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Abstract—The early detection of where and when fatal infec-
tious diseases outbreak is of critical importance to the public
health. To effectively detect, analyze and then intervene the
spread of diseases, people’s health status along with their location
information should be timely collected. However, the conventional
practices are via surveys or field health workers, which are highly
costly and pose serious privacy threats to participants. In this
paper, we for the first time propose to exploit the ubiquitous
cloud services to collect users’ multi-dimensional data in a secure
and privacy-preserving manner and to enable the analysis of
infectious disease. Specifically, we target at the spatial clustering
analysis using Kulldorf scan statistic and propose a key-oblivious
inner product encryption (KOIPE) mechanism to ensure that the
untrusted entity only obtains the statistic instead of individual’s
data. Furthermore, we design an anonymous and sybil-resilient
approach to protect the data collection process from double
registration attacks and meanwhile preserve participant’s privacy
against untrusted cloud servers. A rigorous and comprehen-
sive security analysis is given to validate our design, and we
also conduct extensive simulations based on real-life datasets
to demonstrate the performance of our scheme in terms of
communication and computing overhead.

Index Terms—public health, clustering analysis, Kulldorf scan
statistic, group signature, identity-based encryption, secure multi-
party computation.

I. INTRODUCTION

The analysis and surveillance of infectious disease is the

cornerstone of the modern public health. It has become the in-

ternational top priority to prevent the disease and optimize the

health of the population [1]. The infectious disease could be

rare (e.g., plague, Ebola) or recurrent (e.g., influenza), natural

or intentional (e.g., bio-terrorism), but, regardless, it causes

devastating consequences for the people and economies. In

2013, over 200,000 Canadians got infected by highly conta-

gious diseases while 8,000 of them died as a result [2]. In

October 2001, the anthrax attack [3], which was intentionally

launched within the United States, killed 5 people and infected

17 others. Obviously, the impact of infectious diseases is

immense and it has fueled demand for prospective systems
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for early detection and intervention of disease outbreaks and

spread. Distinct from retrospective analysis, early (or real-

time) identification of infectious disease attracts more research

attentions, as it is expected to improve the survival rate

of infected patients and to avoid more severe societal and

economical loss due to disease dissemination [4].

Among all the practices for infectious disease surveillance,

the spatial clustering analysis is viewed as the essential one,

while the individual’s health and location data have been

deemed to be the two pillars for its application [5]. Specif-

ically, by analyzing the health and location information of

potential patients, epidemiologists could identify geographical

disease clusters at the early stage of the infectious disease

outbreak. The public resource (e.g., field health workers or

antibiotic prophylaxis) could then be allocated to prevent

its further dissemination. In recent years, the deployment

of disease detection systems has become a reality. For in-

stance, Brazil launched a mobile infectious disease surveil-

lance project targeted for the Dengue fever - a constant threat

to local residents [6]. The residents’ data is collected on daily

basis by field health workers who send individual’s location

information along with the respective survey results of their

health status back to the server for early disease detection.

MIT Lincoln Laboratory also deployed a similar project called

Biological-Agent Correlation Tracker (BACTracker) [7] aim-

ing to mitigate bio-terror attacks, which collects volunteers’

location and syndromic records (e.g., respiratory, gastroin-

testinal or other fever-associated symptoms) periodically. A

statistical analysis is then carried out after the data collection

to pinpoint geographical disease clusters. Other systems like

Gripenet started in 2005 in Portugal [8], FluTracking initiated

by Australia in 2006 [9], Influweb started in 2007 in Italy [10],

are widely adopted by different countries to collect volunteers’

information for effective infectious disease analysis.

Ideally, to calculate the most timely and fine-grained in-

fectious disease clusters, epidemiologists desire as much in-

dividual’s information (i.e., health and location records) as

possible, and at the highest possible level of precision. The

aforementioned participatory-based systems, however, bear the

weakness such as the poor data validation, limited represen-

tativeness, and unreliable participation rate [11]. Specifically,

most of the above systems collect data weekly; the majority

of participants are women [12], [13]; reporting fidelity is quite

variable with some only reporting sporadically over time [12];

and participation rates also relate to illness with first-time

participants being more likely to be sick than repeated ones.

