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Abstract—Online social networks (OSN) have attracted mil-
lions of users. This enormous success is not without problems;
the centralized architectures of OSNs, storing the users’ personal
data, provides ample opportunity to privacy violation. These
problems have raised the demand for open, decentralized alter-
natives. We tackle the research question: is it possible to build a
decentralized OSN over a social overlay, i.e., an overlay network
whose links among nodes mirror the social network relationships
among the nodes’ owners? This paper provides a stepping stone
to the answer, by focusing on the key OSN functionality of dissem-
inating profile updates. Our approach relies on gossip protocols.
We show that mainstream gossip protocols are inefficient, due
to the properties that characterize social networks. Therefore,
we leverage these very same properties towards our goal, by
appropriately modifying the forwarding rules of gossip protocols.
Our evaluation, performed in simulation over a crawled real-
world social network, shows that our protocols provide acceptable
latency, foster load balancing across nodes, and tolerate churn.

I. INTRODUCTION

Over the last decade, on-line social networks (OSNs) rose
from anonymity to stardom. The meteoric growth rates of OSN
sites like MySpaces and Facebook surpassed even the most
optimistic predictions [1], reaching hundreds of millions of
users worldwide. Unfortunately, this growth has only been ri-
valed by the controversy surrounding OSNs. Their centralized
architectures place sensitive user data at the mercy of the com-
panies, a situation that has led to a series of widely publicized
incidents [2]. Apart from inducing distrust across the user base,
these incidents have also provided momentum to the research
and development of open, decentralized alternatives, providing
the context and motivation for our work.

Among the features offered by OSNs, profile-based com-
munication is arguably the most important, and the one we
focus on in this paper. User profiles are personal web pages
where users freely post content—e.g. text snippets, pictures,
videos, and music [3]. In response to these postings other
users, usually friends, post comments and other content. A
newsfeed displays to users the most recent updates from their
friends. Indeed, a recent study by Benevenuto et al. on OSN
usage patterns [4] shows that ∼90% of server requests in
Google’s Orkut were about profile page content.

In a decentralized OSN, users run P2P clients (peers) on
their hosts to browse the profiles of friends and post content.
Peers form an overlay network with the purpose of collectively
sharing and replicating content, serving it on behalf of offline
users when needed. Current proposals to P2P OSNs [5]–
[7] often rely on DHTs. These are, however, agnostic of
social relationships: update routing and content storage is

orthogonal to the social network, and results in unnecessarily
long communication links and security issues.

An alternative is the friend-to-friend approach [8], where
communication among nodes is enabled only if their owners
know each other. Different nuances of this notion exist. Here,
we choose the most radical one where peers are arranged in a
social overlay, a one-to-one mapping mirroring the underlying
social network. This choice provides several benefits:

• Connect the right people. People tend to talk to people
they know. Recent studies [4] show that this is also true
of OSNs, where about 78% of user interactions take part
within one-hop neighborhoods. A social overlay enables
short routes and constrains traffic to small network areas.
Further, social networks are highly clustered [9], and are
therefore likely to offer enough resilience to churn.

• Improve locality. People tend to connect to people that
are alike, with geographical co-location playing a key
role [10]. As a result, not only routes over social overlays
are likely to be short, but also physically localized.

• Provide peer incentives. Unlike links in a DHT, links in a
social overlay represent friendship. The hypothesis here
is that friends are more likely to cooperate with other
friends than with random strangers.

• Improve privacy. Provided that an authentication mecha-
nism is in place [11], only the identity of the original
poster needs to be checked, while privacy issues are
mitigated since communication is restricted to friends.

Unlike traditional P2P applications such as file sharing,
OSNs are quasi-interactive systems. Although real-time inter-
action is not required, profile updates should become rapidly
available to friends currently online. In our proposal, this is
achieved by relying on an efficient profile update dissemi-
nation protocol. This protocol pushes profile updates from
friends, to friends, in a reliable, timely, and efficient fashion.
Peers cache locally the updates to the content of their friends’
profiles. Therefore, when a user browses a friend’s profile,
all data accessed is already locally available. After describing
in Section II the system model we use as a reference, in
Section III we further detail the problem, our approach, and
the experimental framework we use for evaluation.

Several alternatives can in principle be used to deal with
the problem. We focus on gossip protocols [12] because they
were originally designed for update dissemination, albeit in
a slightly different context, and because of their inherent
simplicity, scalability, and tolerance to topology changes.



Unfortunately, gossip protocols are designed to operate on
uniform random graphs, which have very different properties
w.r.t. social networks. We assess quantitatively the negative
impact of this assumption mismatch in Section IV.

The main contribution of this paper lies in Section V and VI
where we describe and, respectively, evaluate a protocol for
efficient dissemination over social networks. The protocol is
a combination of known techniques and concepts—besides
gossip, the use of message histories, and of a biased selection
heuristic geared towards the particular properties of social
networks. Nevertheless, their combination and application to
an overlay mirroring the real-world social network is, to the
best of our knowledge, original. Moreover, our evaluation
shows that the approach is applicable in practice to the scale
of friend neighborhoods found in real-world social networks.

Finally, Section VII concisely surveys related work, and
Section VIII ends the paper with brief concluding remarks.

