Pentium-class 2 GHz CPU are only
0.91 MBps and 0.30 MBps respectively.

More recently, researchers proposed a new class of erasure
codes called rateless codes such as LT Codes [14], Online
Codes [15], and Raptor Codes [16] to address the
computational efficiency issue. Compare to traditional erasure
codes, rateless codes are simple and efficient in encoding and
decoding using only XOR operations. More importantly,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

277

rateless-code encoder does not require a predetermined coding
space size. It can dynamically generate coded data of any size
on the fly, by performing XOR operations on a subset of the
original data.

However, rateless codes’ performance superiority can only
be realized when the data length is large (e.g, hundreds of MBs
or more). While this works well in file download [17] where the
whole file can be encoded as a single unit, streaming
applications require the division of the data stream into small
data units (e.g., KBs) such that playback can begin shortly after
a few units of data are received. For example, if we employ 1
MB data unit size at an aggregate streaming bit-rate of 256 kbps,
then the initial startup delay will be at least 32 seconds. Using
the Online codes decoder from [18] with number of data blocks
equal to 10,000 in a Pentium-class 2 GHz CPU, the decode rate
is only 0.54 MBps. Moreover, at this configuration the client
will also need to receive an additional 5.09% of data, called
decoding overhead, before it can recover the original data, thus
further reducing its efficiency.

Note that while it is possible to reduce decoding overhead by
increasing the number of data blocks in the encoding process,
e.g., increasing it from 10,000 to 40,000 will reduce the
decoding overhead from 5.09% to 4.09%., the decode rate will
deteriorate further, dropping from 0.76 MBps to only 0.08
MBps – which is even lower than the traditional RS codes. On
the other hand, decreasing the number of data blocks will
improve decode rate at the expense of decoding overhead. See
Table I for more examples of these tradeoffs. Therefore while
rateless codes have several attractive properties and have been
proposed for peer-to-peer video streaming [19]-[21], their
computational complexity and decoding overhead still present
significant challenges in the application to media streaming.

Another alternative codec is the class of Low-Density
Parity-Check (LDPC) codes [22]-[24]. These LDPC codes
have substantially better decoding performance than rateless
codes. For example, the HLDPC codes [22] provide similar
erasure recovery capabilities as the rateless codes but at a
significantly lower computation complexity in decoding. The
study in [24] shows that the decoding overheads of the
LDPC-triangle codes for various code rate are less than 1%,
even with a small number of blocks (i.e., 1,000), with decoding
time always an order of magnitude faster than RS codes.
Nevertheless, unlike rateless codes, the encoded data blocks in
the LDPC codes are interdependent so that its memory
requirement is proportional to the size of the coding space.
Thus for large coding space the memory requirement will
quickly become the bottleneck.

More recently, network coding [25] has also been applied to
solve the data distribution problem in P2P streaming [26], [27].
Nevertheless network coding still suffer from the same
encoding and decoding complexity issue as conventional
erasure codes and the authors are currently investigating the
application of the scheduling algorithms presented in this work
to mitigate the problem in network-coding-based P2P systems.

TABLE I
PERFORMANCE OF ONLINE CODES OF ENCODING AND DECODING 1MB DATA

Number of blocks Overheads Encoding rate Decoding rate

2000
4000
10000
20000
40000

15.38 %
8.62 %
5.09 %
4.74 %
4.09 %

17.22 MBps
10.20 MBps
4.44 MBps
2.34 MBps
1.22 MBps

6.70 MBps
2.82 MBps
0.76 MBps
0.29 MBps
0.08 MBps

Block size

500 B
250 B
100 B
50 B
25 B

Original Data

Erasure-Coded Data

Received Data

Original Data

Encoding

Hashing and Verifying

Decoding

Hashing

Hashes

Fig. 2. Hash-based data authentication process. A hash is computed for each
erasure-coded data block. The hashes are then distributed through a trusted
channel.

B. Integrity and Security in Content Distribution
Apart from transmission efficiency, integrity and security are

the fundamental problems in distributed systems. In particular
systems such as P2P primarily relies on untrusted user hosts
which could be compromised to inject malicious data into the
system to disrupt normal service or worst – to intrude other
hosts, e.g., by exploiting bugs in the media decoder. Currently
this problem is solved by the use of data authentication as
depicted in Fig. 2.

Specifically, the original source of the media data will
compute a security hash for each media block (e.g., SHA1
[28]). These hashes are then distributed by a trusted server,
typically together with a list of peers or trackers (e.g. BT) for
new clients to begin the data distribution process. Armed with
the hashes a client can then verify the received media data
blocks and simply discard those that failed the test while
requesting the missing media data from another peer.

This hash-based data authentication process works well in a
pull-based data distribution protocol such as BT. Applying the
same process to multi-source erasure-correction coded data
distribution raises two challenges however. First, hash
generation is computation expensive. For example, with 10 MB
data and 100 peers (i.e., code rate is r=0.01), generating hashes
using SHA1 for the 1 GB erasure-coded data on a
Pentium-class processor running at 2 GHz can achieve an
effective encode rate of only 0.13 MBps, which is even lower
than the erasure-correction encode rate. Second, assuming a
20-byte SHA1 hash is generated for every 16 KB of data block
(similar to BT), a total of 1,250 KB hashes will be generated for
the 10 MB data, representing storage and bandwidth overheads
of 12.2%.

