
ar
X

iv
:1

81
0.

01
04

6v
1 

 [
cs

.C
R

] 
 2

 O
ct

 2
01

8

PhotoSafer: Content-Based and Context-Aware

Private Photo Protection for Smartphones

Ang Li, David Darling, Qinghua Li

Department of Computer Science and Computer Engineering

University of Arkansas

Email:{angli,dwdarlin,qinghual}@uark.edu

Abstract—Nowadays many people store photos in smartphones.
Many of the photos contain sensitive, private information, such as
a photocopy of driver’s license and credit card. An arising privacy
concern is with the unauthorized accesses to such private photos
by installed apps. Coarse-grained access control systems such
as the Android permission system offer all-or-nothing access to
photos stored on smartphones, and users are unaware of the exact
behavior of installed apps. Our analysis finds that 82% of the
top 200 free apps in a popular Android app store have complete
access to stored photos and network on a user’s smartphone,
which indicates possible private photo leakage. In addition, our
user survey reveals that 87.5% of the 112 respondents are not
aware that certain apps can access their photos without informing
users, and all the respondents believe that the stored photos on
their smartphones contain different types of private information.
Hence, we propose PhotoSafer, a content-based, context-aware
private photo protection system for Android phones. PhotoSafer
can detect private photos based on photo content with a well-
trained deep convolutional neural network, and control access to
photos based on system status (e.g., screen locked or not) and
app-running status (e.g., app in the background). Evaluations
demonstrate that PhotoSafer can accurately identify private
photos in real time. The efficacy and efficiency of the implemented
prototype system show the potential for practical use.

Index Terms—Smartphone, Photo, Privacy

I. INTRODUCTION

Smartphones have shifted the way people take, store and

share photos. There is an increasing number of people who

are able to take photos with smartphones anytime, anywhere.

Also, almost all social networks allow users to share photos

from corresponding smartphone apps (e.g., Instagram). Conse-

quently, more and more people prefer to store photos on their

smartphones for convenience, even though some photos are

private and sensitive (e.g., driver’s license). It is reported that

the average person has 630 photos stored on their phones [1].

However, many installed apps on smartphones have access to

stored photos and the network, which may cause leakage of

private photos to remote parties. This raises a privacy concern

that users’ private photos might be accessed by apps without

their awareness.

The Android platform offers users two approaches for

controlling access permissions. At the early stage of Android,

users are asked to grant permissions when they install an app.

Specifically, an app will disclose the full list of resources that it

wants to access at installation. Either all requested permissions

are granted, or the entire installation is aborted. Prior research

has shown that most users do not care about or understand

these disclosures at installation [2]. With the evolution of the

Android platform, a new permission scheme has replaced the

install-time disclosures for enhancing smoothness of instal-

lation process. In particular, users need to grant permissions

only when an app requests a sensitive resource for the first use.

Their decisions to these permission requests will be applied

to all future requests by that app for the same permission.

However, this scheme only considers a user’s preference for

permission requests when an app is used for the first time.

An app once granted access to a photo at the first access

will be able to access all photos all the time. It does not

account for the fact that the user’s preference for subsequent

permission requests might change under different contextual

circumstances. For instance, a user is willing to upload a photo

that was taken in a private gathering through a social-network

app; however, the same user might feel uncomfortable for the

same app running in the background to access such private

photos without his awareness.

To protect private photos, some apps have been developed

[3], [4], [5], which apply authentication techniques (e.g.,

password and fingerprint) to control access to those photos.