II. SYSTEM MODEL

Definitions and notation. We model a social network as an
undirected graph G = (V,E), where V contains users and E
is the friendship relation among them. For each user u ∈ V ,
function f : V → 2V maps users to their set of friends, while
f2 maps users to their set of friends of friends:

f(u) = { v | (u, v) ∈ E }
f2(u) = { w | w ∈ f(v) ∧ v ∈ f(u) }

Let f∗(u) = f(u) ∪ {u} be the social neighborhood of u;
f∗(u) induces a subgraph in the social network which is
composed by the vertices in f∗(u) and its interconnections.
We refer to this subgraph as Gu.

Since we map nodes into users in the social network, we
refer to users and nodes interchangeably. Sentences like “a
node u and its friends f(u)”, then, are to be interpreted as “a
node controlled by a user u and the nodes controlled by its
set of direct friends, f(u)”. We also assume that the mapping
between nodes and users is one-to-one (i.e., a user does not
log in from more than one node at the same time).

Finally, let O be the set of all updates generated in the
system, then prof : O → V is the function mapping an update
to the owner of the profile page to which it was posted.
Dynamism. A social network is a dynamic concept: new
friendship relationships may be formed or old ones severed.
In practice, however, such changes are infrequent, at least
w.r.t. the time scale of our problem of update dissemination.
Therefore, for the purpose of this paper we consider the social
network to be immutable. The dynamism of social overlays
cannot be, however, disregarded in the same way. Users may
start and stop their nodes at will: a particular user may not be
available for extended periods of time. In P2P terminology, this
phenomenon is known as churn. The social overlay undergoes
frequent reconfiguration, and this must be taken into account
in evaluating alternatives for update propagation. We analyse
this aspect in the context of our solution in Section VI-B.
Realizing the social overlay. We assume that nodes able to
discover the IP addresses of their currently online friends, to

enable message exchange. The overlay management problem
is outside the scope of this paper, but could be addressed by
leveraging off of existing decentralized server infrastructures
such as the widely available Jabber/XMPP network [21]:
managing presence is already an integral part of what Jabber
does, and we could simply piggyback on that.
Knowledge of the social network. We assume user u knows
not only the set f(u), but also f2(u); this knowledge makes it
possible, given a friend v ∈ f(u), to obtain the set of common
friends f(u)∩f(v). This assumption is reasonable because in
modern OSNs, the set of friends is already part of the profile
and incremental updates (in the form of new friendship events
involving your friends) are shown in the newsfeed.
Authentication, access control and privacy. We assume
that each node u is identified by a pair of asymmetric keys
(Privu,Pubu). The public keys of nodes in f(u)∪ f2(u) are
acquired when learning new friendship relations. To guarantee
authenticity, every update o generated by u must be signed
with Privu. More complex access control mechanisms are
possible [11], although outside of the scope of this paper.
Even though privacy is guaranteed by the fact that updates
are sent only to the intended destinations, it is always possible
that, once decrypted, content is disclosed to unauthorized third
parties. This is not exclusive to our approach, however, and
could also happen in a centralized OSN. Finally, impersonation
attacks are less likely due to personal knowledge of friends.

III. PROBLEM, APPROACH,
AND EXPERIMENTAL FRAMEWORK

In this section we state our problem, outline the proposed
approach, and illustrate the metrics and experimental setup we
use in the rest of the paper.

A. Problem Statement

As mentioned in Sec. I, we envision a decentralized OSN
where updates to user profiles are proactively disseminated to
all friends. Fig. 1 illustrates how it works. Users u, v, and w
are such that v, w ∈ f(u) but v 6∈ f(w), i.e., u is friend with v
and w, but v is not friend with w. In the interaction depicted:

1) u posts a picture to his local copy of his own profile;
2) the system disseminates the update to v and w, who

update their local copies;
3) upon seeing the picture, v posts a comment to it. This

goes into v’s local copy of u’s profile;
4) the system disseminates the comment to u and to w, who

update their local copies.
Storing the content of all friends may seem overkill, but

pretty much everything in the profile pages of modern-day

Fig. 1. User u posts a photo, user v posts a comment, user w just watches.



OSN—comments, links, thumbnails, small pictures—are small
objects (e.g., under 60 KB, the size of current Facebook
pictures). The only exception are movies and large collections
of high-quality pictures: however, these are usually not part of
profiles anyway, and are linked from services such as YouTube
and Flickr. Their associated “metadata” (e.g., description,
thumbnail, etc.) are instead small objects.

In this example, w sees a comment posted by v although the
two are not friends, because the comment was posted to the
profile of u, who is friend with w. This is the default behavior
of OSNs. Note, however, that this would in principle enable w
to, say, try to modify u’s profile without asking for permission
by disseminating an update that, say, changes u’s name. The
simple authentication mechanism suggested Sec. II would be
enough to prevent these situations.

We envision interactions like the above to be supported by a
social newscasting service consisting of two simple primitives:

1) the operation postToProfile(PROFILE v,UPDATE o) en-
ables u to post update o to the profile of v = prof (o);

2) the callback newsReceived(LIST〈UPDATE〉 list) enables
clients to retrieve new content upon arrival.

In the context of OSNs, realizing this social newscasting
service essentially trades the problem of fetching data over
the network with the problem of disseminating updates to all
friends. The latter must be performed in a timely way, i.e.,
with a latency comparable to the one of today’s centralized
OSNs. In other words, for a given subgraph Gv , any node
u ∈ Gv may produce, at any point in time, some update o by
calling postToProfile(v, o). The goal is to define a strategy to
efficiently disseminate o from u to all nodes in f∗(v).