The fundamental problem here is that in order to cater for the
potentially large number of peers in the system, the content
publisher must encode the data using a very small code rate,
e.g., using 0.01 for 100 peers. This increases the computation
complexity of both erasure-correction encoding and hash
generation, and the storage overhead incurred by the generated
hashes. By contrast, if the content publisher limits the coding

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

278

space to a small number, e.g., 10 peers, then it may not be able
to utilize all the available peers in the system.

C. Comparisons
In summary, the existing erasure-correction codes all have

limitations when applied to media streaming: RS codes are
limited by their high computational complexity; rateless codes
are limited by their computational complexity and/or decoding
overhead; and LDPC codes variants limited by their memory
requirement and/or decoding overhead. In addition, the
hash-based data authentication process is also limited by the
computational complexity and hash overhead. The root cause
of these limitations is the need to match the code rate to the
potentially large number of peers in the system so that the
encoded data are all orthogonal across all peers.

This work proposed a radically different approach to solving
this problem – we decouple the code rate from the size of the
system, and then develop transmission scheduling algorithms
to reduce the likelihood of duplicated data transmission (called
collisions) from different peers. This approach enables the use
of coding space significantly smaller than the number of peers
in the system, thus substantially reducing the computational
complexity and memory requirement for all types of
erasure-correction codes and hash-generation processes.
Although the encoded data, now being only partially
orthogonal, may result in duplicated data transmissions, our
preliminary results show that even including the effects of
collisions our approach can still achieve lower transmission
overhead than rateless codes (c.f. Section V). We present in the
next section the principles of the proposed multi-source
transmission scheduling algorithm.

III. PARALLEL TRANSMISSION SCHEDULING
In a P2P media streaming system, the original media data

such as a video data stream is first sequentially divided into
numerous segments and distributed to the peers. While a new
client join the system, it collects the information of available
peers from dedicated servers or trackers (e.g. BT) and
downloads the media data segments successively from the
available peers. If more than one peer carries the same media
segment, then the segment is further subdivided into n data
blocks, which are then encoded using an erasure-correction
code to n/r encoded data blocks.

Now let k be the number of source peers in the system. If we
set r=1/k, then a total of nk encoded data blocks will be
produced for each media data segment. These nk blocks are
then distributed equally among the k source peers so that there
will be no duplication of any of the encoded data blocks. In
actual streaming, the client simply connects to as many peers as
they are available and requests them to transmit the encoded
data simultaneously. Once n encoded data blocks are received,
irrespective of which peers they originate from, the client can
decode the original n data blocks to form the media data
segment for playback. This process repeats for subsequent
media data segments until playback completes.

Sender 1

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 2

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 3

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 4

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Fig. 3. Peers transmitting the encoded data blocks in the same sequence.

Sender 1

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 2

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 3

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 4

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Fig. 4. Peers transmitting the encoded data blocks in random order.

A. Data Collisions
The number of peers in a distributed system such as P2P

network can be very large, e.g., hundreds to tens of thousands.
Thus the trivial approach of setting r=1/k will run into
scalability limitations as discussed earlier. Alternatively, if we
decouple r from k, then by keeping r large we will be able to
avoid these scalability limitations. However, this creates a new
problem – data collisions in the transmission process.

Fig. 3 illustrates this data collision problem with n=8, r=1/2,
and k=4. The 8 data blocks are encoded into 16 unique encoded
data blocks, of which any eight of them will be sufficient for
decoding the original eight data blocks. Assuming all four peers
have a copy of the eight data blocks. Then upon receiving a
request from the client, they will begin encoding the data blocks
and transmit them as fast as network resources allow. Fig. 3
illustrates the situation with four peers all sending at the same
rate and each sends out four encoded data blocks, which are
indicated in grey colour. Immediately we can observe the
collision problem – if the peers transmit the encoded data
blocks in the same sequence (e.g., B1,1, B1,2, B1,3, B1,4, B2,1, B2,2,
etc.) then the client will be receiving many duplicate encoded
data blocks – data collisions. Duplicate encoded data blocks do
not contribute to the decoding process and thus are simply
discarded, thereby wasting network resources in transmitting
them. Clearly better scheduling algorithms can reduce data
collisions, which are the focus of the following sections.

B. Randomized Scheduler
The reason for the extensive collisions resulted from the

transmission schedule in Fig. 3 is simple – the peers all have the
same transmission schedule. Therefore, the first improved
scheduling algorithm we consider is the Randomized Scheduler.
Specifically, each peer will send out encoded data blocks in a
random order so that the likelihood of duplicated transmission
is reduced. Fig. 4 illustrates the Randomized Scheduler with
four peers all sending at the same rate. After they send out 16
encoded data blocks as depicted in Fig. 4, the client receives
eight distinct encoded data blocks while there are eight
duplicated encoded data blocks.

The primary advantage of the Randomized Scheduler is its
simplicity. Specifically, individual peer can form its own
transmission schedule without the need to coordinate with other
peers. This is a significant advantage in practice as coordination
in a large-scale distributed system is non-trivial in its own right
and will certainly incur additional control overheads. We will

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

279

analyze the performance of the Randomized Scheduler in
Section IV, and experimentally in Section V.