Furthermore, it has also been noted that patients are generally

very reluctant to report their health and location information
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for a variety reasons, some related to disease severity, some

attributed to socio-demographic differences [14], and others

for privacy concerns (e.g., unwanted intrusive marketing, risk

of legal or compliance exposure, etc. [15]). Therefore, a more

timely, pervasive, secure and privacy-preserving data collec-

tion system is in dire need as an additional or supplemental

data source for a more comprehensive clustering analysis of

infectious disease.

In this paper, we are inspired to leverage the existing

ubiquitous cloud services - in particular the location-based

services by cloud servers (e.g., Google, Yelp, etc.) and health-

related services by cloud servers (Intel’s Health Guide, GE’s

QuiteCare, etc.) - to collect the timely, ubiquitous and rep-

resentative statistic data so as to facilitate the clustering

analysis of infectious diseases. In the meantime, we attempt

to guarantee the normal cloud services to users, to preserve

user’s privacy and to ensure the system security. To assure the

applicability of this proposal, a viable practice is to send users

consent forms notifying them that statistical rather than the

fine-grained records will be utilized for scientific study (i.e.,

public health), whereas a certain monetary incentives could be

provided as well. The incentive design is not within the scope

of this paper but we will investigate it in the future research.

The major contributions we have made in this paper are

summarized as follows.

• To the best of our knowledge, this is the first work propos-

ing to exploit the ubiquitous multi-cloud platforms for

the spatial clustering analysis of infectious diseases. This

proposal will significantly enhance/complement the con-

ventional data collection and disease analysis paradigm.

• We develop a secure data collection protocol based on

anonymous group signature to protect system security

against double registration attacks while preserving par-

ticipants’ location and health privacy.

• We design a secure multi-party computation scheme to

ensure the untrusted entities can only get statistic (i.e.,

sum value) but are oblivious of each individual’s data.

The remainder of the paper is organized as follows: Section

II describes the system model, security assumptions and design

objectives. Section III introduces the preliminaries for our later

design. Section IV presents our scheme design which is break

down into different phases. The security proof is given in

Section V and the performance evaluation of our scheme is

then showed in Section VI. Finally, Section VII concludes the

paper.

II. SYSTEM MODEL AND DESIGN OBJECTIVES

In this section, we give a high-level discussion of the system

model for spatial epidemiology analysis, the threat and security

model, and our design objectives.

A. System Model

There are five entities in our system: trusted authority (TA),

public health office (PHO), location-based service cloud server

(LC), health service cloud server (HC) and users, as shown in

Fig.1. Users are capable of interacting with the LC and HC

through off-the-shelf technologies such as their GPS-enabled

Figure 1: System model of the infectious disease anal-

ysis exploiting two clouds.

mobile phones, wearable devices (e.g., Apple watch), respec-

tively. In this respect, the LC and HC can correspondingly

collect user’s location and health information, which are later

exploited by the PHO for the spatial epidemiology analysis.

More explanations of each entity in the system are given

below.

• Trusted Authority (TA) is an entity that bootstraps

the system, creates and distributes credentials for legal

entities in the system. TA is also responsible for solving

disputes, revoking compromised entities when misbehav-

ior are reported.

• Public health office (PHO) is a government entity in

a geographic region (e.g., city level or state level) who

conducts analysis and control over the spread of epidemic

diseases. To do so, PHO collects population’s mobility

(i.e., location) and health information periodically (e.g., in

a daily basis) via queries to the LC and HC, respectively.

• Location-based service cloud server (LC) is a company-

operated cloud server such as Google or Yelp that collects

users’ location information to provision rich location-

based services (LBS). On top of the existing services, our

system allows PHO to access LC to perform epidemiol-

ogy analysis, but in a privacy-preserving manner.

• Health service cloud server (HC) is similar to LC in the

sense that it is an enterprise cloud server that has pow-

erful computation and storage capabilities. HC collects

users’ rich set of health information such as respiratory,

gastrointestinal symptoms, etc. to analyze users’ health

condition using sophisticated machine learning models. In

addition to that, HC is also made available to PHO under

extreme circumstances like the outbreak of epidemic

diseases, but each user’s health information should be

kept private.

• User first registers to the TA at the system initialization

phase to obtain valid credentials. Users then interact with

the LC and HC using their mobile phones and wearable

devices to obtain LBS and health services, respectively.
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B. Security Model

TA is fully trusted by all other entities in the system and

is assumed not compromised. LC and HC are honest-but-

curious, i.e., they honestly follow the protocol but are curious

about users’ location and health information, respectively.