B. Approach Outline

Owing to their wide recognition as robust tools for fast data
dissemination, we chose to use gossip protocols [13] as the
base for our social newscasting service. These protocols are
typically run in rounds, in which each node selects a gossip
partner using a randomized selection heuristic and exchanges
data with it based on an exchange strategy. Rounds are not
synchronized; rather, they simply play a “rate limitation” role.

Our social newscasting employs two gossip protocols. A
rumor mongering protocol based on a push exchange strategy
is used to disseminate updates quickly, possibly at the expense
of guaranteed delivery (e.g., for users currently not online).
This fast but unreliable dissemination is therefore comple-
mented by an anti-entropy [13], push-pull protocol. This runs
in the background at a slower pace w.r.t. rumor mongering
and guarantees that all nodes that become and remain online
for long enough eventually receive all updates. In a sense,
anti-entropy serves as a “safety net”, patching the message
deliveries missed by rumor mongering.

In this paper, we focus exclusively on the first protocol (i.e.,
rumor mongering) because, as we show in Section IV, its
application to social networks already requires a significant
departure from the mainstream. Section V discusses in detail
how we improve on the base rumor mongering by choosing

selection strategies that explicitly take into account topological
properties of social networks, such as centrality and clustering.

C. Experimental Framework

Unit experiments. Protocols are evaluated over a large num-
ber of isolated unit experiments, whose results are aggregated
offline to obtain global figures. A unit experiment consists of:
i) singling out a subgraph Gv; ii) having v publish an update
by calling postToProfile(); iii) waiting until the push protocol
terminates; iv) measuring the desired parameters.

Each unit experiment e is associated with the dissemination
of a single update generated by the profile owner, root(e).
Updates posted to profiles of friends would behave similarly
and are thus excluded from the evaluation.
Performance metrics. Given a set E of unit experiments, we
measure the following:
• Residue, i.e., the percentage of nodes who did not receive

the update before the push protocol terminated. Let
undelivered : E → N be a function yielding the number
of these nodes for a single unit experiment e. Then:

residue(E) =
∑
e∈E undelivered(e)∑
e∈E |f(root(e))|

• Average and maximum latency, measured in number of
rounds, tavg(E) and tmax(E). Defined as the number of
rounds it takes for an update to reach a destination, minus
the rounds for which that destination has been offline after
the update was posted (measured relative to node uptime).

• Absolute and average load, in terms of messages sent and
received. Formally, let `s : V × E → N be the function
yielding the number of messages sent by node v ∈ V
during a unit experiment e, and `r a similar function
yielding the messages v received. The load for a given
unit experiment is then `(v, e) = `s(v, e) + `r(v, e).
The absolute load over the entire set E of experiments
at node v, and the average load, normalized over the size
of the neighborhood of v, are then given as:

load(v) =
∑
e∈E

`(v, e) load(v) =
load(v)
|f∗(v)|

It is useful to generalize this notion to sets of nodes. The
average load incurred on a set of nodes V ′ ⊂ V is

load(V ′) =
∑
v∈V ′ load(v)∑
v∈V ′ |f∗(v)|

• Duplicate ratio, i.e., the ratio between the number of
messages generated and delivered. For a unit experiment
e, the former is

generated(e) =
1
2

∑
w∈f∗(v)

`(w, e)

and the latter is delivered(e) = |f(v)| − undelivered(v).
The duplicate ratio is expressed as:

dup(E) =
∑
e∈E generated(e)∑
e∈E delivered(e)



Vertices 72303
Edges 1508283
Avg. Degree 41
Max. Degree 1500
Min. Degree 1
Clust. coef. 0.34

(a) Summary.
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Fig. 2. Dataset characteristics.

• Unit load balance, i.e., how balanced the load was within
a single unit experiment and therefore a single message
dissemination. We capture it by using a dimensionless
dispersion measure known as the coefficient of variation
CV . For a given set of observations, CV is defined as
σ
|µ| , where σ stands for the sample standard deviation,
and µ as the sample average. For a given unit experiment
e, the coefficient of variation is computed over the set of
load values {`(v1, e), · · · , `(vn, e)}, where vi ∈ f∗(v),
and this yields a relative measure of load balancing. The
higher the CV , the less balanced is the load.

Setup. We use the PEERSIM [22] simulator, along with a social
graph obtained from a popular OSN site through a snowball
sampling procedure [23] over a single seed. Publicly-available
friend connections were explored until we had a partial third
level. The sample characteristics are summarized in Table 2a,
and its cumulative degree distribution shown in Fig. 2b. The
small average degree is due to the sampling procedure: since
we had to stop crawling at some point, nodes at the outermost
layer—the most numerous—are inevitably missing friends.
Despite the small size w.r.t. real social networks, we argue
this sample is adequate for simulation purposes. We chose to
use a real, albeit smaller, network instead of a synthetic one
because current models are still very limited [24].

Unless otherwise noted, we run 10 unit experiments per
node, yielding 723,030 repetitions for each combination of
protocols and parameters.

IV. A FRESH LOOK AT MAINSTREAM TECHNIQUES

An obvious question at this point is “Can’t we just re-use
mainstream gossip protocols?”. The answer to this question
is negative, as we demonstrate quantitatively in this section,
motivating the contribution described in the rest of the paper.