C. Disjoint-Prefix Randomized Scheduler
Reconsidering the transmission collision problem one

observation is that it is possible to avoid collision in the first
place if we can guarantee the peers to transmit disjoint sets of
the encoded data blocks. Specifically, we first divide the n/r
encoded data blocks into k disjoint subsets, e.g., {Bi,1, Bi,2,…,
Bi,n/rk} for subset i=1,2,…,k. Peer i is assigned a schedule to
always transmit its own disjoint subset i first, and then transmit
the rest of the encoded data blocks using the Randomized
Scheduler. We call this the Disjoint-Prefix Randomized
Scheduler (DPRS).

Fig. 5 illustrates the DPRS with four peers all sending at the
same rate. Each peer only sent out two encoded data blocks, the
client could receive eight distinct encoded data blocks without
any collisions. Compare to the Randomized Scheduler, DPRS
guarantees that the first n/rk encoded data blocks transmitted
are always unique. In the best-case scenario, all k peers send at
the same data rate, resulting in zero collisions in transmitting
the n/r encoded data blocks. Nevertheless, collisions are still
possible if the peers’ transmission rates are different, thus
beyond the disjoint subset the remaining data blocks are
transmitted in random order to avoid synchronized collisions.

More generally, we can vary the size of the disjoint subset in
the DPRS from zero up to n/rk. With the size of the disjoint
subset equal to zero the DPRS algorithm then simple reduces to
the Randomized Scheduler. We analyze the DPRS algorithm in
the next section and show that optimal performance is achieved
when the disjoint subset size is equal to n/rk.

IV. PERFORMANCE MODELING
In this section, we investigate the worst-case and the

average-case performances of the Disjoint-Prefix Randomized
Scheduler (DPRS). Specifically, we derive the worst-case and
average number of transmission collisions in terms of other
system parameters including the number of original data
blocks, the code rate, and the number of source peers. For
simplicity, we assume the erasure codec has zero decoding
overhead (e.g. RS codes). The results can be extended to other
erasure correction codes with non-zero decoding overheads in a
straightforward manner. Table II summarizes the notations
used in the following sections.

A. System Model
Let n, r, k be the number of original data blocks, the code rate,

and the number of source peers (numbered from zero to k-1)
respectively. After erasure encoding we have n/r encoded data
blocks. Suppose n/r is a natural number, we can define the set
of encoded data blocks D to be a set of n/r natural numbers
from zero to n/r−1 where each number represents an encoded
data block, i.e.,
 { }0,1, , / 1D n r= −… (1)

Sender 1

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 2

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 3

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Sender 4

B
1,1

B
1,2

B
1,3

B
1,4

B
2,1

B
2,2

B
2,3

B
2,4

B
3,1

B
3,2

B
3,3

B
3,4

B
4,1

B
4,2

B
4,3

B
4,4

Fig. 5. Peers transmitting the encoded data blocks according to DPRS.

TABLE II
SUMMARY OF NOTATIONS USED IN THE DPRS MODEL

Symbol Description

n

r

k

s

D

p
i

q
i

w
i

t

C

Number of original data blocks
Erasure code rate
Number of peers
Size of disjoint subset
Set of encoded data blocks
Set of blocks in the disjoint subset transmitted by peer i
Set of blocks in the randomized subset transmitted by peer i
Transmission rate of peer i
Transmission time
Collisions, number of duplicated blocks transmitted

Let s be the size of the disjoint subset such. Then peer i will

first transmit its own disjoint subset i and then transmit the
remaining encoded blocks randomly. Note that if we set s to
zero then the DPRS algorithm reduces to the Randomized
Scheduler.

We first make an observation in Theorem 1 for the case
where there is no collision.

Theorem 1. There is no collision if all peers each transmit
less than s blocks.
Proof. Under DPRS the first s blocks are guaranteed to be
unique across all peers. Thus, in this case there will be no
collision among transmissions from peers.

A corollary of Theorem 1 implies that collision occurs only if
at least one peer transmitted more than s blocks, and the
collisions are thus from the randomized subset. Let pi, qi be the
set of blocks sent by peer i in its own disjoint subset and
randomized subset respectively at the time the client receives n
unique encoded data blocks:

0

, 1, , 1 0i

s
p in in in ns s

rk rk rk rk

∅ =⎧
⎪⊆ ⎨⎧ ⎫+ + − < <⎨ ⎬⎪⎩ ⎭⎩

…
 (2)

0

\ , 1, , 1 0i

D s
q in in in nD s s

rk rk rk rk

=⎧
⎪⊆ ⎨ ⎧ ⎫+ + − < <⎨ ⎬⎪ ⎩ ⎭⎩

…
 (3)

where
 i ip s q< ⇒ = ∅ (4)

Since each peer must send the disjoint subset before the
randomized subset, qi remains empty until the peer has
transmitted the entire disjoint subset (i.e., |pi| = s).