However, they either significantly affect the usability and user

experience or cannot really secure private photos. Specifically,

users are usually required to manually identify and import

private photos from the native photo gallery app on Android

to such third-party apps. It is very challenging and boring for

users to manually select private photos from hundreds or even

thousands photos on their mobile phones. Moreover, some of

these apps only copy private photos to a specific protected

folder but still keep them in the native photo gallery app, which

requires users to remove those private photos from the native

photo gallery app. If a user forgets to do so, no protection

can be provided. Even worse, some apps merely move user-

specified private photos to a hidden folder, which can be easily

detected and accessed without any challenge by using existing

file management apps [6], [7], [8]. In addition, when a user

wants to share private photos with other people through social

network apps such as Instagram, since these social network

apps usually only allow users to choose to-be-shared photos

from the native gallery app or the file management system, it

is inconvenient for users if private photos are kept in separate

app-specified folders. Hence, existing solutions cannot really

secure private photos while offering friendly user experience.

Some work has been done for refining Android permission
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systems. Nauman et al. [9] and Jeon et al. [10] designed

fine-grained permissions for Android, but do not specifically

protect stored private photos. CHIPS [11] is a face-recognition-

based access control system for stored photos on Android

phones, but can only protect photos that contain pre-specified

faces, which cannot be applied to other types of private photos

(e.g., credit card).

To this end, we design a novel content-based, context-

aware private photo protection system named PhotoSafer for

Android phones, which provides real-time access control over

private photos based on photo contents and the contextual

status of accesses, and discloses the specific sensitive content

that private photos contain to users before the photos can be

accessed. Our contributions are as follows:

• We analyze the top 200 free apps on Apkpure, which is a

very popular third-party Android app store, for evaluating

the potential privacy risks that current apps pose to private

photos.

• We conduct an online survey with 112 respondents to

investigate smartphone users’ privacy concerns over pri-

vate photos, including common types of private photos,

awareness of photo-accessing operations by apps, etc.

• We design a novel content-based, context-aware private

photo protection system PhotoSafer, which can automati-

cally identify private photos and perform real-time access

control over private photos based on the contextual status

of mobile phone and whether the requesting apps are

running in the foreground.

• We implement a prototype system on the Nexus 5 phone,

and evaluate the system’s performance.

The rest of the paper is organized as follows. Section II

presents how this work is motivated, including a permission

analysis of 200 popular apps and an online survey. Section

III introduces the design and workflow of PhotoSafer. Section

IV describes the prototype implementation. Section V shows

evaluation results. Section VI discusses the limitations of

this work. Section VII reviews related work. Section VIII

concludes the paper and discusses future work.

II. MOTIVATION

To better understand the privacy issues with photos stored

on mobile phones, we firstly analyze the requested permissions

of 200 apps to demonstrate the potential risk of unauthorized

access to private photos, and then investigate users’ concerns

about private photos in the real world through an online survey.

A. Permission Analysis

Let us first analyze what permissions are required to ac-

cess stored photos on the Android platform. For an Android

device, photos are stored in the external storage directory

that can be either a physical removable memory card or a

logical partition in the device’s memory. Hence, to access

stored photos, an app has to be granted the permission

READ_EXTERNAL_STORAGE, which is the only required

permission. However, the external storage directory is not the

repository only for photos, but also for other files such as

songs. As a result, the correlation between the permission

READ_EXTERNAL_STORAGE and photo access control is not

intuitive to average users. In addition, due to the aforemen-

tioned limitations of the Android permission system, users are

allowed to choose whether an app can access to all stored

photos, but cannot do selective control over any individual

photo.

Next, we analyze apps’ requested permissions to examine

the potential risk of unauthorized access to stored photos.

Due to the download restrictions of Google Play, we an-

alyze the top 200 free apps (e.g., Facebook, Twitter, etc.)

from Apkpure [12], which is a popular third-party Android

app store. We particularly identify apps that request both

READ_EXTERNAL_STORAGE and INTERNET permissions,

since the combination of these two permissions allow potential

leakage of private photos to another party. The analysis tool

Androguard [13] is used to extract the requested permissions

of each analyzed app. It is found that 164 out of the 200 apps

request both READ_EXTERNAL_STORAGE and INTERNET

permissions. That means 82% of the top 200 free apps on

Apkpure have complete access to stored photos on a user’s

phone, and could even leak these photos through the Internet.