Demers’ rumor mongering [13] is arguably one of the
most well-known gossip push protocols in the literature. We
consider the feedback/coin variant of Demers’, where each
node keeps a list of “hot rumors”, i.e., updates its friends
are more likely not to have. In a gossip round, each node u:
i) selects a node v from its neighborhood uniformly at random;
ii) sends all, or part of its list of hot rumors to v; iii) collects
a response vector from v which tells which rumors v already
knew and which it did not.

Then, for each item in the response vector i) if the rumor
was not known to v, then nothing is done; ii) otherwise, the
rumor is removed from the hot rumor list with probability p.

Node v, in turn, adds to its hot rumor list the new rumors
received from u. Further, whenever a new piece of content is
posted locally it is immediately added to the poster’s local hot
rumor list and becomes eligible to dissemination.
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Fig. 3. Problematic neighbor-
hoods for Demers’ protocol. (a)
Irregular clustering. (b) A small
neighborhood.

We evaluated Demers’ under
our simulation framework, per-
forming a single unit experiment
per node. Aggregate results over
the 72, 303 unit experiments are
shown in Table I. The row “De-
mers’ residue” contains the val-
ues reported in [13], for refer-
ence. Fig. 4 shows the average
load at each node as a func-
tion of node degree. Residues are
orders-of-magnitude larger than
expected, and average loads are
large even for low degree nodes:
one of the nodes with degree 1,
for example, has an average load of 70. These issues arise
from the fact that social networks violate a fundamental
assumption in gossip protocols, i.e., clustering in the network
is approximately uniform. Fig. 3a provides an example where:

1) Node u calls postToProfile().
2) As the clustered region is larger than the sparse one, it is

going to be hit first with higher probability ( 2
3 over 1

3 ).
3) Dissemination proceeds very quickly in the clustered

region but also generates lots of duplicates.
4) Eventually, most (if not all) nodes in the clustered region

get the update. The protocol, however, keeps selecting the
clustered region with higher probability.

5) Every time a node selects an already-infected node it
gives up on the rumor with probability p. Thus, the nodes
in the clustered region (u included) are likely to give up
too soon, as they “perceive” the message infection to have
spread, when in fact many nodes may still await it.

As for load, a node generates 1/p duplicates before giving
up on a rumor, as confirmed in Table I. For a neighborhood as
in Fig. 3b, this means node 1 will generate around 10 messages

p = 0.4 p = 0.3 p = 0.2 p = 0.1
Observed Residue 19% 14% 10.5% 6%
Demers’ Residue ∼ 3.7% ∼ 1.1% ∼ 0.01% −−
Dup. Ratio (avg.) 2.53 3.37 5.04 10.03
Avg. Load 5.66 7.35 10.6 20.3
tmax 59 68 79 124
tavg 4.3 4.5 4.7 4.94

TABLE I
RESULTS FOR DEMERS’ PROTOCOL.

Fig. 4. Average loads by degree.



every time it publishes an update, and will receive 10 messages
every time node 2 publishes an update. Since we run one unit
experiment per neighbor, this amounts to an average expected
load of 20, which is very high for such a small neighborhood.
Other topologies might generate even larger averages.

V. GOSSIP IN SOCIAL OVERLAYS

Demers’ rumor mongering is inefficient over social overlays
as it is unable to cope with its graph properties: we propose
a dissemination protocol that is aware of, and exploits them.

A simple way to solve Demers’ residue issue is flooding:
a node does not give up spreading an update until all of its
friends receive it. Pure flooding, however, generates too much
traffic. Therefore, we enhance it by piggybacking histories
on each message, recording who received a given update. As
nodes do not re-send an update to nodes known to have it, we
reduce traffic significantly.

There is, however, another relevant effect of suppressing
transmissions. Our flooding protocols are gossip-based, and
thus employ a randomized neighbor selection heuristic, the
simplest being selecting nodes uniformly at random. However,
the latter is biased towards higher degree nodes. This, perhaps
contrary to intuition, hurts performance instead of helping it.
The reason is in Fig. 3a: if higher degree nodes are packed
in a cluster, random selection tends to starve regions with
lower clustering. Nevertheless, the progressive exclusion of
nodes from highly clustered regions (which are the ones
being selected first and thus entering the piggybacked histories
first) helps us to eventually steer selection towards regions
containing nodes not known to have received the update.

Flooding with message histories provides the base dissem-
ination mechanism, which we improve with a pair of selec-
tion heuristics. Indeed, even if we eventually steer selection
towards less favored regions, higher clustered regions are
still heavily flooded with messages in the early stages of
dissemination, when histories did not yet propagate. This not
only causes more traffic, but also slows down the protocol.

We reap further improvements with a selection heuristic
which steers away from high degree nodes from the very
beginning, by picking nodes with a probability inversely
proportional to their degree, favoring selection of lower-degree
nodes. Finally, social neighborhoods are often divided into dis-
joint components, tied by a “central” node. The neighborhood
in Fig. 5b, for example, has 4 such components. We can speed
up dissemination significantly if the central node spreads the
update by by hitting components in sequence, beginning with
the one with the highest degree, down to the lowest degree.
This way, the central node exploits its special position, keeping
the neighborhood connected, to “parallelize” dissemination.

In the rest of this section we detail further these concepts.

A. Flooding with Histories

The baseline protocol FLOOD works as follows. When a
node v learns about an update o belonging to the profile page
of node u ∈ f∗(v), it keeps sending one message per round to
the common friends f∗(v)∩f∗(u) that may have not received

o, stopping only once it knows that all of them have received
it. In the variant with message histories, called HFLOOD, nodes
piggyback histories in their messages, sharing their knowledge
about nodes that have received o. If u and v do not share
common friends, then v simply cannot help disseminating o.