Moreover, LC and HC may be operated by one enterprise

(e.g., Google) so their records could be combined to predict a

user’s future health condition through his/her social contacts

with other infected users, which may result in unwanted

intrusive marketing or denial of insurance coverage for that

particular user. PHO is assumed honest-but-curious in the

sense that it honestly conducts statistic analysis of the spread

of epidemic diseases but are curious of individual’s location

and health information for purposes like segregating infected

patients, which however might be against users’ willingness

and compromise their privacy. Last but not least, the users in

this system are not trusted. They may launch sybil attacks to

mislead PHO’s statistic analysis to either cause panic in an

uninfected region or reduce PHO’s awareness of an infected

area, for the purpose of bio-terrorism or gaining commercial

advantages.

C. Design Objectives

Based on the discussion of the prior security model, we

present the design objectives as follows.

• Individual data privacy. The data privacy indicates the

confidentiality of the location and health data. Each

user’s data privacy should be protected against potential

adversaries and the aforementioned curious entities.

• Usability. The submitted data should allow PHO to con-

duct statistical analysis of epidemic diseases and LC and

HC to provision corresponding services to users.

• Data Verifiability and user accountability. LC and HC

should be able to authenticate users and their submitted

data in order to avoid them misleading PHO through

injecting falsified data. The system is also expected to

revoke misbehaved users and reject bogus data.

• Efficiency. The spatial epidemiology analysis deals with

a significant amount of user records (e.g., hundreds of

thousands) in a city or state level. The protocol should be

efficient enough to provide timely analysis and response

for the epidemic disease control.

III. PRELIMINARIES

A. Kulldorff Spatial Scan Statistic [16]

The Kulldorff spatial scan statistic, firstly proposed in [16]

1997, now becomes one of the most powerful tools in per-

forming clustering analysis to detect small clusters in a large

location dataset. It finds a great potential in the application of

spatial epidemiology surveillance to discover the small spatial

regions (e.g., a school or a shopping mall) of significantly

elevated disease density [17]. The core idea of the Kulldorff

spatial scan statistic is to detect the overdensity region than

any other statistics. The following describes how the Kulldorff

spatial scan statistic works.

An surveillance region G is firstly divided into subareas

(e.g., district or county) {s1, s2, ..., sK } of any arbitrary level of

Figure 2: A demonstrative example for Kulldorff scan

statistic: 62 counties in New York State while three of

them forming a spatial cluster as the result of running

Kulldorff scan statistic.

fine-grain, such that G =
K∪
i=1

si . For demonstrative purposes,

Fig.2 shows the geographic map of New York State, which

is sliced into 62 subareas according to the county divisions.

PHO then collects the statistics of the total disease case count

and population in each subarea, denoted as {c1, c2, ..., cK } and

{p1, p2, ..., pK }, respectively. In so doing, PHO keeps a record

of the total disease case count Ctot =
∑K

i=1 ci and census

population Ptot =
∑K

i=1 pi of whole region G. The Kulldorff

spatial scan statistic is then applied to search all the cluster

of neighbouring subareas to find abnormal ones with disease

overdensity. In specific, suppose {S1, S2, ..., SM } is the set of

all the possible cluster of adjacent subareas, each of which

has disease case count Cj and population Pj . As an example,

Fig.2 shows a cluster area S1 = s36 ∪ s37 ∪ s38. The Kulldorff

spatial scan statistic then proceeds to calculate the respective

cluster density D j as

Cj log
Cj

Pj
+
(
Ctot − Cj

)
log

Ctot − Cj

Ptot − Pj
− Ctot log

Ctot

Ptot
, (1)

if
C j

Pj
> Ctot

Ptot
and 0, otherwise.

In so doing, PHO can detect the maximum density

mrd = maxS j ∈GD j and the corresponding cluster mdr =
arg maxS j ∈GD j in the region G. To evaluate whether this

cluster is statistically significant or spatial overdensity in terms

of the disease case count, the Kulldorff spatial scan statistic

assumes ci following inhomogeneous Poisson processes and

a randomization testing approach is conducted to test whether

mdr is statistically significant. To be specific, PHO firstly

generates R of random replications of the region G. Each

replica has the same underlying populations {p1, p2, ..., pK }
as the benchmark G, but assumes a uniform disease rate

qrp =
Ctot

Ptot
for all the subarea {s1, s2, ..., sK }. Then, for each

replica G
′
, PHO draws ci randomly from an inhomogeneous

Poisson distribution with mean qrppi , and finds the mdr of G
′
.