Let wi be the transmission rate of peer i (in blocks/s), and t be
the transmission time for the client to receive n unique encoded
data blocks. Thus at time t, the number of blocks sent by peer i
will be equal to wit:
 i i i i iw t p q p q= ∪ = + (5)

Let C be the number of collisions, which can be computed
from

1

0

k

i
i

C t w n
−

=

= ⋅ −∑ (6)

We now reconsider the sets pi and qi. As the client received
exactly n unique encoded data blocks at time t, the cardinality

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

280

of the union of all pi and qi, must be equal to n:

 ()
1

0

k

i i
i

p q n
−

=

∪ =∪ (7)

Noting that the pi’s are unique, we can rewrite the L.H.S of (7)
as

 ()
1 1 1 1

0 0 0 0

\
k k k k

i i i i i
i i i i

p q p E q p
− − − −

= = = =

⎡ ⎤
∪ = + ⎢ ⎥

⎣ ⎦
∪ ∪ ∪ ∪ (8)

where the second term counts the average number of unique
encoded data blocks the client received from the randomized
subset qi’s. As the pi’s are unique, the first term in the R.H.S. of
(8) simply equals to the sum of the individual pi’s cardinality:

1 1

00

k k

i i
ii

p p
− −

==

=∑∪ (9)

Now the second term in (8) can be expressed as follows:

1 1 1 1 1

0 0 0 0 0

\ \ \
k k k k k

i i i i i
i i i i i

E q p D p P b q b D p
− − − − −

= = = = =

⎡ ⎤ ⎧ ⎫⎪ ⎪= ⋅ ∈ ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

∪ ∪ ∪ ∪ ∪ (10)

which is the product of the total number of encoded data blocks
not duplicated in all pi’s and the probability of such a data block
to come from the randomized subsets qi’s. Next we rewrite (10)
as

1 1 1 1 1

0 0 0 0 0

\ \ 1 \
k k k k k

i i i i i
i i i i i

E q p D p P b q b D p
− − − − −

= = = = =

⎛ ⎞⎡ ⎤ ⎧ ⎫⎪ ⎪= ⋅ − ∉ ∈⎜ ⎟⎨ ⎬⎢ ⎥ ⎜ ⎟⎪ ⎪⎣ ⎦ ⎩ ⎭⎝ ⎠
∪ ∪ ∪ ∪ ∪ (11)

and then further express the probability term in terms of the
individual qj:

1 1 1 11

00 0 0 0

\ \ 1 1 \
k k k kk

i i i j i
ji i i i

E q p D p P b q b D p
− − − −−

== = = =

⎛ ⎞⎛ ⎞⎡ ⎤ ⎧ ⎫⎪ ⎪= ⋅ − − ∈ ∈⎜ ⎟⎜ ⎟⎨ ⎬⎢ ⎥ ⎜ ⎟⎜ ⎟⎪ ⎪⎣ ⎦ ⎩ ⎭⎝ ⎠⎝ ⎠
∏∪ ∪ ∪ ∪ (12)

or simply:

1 1 11

0 00 0

\ 1 1
/

k k kk
i

i i i
i ii i

qnE q p p
r n r s

− − −−

= == =

⎛ ⎞⎛ ⎞⎡ ⎤ ⎛ ⎞= − ⋅ − −⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎣ ⎦ ⎝ ⎠⎝ ⎠
∑ ∏∪ ∪ (13)

Equation (13) together with (2) to (6) relates the number of
collisions with the sets pi’s and qi’s, and also the transmission
rates of individual peers wi’s. With this model, we derive the
worst-case and average-case results in the next two sections.

B. Worst-case Analysis
We observe that the number of collisions depends on the

compositions of the sets pi’s and qi’s, which in turn depends on
the transmission rates wi’s. Thus to derive the worst-case
number of collisions we need to find the set of wi’s such that (6)
is maximized. Table III summarizes the notations used in this
section.

Theorem 1 states that there are collisions only if at least one
peer transmitted more than s blocks. Let x be the number of fast
peers which each sent more than s blocks. The remaining k-x
peers are regarded as slow peers.

Theorem 2. Irrespective of how many blocks each slow peer
sent, the number of distinct blocks received is determined solely
by the sum of the number of blocks sent by the slow peers.
Proof. First substitute (9) and (13) into (8):

 ()
1 11 1

0 0 00

1 1
/

k kk k
i

i i i i
i i ii

qnp q p p
r n r s

− −− −

= = ==

⎛ ⎞⎛ ⎞⎛ ⎞∪ = + − ⋅ − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∏∪ (14)

Then we separate the pi’s into the sum of fast and slow peers:

1 1 1 1

0 0

k x k k

i i i i
i i i x i x

p p p xs p
− − − −

= = = =

= + = +∑ ∑ ∑ ∑ (15)

TABLE III
SUMMARY OF NOTATIONS USED IN THE WORST-CASE PERFORMANCE MODEL

Symbol Description

x

y

z

C*

x*

y*

z*

Number of fast peers
Number of blocks transmitted by each fast peer
Number of blocks transmitted by all the slow peers
Collisions in worst-case
Corresponding value of x in worst-case
Corresponding value of y in worst-case
Corresponding value of z in worst-case

Let z be the sum of all pi’s for the slow peers:

1k

i
i x

z p
−

=

=∑ (16)

Finally substituting (15), (16) into (14), we have:

 ()
1 1

00

1 1
/

k x
i

i i
ii

qnp q xs z xs z
r n r s

− −

==

⎛ ⎞⎛ ⎞⎛ ⎞∪ = + + − + ⋅ − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
∏∪ (17)

Thus, the R.H.S. of (17) depends only on the sum of |pi| (i.e.,
z) but not the individual values.

Next we consider the composition of the fast peers’
transmission rates which maximizes collisions. We first
establish in Theorem 3 a property for the worst-case scenario.

Theorem 3. If the number of collisions is maximized, then all
the fast peers must have sent the same number of blocks.
Proof. Consider the product term in (17):

1

0

1
/

x
i

i

q
n r s

−

=

⎛ ⎞
−⎜ ⎟−⎝ ⎠

∏ (18)

 Applying the inequality of arithmetic and geometric
means, we have

1

0

1 1
/ /

x
x

i i

i

q q
n r s n r s

−

=

⎛ ⎞⎛ ⎞
⎜ ⎟− ≤ −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

∏ (19)

in which the equality holds when qi=qj, for all i, j ≤x−1, which is
also the maximal for the product term.