Formally, let Kv,o ⊆ f∗(u) contain the intended desti-
nations of o known by v to have received o, and Ev,o =
(f∗(u) ∩ f∗(v)) − Kv,o denote the common friends eligible
for selection at v when considering update o. Then, at each
round, node v:

1) selects w ∈ Ev,o according to a selection heuristics;
2) sets Kv,o to Kv,o ∪ {w};
3) sends o to w.

Whenever v receives an update o from a node z, it:
4) sets Kv,o to Kv,o ∪ {z}.

The variant of FLOOD that piggybacks histories in messages,
called HFLOOD, substitutes steps (3) and (4) as follows:

3) sends a message 〈o,Kv,o〉 to w, where the message
history of o known by v is piggybacked with o;

4) when v receives a message 〈o,Kz,o〉 from z, it sets Kv,o

to Kv,o ∪Kz,o.
In both cases, dissemination terminates when Ev,o = ∅.

Message histories are implemented using Bloom filters [25].
Since updates are disseminated over relatively small sets of
nodes (41 nodes on average in our dataset), the overhead is
small: Bloom filters incur around k bytes of overhead for a
neighborhood of size k at a false positive rate of 1%.

B. Selection Heuristics

We consider three strategies for node v to send update o.
Random. In the RANDOM heuristic, node v selects a node
from Ev,o uniformly at random as in Demers’ [13].
Anticentrality. The ANTICENTRALITY heuristic assigns to
nodes in Ev,o a selection probability which is inversely pro-
portional to their degree in Gv , effectively “steering selection
away” from nodes with higher degree as per the reasoning of
Section V. We use Gv because what matters is the degree in
the context of the neighborhood where update dissemination
occurs, not the degree in the overall social network.

Fig. 5a shows how the algorithm which assigns selection
probabilities in ANTICENTRALITY works in the particular

(a) (b)

Fig. 5. (a) Probability assignment in ANTICENTRALITY. (b) Fragmented
neighborhood.



case when v starts to disseminate an update over its own
neighborhood. We first compute the sum of the degrees into
Gv of all of v’s neighbors (20). We then sort the neighbors by
those degree values, and assign them proportional probabilities
(step 1). Finally, we invert the assignments so that lower degree
nodes get the high probabilities, and vice-versa (step 2).

Formally, let dv(w) = |f(w) ∩ f(v)| (the degree of w
into v’s neighborhood), and Eo,v = {w1, · · · , wn}. Suppose
without loss of generality that the wi are ordered such that
dv(w1) ≤ · · · ≤ dv(wn). Then the probability Pv(X = wi)
with which node v selects node wi ∈ Eo,v at some given
round is expressed by:

Pv(X = wi) =
dv(wn−i+1)∑n
k=1 dv(wk)

Fragmentation-aware heuristics. The fragmentation τ(v) of
a node v is the number of connected components that remain in
Gv if v is removed. Formally, let G∗v be the subgraph obtained
by removing v and all its links from Gv; let C(G∗v) be the set
of connected components in G∗v . Then, τ(G∗v) = |C(G∗v)|.

Fig. 6 shows scatterplots of fragmentation vs. node degree in
our dataset. Fragmentation varies widely at all neighborhood
sizes, and larger neighborhoods tend to be proportionally less
fragmented than smaller neighborhoods.

Fragmentation is an important structural metric for two
reasons. First, τ(Gu)− 1 represents the minimum number of
messages that the node u at the center of a neighborhood (i.e.
the profile page owner) must send if an update is to reach all
neighbors, regardless of who published it. Second, it provides
us with a simple way of improving latency, by noticing that u
should hit as many different components as possible, avoiding
selecting nodes inside of the same component more than once
before all components have been hit.

This suggests two new heuristics, RANDCOMP and MAX-
COMP, to be applied to the profile owner only. To diffuse an
update o such that prof (o) = u, node u does the following:

1) if a component Ci ∈ C(G∗u) for which no node in Ci has
yet received the update exists, then select a node w ∈ Ci
using ANTICENTRALITY;

2) otherwise, simply select w ∈ f(u) using ANTICENTRAL-
ITY, completely ignoring the component structure.

The two heuristics differ in the way components are selected:
RANDCOMP selects a random one, while MAXCOMP selects
the largest among the candidate components.

Note that computing the actual connected components is
inexpensive. We assume from Sec. II that a node u knows

Fig. 6. Fragmentation τ for our network crawl.

both f(u) and f2(u). This information is all u needs to locally
reconstruct its 1-hop neighborhood graph, which is enough to
compute its connected components.

A similar reasoning applies under churn. If we rely on the
assumption made in Section II that a node u knows, with
reasonable accuracy, which of its 1-hop social neighbors are
on-line at any given point in time, then u is able to locally
estimate the shape of its 1-hop neighborhood by excluding
the nodes it thinks are off-line, and (locally) compute the
connected components based on the estimate instead.

VI. EVALUATION

In this section we evaluate our protocols, first under the
assumption of a static network, and then under churn.