Thus, there is a necessity for finer-grained access control on

private photos.

B. Online Survey

PhotoSafer’s design is also motivated by an online survey

which is designed to investigate smartphone users’ concerns

about unauthorized access to private photos. The survey was

conducted with user consent under an IRB approval from the

University of Arkansas. The survey is available online [14],

and the results here show statistics of all the 112 responses

collected by December 22, 2017. The mobile phone platform

usage of respondents is described in Table I, and the age

distribution of survey respondents is shown in Table II.

TABLE I: Mobile Phone Platform Usage of Survey Respon-

dents

Mobile Phone Platform Proportion of Respondents

Android 77.7%
iPhone 21.4%

Windows Phone 0.9%

TABLE II: Age Group Distribution of Survey Respondents

Age Group Proportion of Respondents

Less than 20 years 5.4%
20-30 years 84.8%
30-40 years 9.8%

Participants were asked whether they store private photos

(driver’s license, passport, etc.) on their mobile phones. An

overwhelming majority (88.6%) deemed that some private

photos are stored on their mobile phones. To explore which

specific type of photos are considered as private by respon-

dents, this survey provides different options for participants.



As shown in Table III, almost every participant considered

photos that contain Photo ID, Legal Documents and Family as

private, and over a half (57.9%) agreed that nude photos are

also sensitive. In a consequence, the above four types of photo

contents are used as references to identify different categories

of private photos for this work. Even though those types do

not cover all cases, they can represent a significant portion of

private photos in the real world.

TABLE III: Photo Types and the Proportion of Respondents

That Consider Them as Private

Photo Type Proportion of Respondents

Photo ID (e.g., driver’s license, passport) 97.4%

Legal Documents (e.g. SSN) 97.4%

Family (e.g., family party) 76.5%

Nudes 57.9%

Furthermore, as shown in Table IV, 67.5% of the partic-

ipants agreed that there are more than 10 installed apps on

their mobile phones that are granted access to photos. Also,

for each of the participants, there is at least one installed app

that has access to the photos stored on her/his mobile phone.

However, the results show that most of participants (87.5%) do

not clearly know whether any installed app can access photos

in the background or not without their awareness. As a result,

it is an urgent necessity to design a system to protect private

photos from being accessed without users’ awareness.

TABLE IV: Number of Installed Apps That Can Access Photos

Number of Installed Apps Proportion of Respondents

10+ 67.5%

6-10 21.9%

1-5 10.4%

III. SYSTEM DESIGN

This section describes the design of PhotoSafer.

A. System Overview

Our goal for designing PhotoSafer is to protect private

photos from unauthorized access by mobile apps, without

changing the way apps access photos and how users store

photos on their mobile phones. In addition, the system should

not affect the usability of apps and user experience; i.e., the

access control enforcement decision must be made within a

reasonable amount of time.