Theorem 3 implies that we no longer need to consider the
individual fast peers’ transmission rates. Instead, we let y be the
number of blocks sent by each fast peer (i.e., s<y<n):

0 1i i i iy w t p q s q i x= = + = + ≤ ≤ − (20)
Then substituting (17) and (20) back into (6), we have

 1 1
/

xn y sxs z xs z n
r n r s

⎛ ⎞−⎛ ⎞ ⎛ ⎞+ + − − ⋅ − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
 (21)

Similarly, (6) can be rewritten in terms of x, y and z as
 C xy z n= + − (22)

In the following, we determine the values of x, y and z that
maximize (22) subject to (21). First, we rearrange (21) subject
to z:

 1
/

xn n y sz xs n
r r n r s

−−⎛ ⎞ ⎛ ⎞= − − − ⋅ −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (23)

Since z is non-negative, we can obtain an upper bound of y,
denoted by ymax, in terms of x by setting z≥0 in (23):

1

/1
/

x

max
n n r ny y s s
r n r xs

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟≤ = + − ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (24)

This is the scenario where all the k-x slow peers do not send any
data blocks.

Next, we substitute (23) into (22) to express the collisions in
terms of x and y:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

281

 (), 1
/

xn n y sC f x y xy xs n n
r r n r s

−−⎛ ⎞ ⎛ ⎞= = + − − − ⋅ − −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (25)

and then we can find the value of y, denoted by yx, that
maximizes C given x:

1

1/1
/

x

x
n n r ny s s
r n r s

+
⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟= + − ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (26)

However the computed yx may be larger than the upper
bound in (24) and in that case the maximum is simply given by
(24) as C is a strictly increasing function of y when y≤ yx. To
combine the two cases we define yx=min{yx,ymax}, which can be
rewritten as

1 1

1* / /1 max ,
/ /

x x

x
n n r n n r ny s s
r n r xs n r s

+
⎛ ⎞⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= + − ⋅ − ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

 (27)

To maximize C with respect to x, we note that x being the
number of the fast peers, which is upper bounded by k. Thus we
can obtain the value of x, denoted by x*, that maximizes (25)
from

{ }
()argmax (,)x

x x k
x f x y∗ ∗

∈ ≤
= (28)

Finally from (23) and (27), we can obtain the corresponding
values of y and z, denoted by y* and z* respectively, which
maximizes C from

x
y y ∗

∗ ∗= (29)

 1
/

x
n n y sz x s n
r r n r s

∗−∗
∗ ∗ ⎛ ⎞−⎛ ⎞= − − − ⋅ −⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 (30)

Hence, the worst-case number of collisions, denoted by C*,
can be obtained from
 C x y z n∗ ∗ ∗ ∗= + − (31)

We conjecture that the worst-case number of collisions is a
non-decreasing function of k, i.e., the number of peers. Thus in
the limiting case of infinite peers the upper bound is given by

 1ln
1k k k k

nC x y z n n
r r

∗ ∗ ∗ ∗
→∞ →∞ →∞ →∞

⎛ ⎞= ⋅ + − = ⋅ −⎜ ⎟−⎝ ⎠
 (32)

C. Average-case Analysis
The model in Section IV-A could also be used to find the

number of collisions averaged over the peers’ transmission rate
distributions. Let the transmission rate wi of peer i be a random
variable with probability density function fw and cumulative
distribution function Fw on the interval [0, 1]. Then we can
compute the average collisions from the expectation of (6):

 [] () ()
1

0 1 0 1
0

k

i w w k k
i

E C t w n f w f w dw dw
−

− −
=

⎛ ⎞= ⋅ − ⋅ ⋅⎜ ⎟
⎝ ⎠
∑∫ ∫" " " (33)

However, (33) does not seem to be analytically tractable so
we employ the systematic sampling technique [29] to compute
numerical results for evaluation. Specifically, assuming the
cumulative distribution function Fw is invertible (i.e., F-1

w
exists), then we can generate the peers’ transmission rates using
the inverse transform sampled from the inverse function. Let U
be a discrete random variable with uniform distribution on [0,
1/k]. Applying the systematic sampling technique, we can
express the peers’ transmission rates in term of U with equal
sampling interval (i.e., 1/k):
 ()1 /i ww F U i k−= + (34)

Using the model in Section IV-A, we could able to find the
number of collisions for the peers’ transmission rate given by
(34). Hence, we can obtain an approximate value of the
expected collisions by taking the average for every value in U:

 [] ()
1

0

k

i U
U i

E C t w n f U
−

=

⎛ ⎞⎛ ⎞≈ ⋅ − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ (35)

Our simulation results show that the numerical results
computed from the sampling technique is very accurate.

V. SIMULATION AND EXPERIMENTAL RESULTS
In this section, we report simulation results to validate the

mathematical model derived in Section IV and experimental
results conducted in the Planetlab [30] to evaluate the
performance of DPRS in real-world network settings. Clearly,
the number of collisions is proportional to the number of blocks
n. Therefore, in the following evaluations we normalize the
number of collisions by n and plot collisions as the ratio C/n.