A. Static Network

Here, we assume 100% availability. Under this assumption,
all protocols yield residue zero for practical purposes, so we
do not discuss it further.
Baseline. We use direct mailing [13] as the baseline protocol
in our comparisons. In direct mailing, the node posting the
update is responsible for contacting receivers directly. As we
discuss in Section VII, this simple technique is used in some
P2P OSNs. To enable comparison, we consider a round-based
variant in which contacts are performed in rounds, one after
the other. Although direct mailing could be run “in parallel”,
this would be equivalent to setting its round length to zero,
which is something we can also do for our protocols. This
transformation, therefore, incurs no loss of generality.
Progressive plots. Due to the nature of our experiments, to
effects of the crawling procedure (e.g., border nodes all have
degree 1), and to social networks themselves [24], displaying
whole-network results is misleading as lower-degree nodes
heavily bias figures like average latency (e.g., experiments
rooted in a node with one neighbor always have average
latency 1, regardless of the strategy). We therefore choose to
plot these results in a way we call “progressive trimming”.

We focus on the degree of the root node, and sweep through
the set of values one at a time, in our case over the [1, 1500]
interval, the degree range of our crawl. Let δ : V → R be the
function providing such value for a given node. For each value
k, we compute the aggregate statistics (e.g. average latency)
over the set of unit experiments e ∈ E for which δ(root(e)) ≥
k, where E is the set of all unit experiments. We call such
plot a progressive plot. Note that the value we would get for
computing the statistics over the whole network corresponds
to the first point in these graphs.

Graphs like this must be generated with care. For the
statistics we compute, they work as if we were progressively
removing terms from a weighted average, so we must make
sure we are not removing the “relevant” terms too soon.
The point is we know that the bias induced by lower size
neighborhoods decreases the relevance of results, both because
those are much more numerous, and because they do not afford
much variability. As an example, think again about average
latency: neighborhoods of size 1, 2, or 3 are likely to show
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Fig. 7. Latency.

very similar average latencies. Yet, their numerosity brings
the average value down, making it similar over all protocols.
If we show average latency by progressively excluding lower
degree neighborhoods, however, the differences between the
protocols become more evident.
Latency. Fig. 7a shows the progressive plot of the average
latency tavg of direct mailing compared to our variants over
HFLOOD. tavg values for direct mailing can be computed ana-
lytically: for a neighborhood of size n, we have tavg = n−1

2 .
This means direct mailing does not really scale, and that can be
seen from the plot: tavg values grow very large, while for our
protocols they seem to remain almost constant in comparison.

Note that the reason why we do not see a straight line for
direct mailing in the plot is that we are doing a progressive plot
by degree, not simply plotting tavg by degree. The shape of the
plots is heavily influenced by the skewed degree distribution
of the network, and that is why the curve is irregular.

Fig. 7b shows zoomed plots for HFLOOD variants and
FLOOD. We can clearly see the performance benefits of using
histories: HFLOOD variants are faster than FLOOD across the
entire plot, with latencies being up to three times smaller at
some points of the graph (i.e. for some subsets of nodes).
This is mainly due to the “anti-starvation” effect of histories
we described in Sec. V.

As for the HFLOOD variants, the graph also shows the
effectiveness of sorting components by size (MAXCOMP) when
compared to picking them at random (RANDCOMP). Not
only MAXCOMP performs better than RANDCOMP, but the
latter actually performs worse than non-fragmentation-aware
heuristics such as RANDOM.

Note that these graphs are rather “bumpy”. This is a result of
fragmentation: since it is the main (but not the only) bottleneck
for diffusion speed in our protocols, average latency tends to
correlate highly to it, particularly in those heuristics which
are not fragmentation-aware. That is, in fact, the reason why
bumps are located roughly at the same points in the graphs,
and why the graphs for the best performing protocols seem to
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resemble “flattened versions” of the worst-performing ones.
Finally, Fig. 7c zooms into the three best-performing

HFLOOD variations, and confirms both the effectiveness of
ANTICENTRALITY—which performs better than RANDOM
across the board—and MAXCOMP, which performs better than
ANTICENTRALITY, except at the end. The reason, again,
is fragmentation. From Fig. 6 we can see that the large
neighborhoods which get included at end of the graph are
not very fragmented, in which case MAXCOMP performance
tends to align with that of ANTICENTRALITY.
Load. Fig. 8a and 8b show the progressive plot for average
load over all nodes, as we trim by degree. The use of histories
provide large savings in load, with HFLOOD generating on
average 4.8 times less messages than FLOOD. Direct mailing
is the cheapest of all protocols, since it generates no duplicates:
for a neighborhood of size n, each node processes on average
2n
n+1 messages. As for our approaches, there is no significant
difference in load values, with MAXCOMP and ANTICENTRAL-
ITY performing slightly better than RANDOM.

An interesting point is that average load seems to grow
with the size of the neighborhood. To get a closer look,
we do a scatterplot in Fig. 9a of average node load as a
function of degree. Each point represents how much a node
v pays, on average, whenever an update emerges over f∗(v).
We can see that the load indeed grows fast. Fortunately, this
increase comes with the size of neighborhoods, not of the
network. Further, even at its maximum, the value is not too
high, particularly if we consider the rate at which users post
updates on OSN sites. The user with the most posts in Twitter,
according to the Twitaholic website [26], posts one tweet a
minute; the average user is likely to post much less. An average
Facebook user posts 3 pieces of content a day [27].