Our basic idea is that when an app requests to access

a particular photo, users should be aware of it and decide

whether the app can access that photo. The naive approach

is to prompt users to check the photo and make a decision

every time. However, this will definitely degrade the usability

of the system and apps. To address this problem, PhotoSafer is

designed to be able to automatically check whether the content

of photo is private, and determine whether the user is aware of

the app’s access request based on the contextual status of the

phone and the app. Specifically, when the phone is locked, the

user is not operating the phone for photo access and thus most

likely does not know that an app is accessing the photo. Even

when the phone is unlocked, the app which requests access to

the photo might be running in the background. In this case,

the user probably also does not know that the app is accessing

the photo. Generally, a user is aware of the photo access if

the app is running in the foreground, since usually the access

request is triggered by the user in this scenario. In this case,

the system can automatically check the photo content through

a trained classifier and inform the user whether the photo

contains private information and what private information it

is. The system also allows the user to determine whether the

access request should be permitted. To minimize the time

needed to identify private photo content during user operation,

PhotoSafer caches the identified contents of photos in a

database in advance. In this way, PhotoSafer can achieve real-

time response to photo access, such that the requesting app’s

usability and user experience will not be affected. To make

the system work, PhotoSafer needs to be integrated into the

Android kernel as a system service, since it needs privileges

to interpose photo access. When PhotoSafer is initialized, it

will feed all stored photos into a trained classifier to identify

photo contents (e.g., photo ID), and then the result will be

stored in a database. Whenever a new photo is added, it will

be fed into the classifier and the classification result will be

updated into the database.

The workflow of PhotoSafer is shown in Figure 1. When

an app requests to access a specific photo, the photo access

will be interposed and system status will be checked. If the

phone is locked, then the access request will be automatically

denied. However, if the phone is unlocked, the system will

continue checking the app’s status. If the app that requests

photo access is running in the background, then the access

request will also be automatically denied. On the contrary, if

the app is running in the foreground, the photo content can

be immediately obtained by querying the database, where the

content type of each photo is stored. Finally, if the photo is

classified as public (i.e., the photo does not contain private

content), the access permission will be automatically granted.

Otherwise, an alert will be prompted by informing the user

of what private information is contained in the photo and

requesting the user to determine permission. If the user trusts

the app and grants permission to it, then the photo access will

be continued; otherwise it will be denied.

B. Architecture

As Figure 2 shows, the system consists of four major

modules: photo access interposition, status checker, photo

content classifier, and photo content database. We can divide

the overall workflow of PhotoSafer into three steps. First,

when the system is initialized on a phone, the pre-trained

photo content classifier performs classifications on all stored

photos, and the results will be stored in the photo content

database. In the database, each record consists of a tuple

(photo id, content type), where photo id is the unique

identifier in each photo’s universal resource identifier (e.g.,

content://com.android.providers.media.documents/document/image%photo id)

content://com.android.providers.media.documents/document/image%photo_id
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Fig. 1: The workflow of PhotoSafer

in Android and content type represents whether a specific

photo is not private or contains which specific type of private

content, such as (‘10001’, ‘public’) and (‘10002’, ‘photo

ID’). Then, when an app requests to access a specific photo,

the photo access interposition module will interrupt the app’s

operation and trigger the status checker module to check the

system status and the app’s current running status. If the

phone is either locked or the app is running in background,

the access request will be directly denied. Otherwise, a query

with the photo’s photo id will be sent to the photo content

database. Finally, if the returned result from photo content

database shows the photo is public, the access request will be

automatically permitted, and photo access interposition will

resume the app’s operation. However, if the photo contains

some private information, an alert will be prompted by

describing what private information is contained in the photo

and requesting the user to make the decision of whether the

photo access interposition should resume the app’s operation

or not.

The design of PhotoSafer is based on several technolo-

gies available in off-the-shelf mobile phones. Photo access

interposition can be done by modifying the Android kernel.

The status checker can be implemented by Android APIs

KeyguardManager and ActivityManager. The photo

content database can be implemented by using SQLite. Next,

we will describe how to identify private photos.

Status 

Checker

Photo Access 

Interposition

Photo 

Content

Database 

Photo Content  

Classifier

Photo Access

 Decision

Fig. 2: The architecture of PhotoSafer

C. Photo Content Classifier

Given an input photo in pre-defined dimensions, this module

aims to detect whether that photo contains some specific pri-

vate information. This is done by training a deep convolutional

neural network (DCNN) to detect the private content of photos.