A. Model Validation and Performance Evaluation
We developed a discrete-event simulator to simulate the

streaming of erasure-coded video data from multiple sources in
a simplified network setting. As our goal is to validate the
mathematical model in Section IV, the simulator omits some
details such as network delay, peer churn, etc. A more detailed
simulation study would require a more complete system design,
including the control protocols, data distribution policies,
competing traffics, and so on and is a subject for further study.

We model bandwidth variations across different peers using
the Kumaraswamy distribution [31] which is a family of
continuous probability distributions defined on the interval [0,
1] differing in the values of their two non-negative shape
parameters, a and b. By varying these two parameters, we can
generate a wide range of bandwidth distributions.

At the beginning of each simulation run, each peer in the
system is randomly assigned a bandwidth according to the
Kumaraswamy distribution. The sending peers then transmit
the erasure-coded data blocks according to the DPRS algorithm
at the assigned bandwidth. Once the client receives n encoded
data blocks, the transmission process is terminated and the
number of collisions counted.

We carry out two simulations, one for worst-case results and
the other for average-case results. In the worst-case simulations,
we ran a large number (thousands) of trials with different
parameters {a, b} of the Kumaraswamy distribution and
recorded the maximum number of collisions. In the
average-case simulations, we ran one hundred trials for each set
of parameters {a, b} and record the average number of
collisions. In both cases, the size of the disjoint subset s is set to
the maximum, i.e., n/rk.

Fig. 6 shows the analytical and simulated worst-case
collisions against the code rate r for k=10, 20, 50, and 100
sending peers. We observe that the analytical and simulation
results agree reasonably well, with the simulated collisions
slightly lower than the analytical counter-part.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

282

Number of peers k=10

0%

40%

80%

120%

160%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

Number of peers k=20

0%

40%

80%

120%

160%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

Number of peers k=50

0%

40%

80%

120%

160%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

Number of peers k=100

0%

40%

80%

120%

160%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

Analytical Simulated

Fig. 6. Analytical and simulated worst-case collisions against the code rate r.

k=10; a=1; b=1

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=10; a=0.2; b=0.2

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=10; a=1; b=5

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=10; a=5; b=1

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=10; a=2; b=2

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

Analytical

Simulated

Fig. 8. Analytical and simulated average collisions against the code rate r.for
number of peers k=10 with respect to different shape parameters a and b.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

x

f(
x;

a,
b)

 a=0.2;b=0.2

a=1;b=1

a=1;b=5

a=5;b=1

a=2;b=2

Fig. 7. Probability density function of Kumaraswamy distribution with respect
to different shape parameters a and b.

k=100; a=1; b=1

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=100; a=1; b=5

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=100; a=5; b=1

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=100; a=0.2; b=0.2

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

k=100; a=2; b=2

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns

C
/n

Analytical

Simulated

Fig. 9. Analytical and simulated average collisions against the code rate r.for
number of peers k=100 with respect to different shape parameters a and b.

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns
 C

/n

Analytical Simulated

Fig. 10. Analytical and trace-driven simulated worst-case collisions against the
code rate r.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

283

0%

10%

20%

30%

40%

50%

60%

0 0.2 0.4 0.6 0.8 1

Code rate r

N
or

m
al

iz
ed

 C
ol

lis
io

ns
 C

/n

Average Standard deviation

Fig. 11. Trace-driven simulated average collisions against the code rate r.

This is expected as the simulation does not exhaust all
possible parameter combinations and so tends to underestimate
the worst case collisions. We conducted a large number of
additional simulation results (not shown) and found them to
agree with the analytical results consistently, thereby validating
the mathematical model in Section IV.

More importantly, the results reveal that we can achieve
relatively low worst-case collision (e.g., 11.59% for 100 peers)
even for code rate as large as r=0.3. By contrast, conventional
erasure coding without multi-source scheduling for 100 peers
have a code rate of r=0.01, or a coding space 30 times larger
than using DPRS. This reduction in coding space will result in
significantly lower computation and hashing overheads as
discussed in Section II.

In the average-case simulations, we carry out five sets of
simulations with different parameter sets {a, b} for the
Kumaraswamy distribution. These five-parameter sets {a, b}
represent a wide range of bandwidth distributions as shown in
Fig. 7. Fig. 8 and Fig. 9 plots the average collisions versus code
rate for k=10 and 100 respectively. We again observe that the
simulation results closely match the numerical results
computed from the system model in Section IV, thereby
validating the system model.

In addition, the results show that the average collision
depends heavily on the property of the bandwidth distribution.
For example, bandwidth distribution with small variance, e.g.,
{a=5; b=1} and {a=2; b=2}, result in significantly lower
average collisions than bandwidth distributions of large
variance, e.g., {a=0.2; b=0.2} and {a=1; b=5}.

More importantly, with DPRS the average collisions can be
reduced to negligible levels for code rate of just r=0.3.
Compared to conventional erasure coding (with r=0.01 for
k=100) the proposed DPRS algorithm can achieve comparable
performance and yet can reduce the coding space size by one
order of magnitude.

B. Trace-driven Simulation Results
The bandwidth distribution used in Section V.A is merely a

mathematical model and thus may not resemble real-world
network bandwidth distributions. To address this limitation we
carried out extensive bandwidth measurements conducted in
the Planetlab to capture bandwidth distributions and variations
in a real network setting.