Direct mailing is economical, but if we look at how many
messages each update originator must actually push into the
network, on average, to disseminate its update, we get the
scatterplot in Fig. 9b (shown for MAXCOMP). This brings us
to another nice property of our protocol: it balances the load
among those interested in receiving an update, shifting it away
from the poster. Fig. 9c shows a scatterplot of the coefficients
of variation (Sec. III-C) for messages sent and received by
HFLOOD with MAXCOMP, as well as for direct mailing (where
the coefficients of variation for messages sent and received are



the same). Our approach clearly provides better balance.
Finally, we show in Fig. 10 the progressive plots of how

many message copies, on average, a single post entails. Note
that this gives us a detailed account of how much redundancy
our protocols generate: since direct mailing produces zero
duplicates, its curve serves as a reference as well. We generate,
on average, 3.79 times more traffic than direct mailing, but this
value can become as high as 6.8 for some neighborhoods;
if direct mailing is implemented in its naı̈ve form. If we
were to implement it by using the point-to-point, DHT routing
primitive provided in Graffi et al. [6], for example, this would
change. While the overhead of our protocol depends on single
neighborhoods and should remain stable as the system grows,
the overhead for routing over a DHT grows with the size of
the network, even if slowly. If we assume 100 million on-line
users ( 1

5

th of the Facebook userbase) and a Pastry DHT with
settings as in [28], then log16 108 = 6.64, and we would get
the curve marked as “Direct Mailing/DHT” in the graph, in
which the savings afforded by direct mailing disappear.

Our solution, therefore, incurs acceptable overhead and
performance, effectively enabling the use of social overlays
as dissemination media in static networks.

B. Impact of Churn

We evaluated HFLOOD with MAXCOMP and direct mailing
under a simple churn model wherein we associate an on/off,
discrete time stochastic process Zv(t) to each node v ∈ V ,
such that Zv(t) = 1 if node v is alive at time t, or 0 otherwise.
These processes can be modelled as a two-state Markov chain,
with transition probabilities given by p1,1 = pon , p0,0 = poff ,
p1,0 = 1 − pon , and p0,1 = 1 − poff , where pi,j is the
probability that the chain transitions into state j at time t+ 1
given that it was at state i at time t. Let Xon

v be the random

Fig. 9. (a) average load, (b) messages posted by root(e), (c) coefficient of
variation for loads within experiments.

Direct Mailing/DHT HFLOOD/RANDOM

HFLOOD/ANTICENTRALITY
HFLOOD/RANDCOMP HFLOOD/MAXCOMP

0 500 1000 1500

0
4
0
0
0

1
0
0
0
0

Degree

A
v
g
. 
tr

a
ff
ic

 p
e
r 

u
p
d
a
te

Direct Mailing

Fig. 10. Average number of messages generated per update.

variable defining the session length for a node v, then:

E(Xon
v ) =

∞∑
i=1

ipion(1− pon) =
1

1− pon
− 1

We can similarly define and derive Xoff
v and E(Xoff

v ). We
evaluate protocols under different pon values, so as to get
average session lengths of 0.5, 2, 4, and 6 hours. For the
inter-session lengths we use a single poff value for a 1 hour
average. Asymptotic availability settings are similar to those
used by Yao et. al. [29], from where our churn model derives.
We use 1 second as the round duration for all protocols.

Churn introduces a new problem. Recall from Sec. V
that a node v stops disseminating an update o only when
it knows that all of its neighbors received it. If churn is
pessimistic, it might be that v has to wait for a very long time
(possibly forever) for such condition to be satisfied. To remedy
this situation, we introduce a timeout parameter tout in our
protocol: if a node v cannot contact any node that has not yet
received o for more than tout seconds, it stops disseminating
o. For the purposes of our simulations, we use a fixed tout
value of 30.

Since churn simulations are much more expensive, we had
to constrain our evaluation to a single unit experiment per
node. We are still evaluating 72, 303 unit experiments for each
combination of parameters and protocols.
Residue. We argue that, contrary to intuition, residue is not
a really important metric for comparing our push protocols,
even under churn. The reason is that session lengths under
the churn model are so large when compared to the average
experiment duration that, for the purpose of a single unit
experiment—focusing on a single update dissemination—it is
as if the network remained static. Since over a static network
the number of nodes reachable from the update originator is
the same regardless of the protocol, the residue is also the
same. This is confirmed in the progressive residue plot of Fig.
11a: although graphs become noisy at larger degree values
as we trim out more and more unit experiments from the
average residue computation, the overall point stands, with
values almost converging up until around 400.

A way to quantify if the dynamism left in the network
actually produces a measurable impact on residue is by
“correcting” it. We define the corrected residue of a unit
experiment e associated to update o to be the percentage of
nodes with uptime larger than zero over e which did not
receive o by the time e finishes. Fig. 11b shows a progressive
plot of corrected residues for HFLOOD and direct mailing
under the various churn settings we tried. HFLOOD produces
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less corrected residue than direct mailing over all settings.
Other churn and timeout settings are likely to exacerbate these
effects, and that is something we intend to investigate next.
Latency and Load. Churn transforms the underlying social
network by removing nodes from it. Therefore, we need to
assess whether these transformed networks create adverse
effects, be it on load (by causing certain nodes to grow in
importance) or latency (by increasing the lengths of dissem-
ination paths). Fig. 12a shows progressive plots for latency
over all average session length settings, trimmed by degree,
comparing HFLOOD and direct mailing. The overall point of
this graph is: churn is effectively shrinking the neighborhoods,
and this translates into a considerable improvement to direct
mailing, but our protocol remains faster.

We zoom into the progressive latency plots for our protocol
in Fig. 12b, and compare its latency figures with what we
had before churn. Even if the initial averages under churn are
smaller, numbers grow larger at some points, likely due to
some unlucky or unforeseen structural changes. Performance
remains however generally consistent, with increases only at
the lowest availability levels.