Formally, let P be the set of input photos. For a given photo

x ∈ P, let y ∈ {1, 2, 3, 4, 5} encode the categorical labels

{‘public’, ‘photo id’, ‘legal document’, ‘family’, ‘nude’} of

the photo. Let H be the hypothesis space of possible deci-

sion functions, and f(θTx) be the decision function, where

θ = {θ1, θ2, . . . , θN} is the network weights. Hence, the loss

function can be defined as L(f(θTx), y). Let E(L) be the

expected loss over the range of inputs P. In this work, we use

cross-entropy to estimate the loss, and hence the optimization

task is to minimize the expected cross-entropy loss.

f = argmin
f∈H

E(L) (1)

For each input x, the corresponding classification result is

f(x), and hence the according accuracy acc(x) can be defined

as:

acc(x, y) =

{

+1 y = f(x)

0 otherwise
(2)

However, the main challenge for training a DCNN to iden-

tify private photos is acquiring a sufficient number of private

photos to train on. Generally, a DCNN requires a relatively

large set of training data to perform well. To address this

challenge, we adopt the transfer learning [15] approach to train

our DCNN model. Specifically, we pretrain a DCNN model

on a large dataset ImageNet [16], which contains 1.2 million

images with 1000 categories. Then, we tune the parameters of

the output layer in the pretrained model on a smaller number

of private photos that we have collected.

IV. IMPLEMENTATION

Due to the time limitation, we implemented PhotoSafer as

a standalone app on Android phones instead of integrating it

into the Android kernel. We plan to implement its integration



with Android kernel in future work. Generally, the app works

like the native photo gallery app that comes with the Android

system. The prototype app was specifically designed so that

it will access some private photos under different system

status and app-running status. The photo content classifier was

implemented using Python 2.7 and Tensorflow [17], which is

an open-source deep learning framework. The other modules

were implemented by available technologies, as mentioned in

Section III-B.

A. Photo Content Classifier

This module aims to identify whether a given photo is public

or contains some specific private information. As described in

Section III-C, we use transfer learning to train a DCNN model.

In particular, we build the classifier using the Python APIs of

Tensorflow and adopting MobileNets [18]. The MobileNets are

a class of DCNNs that are specifically designed for efficiently

running on mobile devices. The significant difference between

the MobileNets architecture and a traditional DCNN’s is that

instead of a single 3x3 convolution layer followed by batch

norm and rectified linear unit (ReLU), MobileNets split the

convolution into a 3×3 depthwise convolution layer and a

1×1 pointwise convolution layer. It has been demonstrated that

the computing operations and model size will be significantly

reduced in this way. MobileNets are usually not as accurate

as traditional DCNNs, but it provides a trade-off between

accuracy and resource usage. Specifically, MobileNets offer

two parameters to tune the resource and accuracy trade-off:

width multiplier and resolution multiplier. The value of width

multiplier should be set between 0 and 1, while the resolution

multiplier might be various. The width multiplier allows us to

adjust the thickness of the DCNN, and the resolution multiplier

changes the input dimensions of images, which can reduce

the internal representation complexity at every layer. Table

V shows that, given a fixed resolution multiplier, when the

width multiplier increases the number of computing operations

and parameters also dramatically increases. However, when the

width multiplier is fixed, the larger the input dimension, the

more the required computing operations.

In this work, we fix the input dimension as 224 × 224,

but change the width multiplier for comparisons in Section

V-B. Firstly, we train the MobileNets on ImageNet with fine-

tuning parameters. After that, we fine-tune the output layer of

pretrained model with our collected dataset of private photos,

but keep the parameters of other layers unchanged. The details

of the dataset are described in Section V-A.

V. EVALUATION

In this section, we systematically evaluate the performance

of PhotoSafer through a number of experiments. To better

illustrate the benefits provided by our proposed system, we

also make comparisons against existing approaches. Partic-

ularly, we conduct the following experiments. Firstly, we

conduct extensive experiments to measure the private photo

identification accuracy. Secondly, we test the time taken by

the system to obtain photo content classification results from

the database. The evaluations for classification accuracy are

done on Ubuntu 17.04 64-bit machine with 32G RAM and

one NVIDIA TITAN Xp GPU. The other experiments are

conducted on Nexus 5 phones.