TABLE IV
COMPARISON OF DPRS AND ORDINARY PUSH-BASED APPROACHES IN

DISTRIBUTING 10-MB DATA FROM 10 PEERS

Scheduling Scheme
Coding Scheme
Code Rate
Effective Encoding Rate
Effective Hashing Rate
Decoding Rate
Hashes Overhead
Decoding Overhead
Average Collisions

DPRS
Online codes

0.3
9.75 MBps
4.11 MBps
6.61 MBps

0.41%
4.74%
0.28%

DPRS
RS codes

0.5
0.79 MBps
6.86 MBps
1.57 MBps

0.24%
0%

3.84%

Conventional
Online codes

0.1
3.14 MBps
1.37 MBps
6.61 MBps

1.22%
4.74%

0%

Conventional
Online codes

0.01
0.32 MBps
0.13 MBps
6.61 MBps

12.20%
4.74%

0%

(a) (b) (c) (d)

Total Overhead 5.43% 4.08% 5.96% 16.94%

Specifically, a test program was installed to the PlanetLab

nodes (total 286 nodes) for the measurements. In each
measurement, N+1 nodes are randomly drawn from the pool of
PlanetLab nodes, with one node acting as the receiver and the
remaining N nodes acting as senders. All N senders then
simultaneously transmit data to the receiver using TCP. The
captured bandwidth traces are then fed into the simulator to
obtain collision performances.

Fig. 10 plots the maximum collisions measured in the
trace-driven simulations versus different code rate r. The
results show clear agreement between the analytical results and
the simulated results. Fig. 11 plots the average collisions versus
code rate. Only the simulated results are shown as the curves
for the analytical results overlap with the simulated ones.

We observe that in real network settings, the proposed DPRS
algorithm can also reduce the average collisions to negligible
levels using a code rate of just r=0.3. This result suggests that
the DPRS has potential to work well in real network settings.

C. Comparisons
Table IV compares the proposed DPRS algorithm with

conventional push-based transmission in distributing a 10 MB
data block from 10 peers to a receiver, running in a 2 GHz
Pentium-class processor. Total overhead is the sum of decoding
overhead and average collisions, and represent the amount of
extra network bandwidth used in delivering the data block.

Case (c) and (d) both employ conventional push-based
transmission using Online codes [18] and SHA1 [28] as the
hashing algorithm. The only difference is the code rate, of
which case (c) is 0.1 and case (d) is 0.01. The code rate limits
the number of peers that can participate in the transmission
process, e.g., code rate of 0.1 and 0.01 allow up 10 and 100
peers respectively. Decreasing the code rate increases the
number of sending peers at the expense of significantly lower
encoding rate (e.g., 3.14 Mbps v.s. 0.32 Mbps) and hash
generating rate (e.g., 1.37 Mbps v.s. 0.13 Mbps), and
significantly higher total overheads (e.g., 5.96% v.s. 16.94%).

By contrast, with DPRS in case (a) we not only can achieve
substantially lower total overheads (e.g., 5.43% versus 16.94%),
but also at significantly higher encoding rate (e.g., 9.75 Mbps
versus 0.32 Mbps) and hashing rate (e.g., 4.11 Mbps versus
0.12 Mbps). DPRS also enables the use of more
computation-intensive codes such as RS codes [13] (case (b)).

The results show that DPRS is more bandwidth efficient,
requires lower computation power, and thus more scalable to a
large peer population.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

284

VI. CONCLUSION
Unlike pull-based approaches, the push-based multi-source

streaming model investigated in this work eliminates the need
for network resource estimation that is error-prone and difficult
to implement in real networks. The proposed DPRS
transmission scheduling algorithm solves the scalability
problem inherent in erasure-correction codes and thus make
application of the multi-source streaming model to large-scale
distributed systems feasible. With the promising preliminary
results, we will extend the research in two directions.

First, the two transmission schedulers described in Section
III are only a starting point. In particular, the schedulers assume
absolutely no knowledge of the peers’ network resources,
which may not be the case in practice. For example, while the
peers’ network resource availabilities could not be accurately
predicted or estimated, they may still be bounded by practical
constrains, such as the physical constraint set by the network
link, or logical constraint set by the user. In this case, a partial
knowledge of the peer bandwidth distribution, for example, can
be exploited in the design of the transmission scheduler. More
generally, the transmission scheduler may also be combined
with existing bandwidth estimation tools so that partial network
knowledge can be integrated into the transmission scheduler to
achieve better performance.

Second, the transmission schedulers described in Section III
are static in the sense that they are fixed a priori and remain the
same for the rest of the streaming session. In real networks, the
amount of network resource available often fluctuates from
time to time. Thus if partial network resource information can
be gathered online then it will open up the possibility to
dynamically reconfigure the transmission schedules to adapt to
the changing network conditions.

Finally, we intend to implement the proposed schedulers into
a working P2P streaming platform so that real-world
performance results can be obtained to verify the mathematical
models, and to demonstrate the feasibility of multi-source
streaming of erasure-coded media data in real networks.

ACKNOWLEDGMENTS
This work was partially supported by a grant from the

University Grants Committee of the Hong Kong Special
Administrative Region, China (Project No. AoE/E-02/08) and
the Shun Hing Institute of Advanced Engineering of the
Chinese University of Hong Kong (Project No. MMT 9/07).

REFERENCES
[1] AR Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri,

“Multiple Description Coding for Video Using Motion Compensated
Prediction,” Int’l Conf on Image Processing, Kobe, Japan, vol.3,
pp.837-41, Oct 1999.