Finally, Fig. 12c, shows progressive plots for load for direct
mailing and our protocol, as well as for our protocol without
churn. The curves for our protocol are similar, resembling
translated and slightly flattened versions of the static load
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curve on the top. By and large, the roles played by the
nodes in dissemination in terms of relative importance over
their neighborhoods remain similar, with curves flattening
as average uptime plummets. This is to be expected: the
lower the availability, the less nodes in the network, and the
more fragmented the remaining neighborhoods become. As
fragmentation increases, our protocol smoothly converges into
direct mailing, both in terms of latency and load.

VII. RELATED WORK

P2P OSNs and publish/subscribe. The few current proposals
for P2P OSNs [5]–[7] assume that nodes are mapped onto
individual users. Content exchange among friends requires
that the nodes under their control are able to message each
other over the network. Whenever multicast communication is
required (e.g., for profile updates), these proposals must resort
to direct mailing [13], where a node unicasts individually each
destination. As we show in Sec. VI, our protocols provide
significant advantages over direct mailing, and hence could
find broader application in existing proposals as well.

Dissemination of updates can be seen as a pub/sub problem
wherein users are publishers and their friends, subscribers.
An alternative to using social overlays would then be the use
of topic-connected overlays [14]: while not respecting social
constraints in general, these overlays would at least allow
information to be disseminated without leaving the circle of
subscribers (i.e., updates can be disseminated from a user to its
friends using only those friends). Unfortunately, building these
overlays in a decentralized fashion is still an open problem.
Recent solutions [14], [15] still suffer from limitations that
are significant in our context (e.g., the inability to guarantee
a single topic-connected overlay connecting all neighbors)

Quasar [16] is an overlay-independent pub/sub system for
social networks. Nodes use attenuated Bloom filters to create
“gravity wells” for topics of interest. Publishing amounts to
performing parallel random walks on the overlay, with walkers
being “pulled” into and then “expelled” from gravity wells. It
relates to our approach in that random walks and push gossip
protocols are similar, and because it piggybacks histories of
previously visited subscribers into walkers. However, the latter
is done in Quasar to avoid loops, while we do it to increase
efficiency under differing clustering conditions.

GoDisco [17] is a hierarchical topic-based pub/sub system
which exploits social communities to route messages and,
as in our approach, uses social overlays. The authors share
our view on their potential benefits, but are most interested
in homophily: nodes with similar interests tend to cluster,
which means that social overlays might provide an efficient
dissemination medium for their pub/sub system. Like our
approach, GoDisco embodies topology awareness in its routing
protocol: it uses social triads [18] to counter duplicates. We
instead rely on message histories, which we believe provides
more robustness, and embody different topological awareness
techniques to speed up dissemination.
Gossip protocols. The ANTICENTRALITY selection heuristic
we put forth on Section III-B is similar to directional gos-



sip [19], particularly in that nodes with reduced connectivity
are given priority. Apart from the details of computing weights,
the main difference w.r.t. our approach is that whereas direc-
tional gossip assigns a “thresholding weight” above which it
switches from gossip to flooding, our heuristic biases selection
based on such weights instead. The rationale is that if all nodes
have similar characteristics our protocol behaves like uniform
gossip; otherwise it adapts, subject to the particular topological
conditions of the neighborhood in which it disseminates.

Our protocols can be related to biased gossip approaches
like BEEP [20]. Like our approach, BEEP favours the selection
of nodes on a per-user, per-news, and per-dissemination-
hop basis. The inputs and rationale for biasing are however
different: BEEP heuristically disseminates news to nodes that
might find them interesting, while adapting the fan-out so that
popular news spread and unpopular one die. Our biasing is
instead geared towards reducing duplicates and latency, and
compensating for the non-uniformity of social graphs.

Finally, while our protocols share their general operation
with traditional gossip [13], they are particular in that nodes
are only allowed to talk to friends. This constrains the protocol
to a set of arbitrary, richly varying graphs—the social neigh-
borhoods. General reliability results [12] are then not expected
to hold and, given the complexity and variability of these
graphs, extensive empirical evaluation is required instead.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has discussed the use of push-based gossip pro-
tocols for the dissemination of updates over social networks.
The problem is of interest not only because it fits our vision for
a P2P OSN based on social overlays, but also because it might
find broader application into existing P2P OSN proposals
which, up until now, relied either explicitly or implicitly on
the use of direct mailing and DHTs.

We have shown the caveats of applying gossip protocols to
social networks by quantitatively demonstrating the extent to
which classical protocols such as Demers’ rumor mongering
become inefficient under their widely non-uniform clustering
characteristics. We then introduced a novel gossip protocol ca-
pable of adapting to (and leveraging off) such non-uniformity.
This protocol is based on three key principles: the use of
message histories, an anticentrality selection heuristic, and
fragmentation awareness. We have shown through simulations
that these principles yield benefits, given that our protocol
significantly improves over mainstream gossip protocols and
direct mailing. Finally, we have shown that our protocol
performs acceptably under various churn conditions.

Future work involves an improved evaluation of the proto-
cols, including more realistic workloads, an evaluation of the
anti-entropy mechanism, and an integrated analysis encom-
passing overlay maintenance, as well as the implementation
of a prototype and an evaluation of the protocols under a
distributed testbed (e.g., PlanetLab).
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