A. Dataset

Since private photos that are shared on a public domain

are limited, it is a challenging task to collect private photos

for training deep learning models. Furthermore, there is no

standard definition of ‘private photo’ applicable for every user,

since it is a very subjective determination. Thus it is hard to

collect one private photo dataset to cover all cases. However,

Zerr et al. [19] published a dataset collected from Flickr,

which is the only known publicly available dataset for photo

privacy research at this time. This dataset consists of 37,535

photos, which are labeled as Private, Public and Undecided.

Since the private photos in this dataset do not include most of

the private types reported from our survey, we only use the

Public photos from this dataset as public photos in our dataset.

Additionally, we collect 3,097 private photos in four common

types as shown in Table III from Google Image, with some

example photos shown in Figure 3. 80% of the dataset is used

for training, and the remained 20% is used for testing. The

distribution of each type of photo is illustrated in Table VII.

B. Classification Accuracy

As described above, we trained MobileNets models with a

fixed input dimension of 224 × 224 but with different width

multipliers. To be specific, we set the width multiplier as 1.0,

0.75 , 0.5 and 0.25 separately. To compare the classification

accuracy, we compare our MobileNets model with two base-

line models. One is the Inception v3 model [20] that is trained

on the same dataset. The other one is that we extract the bag

of visual words (BOVW) [21] from photos and then train it

with support vector machine (SVM). All the models except

SVM+BOVW are trained in two ways. Firstly, we directly

train each model with our dataset. Secondly, we adopt transfer

learning to train each model; i.e., we firstly train each model

with ImageNet and then fine-tune the model with our dataset.

As shown in Table VIII, the classification accuracy of each

model that is trained in transfer learning is higher than that

of each directly trained model. In particular, we observe that

the accuracy improves between 17% and 23% (in absolute

value). It also shows the Inception v3 model has a slightly

higher accuracy than the MobileNet 1.0 224 model, but the

model size is much bigger than the MobileNet 1.0 224 model.

This means it requires much more computation resources for

only a little performance improvement, which is not a good

fit for resource-constrained mobile phones. In addition, with

respect to those MobileNets models, with the decreasing width

multiplier the classification accuracy becomes lower and the

model size is smaller. Based on the above comparisons, we

choose the MobileNet 1.0 224 model with transfer learning

as our final classifier due to its high classification accuracy

and reasonable model size.



TABLE V: MobileNets with Different Width Multipliers

Width Multiplier ImageNet Accuracy Million Operations of Mult-Add Million Parameters

MobileNet 1.0 224 70.6% 569 4.2
MobileNet 0.75 224 68.4% 325 2.6
MobileNet 0.5 224 63.7% 149 1.3
MobileNet 0.25 224 50.6% 41 0.5

TABLE VI: MobileNets with Different Resolution Multipliers

Resolution Multiplier ImageNet Accuracy Million Operations of Mult-Add Million Parameters

MobileNet 1.0 224 70.6% 569 4.2
MobileNet 1.0 192 69.1% 418 4.2
MobileNet 1.0 160 67.2% 290 4.2
MobileNet 1.0 224 64.4% 186 4.2