[2] Y. Q. Liang and Y. P. Tan, “Methods and Needs for Transcoding
MPEG-4 Fine Granularity Scalability Video,” IEEE Int’l Sym on Circuits
and Systems, Scottsdale, Arizona, vol.4, pp.719-722, May 2002.

[3] A. Vetro, C. Christopoulos and Huifang Sun, “Video Transcoding
Architectures and Techniques: an Overview,” IEEE Signal Processing
Magazine, vol. 20, Is-sue 2, pp.18 – 29, March 2003.

[4] L. S. Lam, Jack Y. B. Lee, S. C. Liew, and W. Wang, “A Transparent
Rate Adaptation Algorithm for Streaming Video over the Internet,” 18th

International Conference on Advanced Information Networking and
Applications, Fu-kuoka, Japan, March 2004

[5] I.S. Reed, G, Solomon, “Polynomial Codes Over Certain Finite Fields,” J.
Soc. Indust. Appl. Math, Vol. 8, pp. 300-304, 1960.

[6] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer Systems, Berkeley, USA, May 2003.

[7] P. Rodriguez, W. Biersack, “Dynamic parallel access to replicated
content in the Internet,” IEEE Trans. Networking, 10(4):455–465, August
2002.

[8] A. Zeitoun, H. Jamjoom, M. El-Gendy, “Scalable parallel-access for
mirrored servers,” Proc. IASTED International Symposium on Software
Engineering, Databases, and Applications, pp.93–98, February 2002.

[9] J. Funasaka, K. Nagayasu, K. Ishida, “Improvements on Block Size
Control Method for Adaptive Parallel Downloading,” ICDCSW, 2004.

[10] Z. Xu, L. Xianliang, H. Mengshu, Z. Chuan, “A speedbased adaptive
dynamic parallel downloading technique,” ACM SIGOPS Operating
Systems Review, 2005.

[11] T. Nguyen and A. Zakhor, “Path diversity with forward error correction
(pdf) system for packet switched networks,” in Proc. IEEE INFOCOM,
2003, vol. 3, pp. 663–672.

[12] B. Wang, W. Wei, Z. Guo, and D. Towsley, “Multipath live streaming via
TCP: scheme, performance and benefits,” in ACM CoNEXT. New York,
NY, USA: ACM, 2007, pp. 1–12.

[13] M. Luby, open-source cauchy-based Reed-Solomon codes [Online].
Available: http://www.icsi.berkeley.edu/~luby/.

[14] M. Luby, “LT-codes,” in Proceedings of the ACM Symposium on
Foundations of Computer Science (FOCS), 2002.

[15] P. Maymounkov, “Online Codes,” NYU Technical Report TR2002-833,
November 2002.

[16] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, 52(6):2551–2567, June 2006.

[17] P. Maymounkov and D. Mazieres, “Rateless codes and big downloads,”
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems,
February 2003.

[18] M. Knezevic, V. Velichkov, B. Preneel, I. Verbauwhede, open-source
Online Codes [Online]. Available:
http://sourceforge.net/projects/onlinecodes.

[19] J. Wagner, J. Chakareski and P. Frossard, “Streaming of Scalable Video
from Multiple Servers using Rateless Codes,” in Proceedings of IEEE
International Conference on Multimedia and Expo 2006, July 2006.

[20] C. Wu and B. Li, “rStream: Resilient and Optimal Peer-to-Peer Streaming
with Rateless Codes,” IEEE Trans. Parallel and Distributed Systems, vol.
19, no. 1, pp. 77–92, Jan. 2008.

[21] M. Knezevic, V. Velichkov, B. Preneel, and I. Verbauwhede, “On the
Practical Performance of Rateless Codes,” in International Conference on
Wireless Information Networks and Systems, 4 pages, 2008.

[22] K. Nybom and J. Bj¨orkqvist, “Hldpc codes - low density, low
complexity, efficient erasure correcting codes,” in Proceeding of the 13th
European Wireless Conference, Apr 2007.

[23] V. Roca, C. Neumann, and D. Furodet, “Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC)
Schemes,” Internet Engineering Task Force, RFC 5170, june 2008.

[24] M. Cunche and V. Roca, “Improving the Decoding of LDPC Codes for
the Packet Erasure Channel with a Hybrid Zyablov Iterative
Decoding/Gaussian Elimination Scheme,” INRIA Research Report
RR-6473, Tech. Report., March 2008.

[25] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, 2000.

[26] M. Wang, and B. Li, “R2: Random Push with Random Network Coding in
Live Peer-to-Peer Streaming”, in IEEE Journal on Selected Areas in
Communications, vol.25(9), pp. 1655-1666, 2007.

[27] C. Feng, and B. Li, “On Large-Scale Peer-to-Peer Streaming Systems
with Network Coding”, in Proc. of ACM Multimedia, 2008.

[28] FIPS 180-1, Secure Hash Standard, U.S. Department of
Commerce/N.I.S.T., National Technical Information Service,
Springfield, VA, Apr. 1995.

[29] Ken Black, Business Statistics: Contemporary Decision Making, 6th
Edition, Wiley, 2009, Ch 7.

[30] Planetlab [Online]. Available: http://www.planet-lab.org/.
[31] P. Kumaraswamy, “A Generalized Probability Density Function for

Double-Bounded Random Processes,” J. of Hydrology, 46:79–88, 1980.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2010 proceedings.

285