TABLE VII: Dataset Distribution

Photo Type Number of Photos

Photo ID (e.g., driver’s license, passport) 1353

Legal Documents (e.g. SSN) 469

Family (e.g., family party) 682

Nudes 543

Public 14664

TABLE VIII: Comparison of Classification Accuracy and

Model Size

Model Accuracy Model Size

SVM+BOVW 73.2% 400 MB

Inception v3 80.3% 87.4 MB

MobileNet 1.0 224 77.5% 17.1 MB

MobileNet 0.75 224 72.6% 10.5 MB

MobileNet 0.5 224 68.7% 5.5 MB

MobileNet 0.25 224 63.3% 2 MB

Inception v3+Transfer Learning 97.3% 87.5 MB

MobileNet 1.0 224+Transfer Learning 94.3% 17.1 MB

MobileNet 0.75 224+Transfer Learning 93.5% 10.5 MB

MobileNet 0.5 224+Transfer Learning 91.2% 5.5 MB

MobileNet 0.25 224+Transfer Learning 89.7% 2 MB

As shown in Table IX, we also evaluate the classification

accuracy for each type of private photo. It can be seen that our

deep learning model achieves higher classification accuracy for

each type of private photo than that of the baseline model. For

instance, the classification accuracy of ‘Photo ID’ and ‘Legal

Document’ is as high as 97.8%.

TABLE IX: Classification Accuracy for Each Type of Photo

Model Photo ID Legal Document Family Nude Public

SVM+BOVW 75.1% 71.5% 72.7% 63.8% 61.5%

MobileNet 1.0 224 97.8% 97.8% 95.6% 86.2% 94.3%

In Table X we further explore the misclassifications. Even

though there are a small number of misclassifications on

each type of private photo, none of these are mistakenly

classified as ‘Public’. That means although there exist such

misclassifications on some photos, this will not prevent the

PhotoSafer from prompting alerts to user.

TABLE X: Confusion Matrix of Private Photo Classification

Prediction

Photo ID Legal Document Family Nude Public

A
ct

u
a

l

Photo ID 265 4 2 0 0

Legal Document 2 92 0 0 0

Family 4 0 130 2 0

Nude 5 0 10 94 0

C. Photo Content Classification Time

As presented in Section III, in order to avoid affecting user

experience, we store the classification results of all stored

photos in a photo content database. We measure the time for

retrieving one record of a specific photo from the database,

compared with the time for making a classification of that

photo in real time. We run a total of 10 trials for each of

100 randomly selected photos, and the average time cost is

described in Table XI. It shows the time cost of the database-

based approach is 38 time less than that of running real-time

classifications.

TABLE XI: Time Cost for Obtaining Photo Content Classifi-

cation Result: From Database vs. Real-Time Classification

Method Time

From Database 5.2 ms

Real-Time Classification 190.7 ms

VI. DISCUSSIONS

Even though we implemented a prototype system, we did

not integrate it into the Android kernel due to time limitation.

In addition, although the proposed system is designed for

Android platform, it may also be applicable to other mobile

platforms. This section discusses the limitations of the current

design and implementation, and how it can be improved in the

next step of research.

Kernel Interposition. In our current prototype system,

we implemented a function to simulate apps that may access

photos under different system status and app-running status

in the real world. This is the only way the prototype can

interpose photo access and monitor which specific photo is



(a) Driver’s License

(b) Photo ID

(c) Legal Document

(d) Family

(e) Nude

(f) Public

Fig. 3: Example photos in our dataset. Sensitive information

is removed from the photos.

being accessed. Otherwise, the prototype system requires the

root privilege in the Android system, which is not safe for user

to install such software. However, as described in Section III,

the best way is to implement photo access interposition in the

Android kernel. Since photos are accessed as regular files in

Android, all file access should be interposed. Additionally, the

kernel interposition needs to determine if the accessed file is

a photo through checking file extension (e.g., .jpg), so that

the system can decide in the kernel whether the accessed file

needs our proposed access control.

App Whitelist. In the current system design, we deter-

mine whether a photo access by a specific app is ‘unautho-

rized’ based the system status and app-running status, which

can cover most cases. However, in some cases, users are

satisfied with some apps that are running in the background

access photos. For instance, some users allow the Google

Photos app to backup the stored photos even if it is running

in the background. To consider such cases, the current system

design can be improved by adding an app whitelist. It allows

users to specify which apps can be granted access to all stored

photos without the proposed access control.

VII. RELATED WORK

Android Permissions The Android platform offers users

two approaches to controlling permissions. Before Android

6.0 (Marshmallow), apps are required to disclose the full

list of resources that they want to access at installation.

Users must grant all requested permissions; otherwise the

installation will be discontinued. Some work [2], [22] has

shown that few users pay attention to and really understand the

meaning of installation-time permissions. After Android 6.0,

users need to grant permissions only when an app requests

a sensitive resource for the first time. This scheme can offer

users contextual clues about why the requested resource is

necessary for an app. However, it does not account for the fact

that the user’s preference for subsequent permission requests

might be changed under different contextual circumstances.

Work has been done on permission models [2], [23], [24],

[25], [26], which found that users usually do not know

how apps access sensitive resources and how such access is

managed. Shih et al. [27] showed that private information is

more likely to be leaked when users are unaware of the purpose

for requesting a specific sensitive resource.

Almuhimedi et al. [28] analyzed AppOps, which is a

permission manager introduced in Android 4.3 but removed

in Android 4.4.2. AppOps allows users to review and modify

app permissions after apps are installed. They provided both

qualitative and quantitative evidence that the permission man-

ager can increase users’ awareness of privacy risks. A new

permission management system was introduced in Android

6.0 to replace AppOps, which allows users to review all

permissions that an app has been granted. However, since it is

hidden in the deep level of the Settings app, it is not easy

for average users to discover it. There exist several third-party

permission management apps, such as XPrivacy [29], Don-

keyGuard [30], Permission Manager [31] and Privacy Guard



[32]. However, these apps require additional privileges to

support their functionalities, since there is no official approach

offered to third-party apps to modify the permission system.

For example, XPrivacy requires an unlocked bootloader and

a custom recovery partition. Such restrictions are needed to

protect the permission system against interfering by malicious

apps.

Photo Privacy Ra et al. [33] designed a system P3 to

protect privacy of photos when they are shared on online

social networks. He et al. [34] proposed an approach to

protect users’ privacy for photo sharing. Jana et al. [35]

proposed a system Darkly based on the OpenCV library, which

protects users’ private information from continuous-sensing

applications. Templeman et al. [36] implemented a system

PlaceAvoider to protect visual privacy by identifying sensitive

places in video streams. Li et al. [37], [38] proposed two

systems for protecting bystanders’ privacy in photo taking. Tan

et al. [11] designed an access control scheme to protect private

photos on mobile phones, but it depends on pre-specified

target faces on mobile phones and can only provide limited

protection. Zerr et al. [19] collected a photo dataset from Flickr

with labels public, private or undecided. Then, they extracted

low-level features and trained a SVM model to identify private

photos. Squicciarini et al. [39] conducted an extensive study

based on the Flickr dataset collected by Zerr et al. and devel-

oped learning models to estimate adequate privacy settings for

shared photos in online social networks. Similar to the work by

Zerr et al. [19], Liu et al. [40] recruited workers to label photos

collected from Facebook as shared with “only me”, “some

friends”, “all friends”, “friends of friends”, and “everyone”.

They found that there is a big difference between the actual

labels on Facebook and labels obtained from workers. The

difference is due to the reason that Facebook users usually

share photos using the default privacy setting. Such difference

indicates that the default privacy setting on Facebook is much

lower than the privacy protection that users desire.

VIII. CONCLUSION AND FUTURE WORK

Motivated by a user survey and analysis of 200 apps’

permission requests, both of which showed the potential risk of

private photos being leaked without being known, we proposed

a system PhotoSafer to protect private photos that are stored on

mobile phones from being accessed without users’ awareness.

The access control on those private photos is enforced by

checking the system status and photo content. A mobile-

compatible private photo classifier was designed with transfer

learning. We implemented a prototype system, and evaluated

its performance and cost through experiments.

In future work, we plan to implement the app whitelist

module and integrate the system into the Android kernel. The

current design can protect several common types of private

photos. However, photo privacy is a very subjective problem.

Thus we will also consider designing personalized systems to

protect user-dependent private photos.
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