The statistical significance (i.e., p-value) is then calculated as

the number of replications having mrd(G
′
) ≥ mrd(G) divided

by the total number of replications R. Normally, the cluster is
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considered as the outlier or being statistically significant when

p ≤ 0.05.

B. Bilinear Pairing

Bilinear pairing-based cryptography has attracted great in-

terests from the security community as it enables several

innovative designs such as IBC [18]. Although many groups

with a useful bilinear map area based on elliptic curve, our

definitions are abstract and we follow the notion of Boneh et
al. [18]. Let G1 and G2 being two multiplicative cyclic groups

of prime order p, and g1 and g2 be the generator of G1 and G2,

respectively, and ψ be an efficiently computable bilinear map

from G2 to G1 such that ψ(g2) = g1. The following property

holds true:

• Bilinearity: e
(
Pa,Qb

)
= e(P,Q)ab for all P ∈ G1, Q ∈

G2 and a, b ∈ Z∗p .

• Non-degeneracy: e (g1, g2) � 1.

• Computability: e (P,Q) can be computed efficiently for

any P ∈ G1, Q ∈ G2.

In this paper, we consider the bilinear map e : G1 × G2 →
GT , where G1 � G2, although one could set them equal.

IV. THE SECURE AND PRIVACY-PRESERVING PROTOCOL

FOR INFECTIOUS DISEASE ANALYSIS

In this section, we present the details of our protocol design

by exploiting two clouds (i.e., LC and HC) to ensure PHO can

conduct the spatial clustering analysis of infectious diseases in

a secure and privacy-preserving manner.

A. Protocol Overview

Compared with the existing disease surveillance projects

such as the BACTrack system relying on participatory volun-

teers [7] or the system supported by the field workers or the

family physicians [15], our system depends on the running

cloud services which are ubiquitous in everyone’s cyber-life.

The major drawbacks of prior disease surveillance systems

include the limited number of participants, the huge system

operating costs, and the inefficient, insure and non-private data

collection process; whereas our system can achieve obvious

advantages in these respects. However, there are several unique

design challenges in our system as well which was described

in Section II. We thereby first give a high-level overview of

our secure and privacy-preserving protocol.

At the moment of infectious disease outbreak, the govern-

ment or PHO can either initiate a request to the LC and

HC to collect users’ location and health information within

a response time (i.e., 10:00am to 10:15am of Jan.8th 2018 in

NYC) or directly query the existing records in the LC and

HC. In this work, we apply the former model to guarantee

the freshness of the collected data. Then, within the data

collection phase, mutual authentication should be carried out

between users and LC & HC so that the system security (i.e.,

preventing double registration, revoking misbehaved users)

could be ensured. In the meantime, users’ privacy must be

preserved as well. After the data collection phase, PHO is

only limited to query LC and HC for the statistic data (i.e.,

sum) to conduct the Kulldorf scan statistic analysis.
In what follows, we will give the in-depth discussions of

our protocol.

B. Privacy-Preserving Authentication With Resilience to Sybil
Attacks

In this design phase, the objective is two-fold: LC and HC

need to authenticate users to ensure that they are authorized

users (i.e., not on the revocation list) and each of them only

submits a single data tuple (i.e., location and health data)

within the response time session; whereas users demand the

authentication process not to reveal their real identities while

LC & HC not being able to link their multi-dimensional data

through collusion. The proposed solution is inspired by an

efficient group signature scheme [19], which serves as the

basis to achieve the aforementioned objectives. Concretely,

our scheme consists of three parts: (1) key generation, (2)

signature, (3) verification.
(1) KeyGen: Given the security parameter κ, TA

firstly bootstraps the system by generating the tuple

(p, g1, g2,G1,G2,GT , e). TA also chooses two secure crypto-

graphic hash functions H0 and H , with respective ranges

G
2
2 and Z∗p . Next, TA randomly picks γ ∈ Z∗p and sets

w = g
γ
2 . Using γ, for each user i, TA selects a random

number xi ∈ Z∗p such that xi + γ � 0, and then sets

Ai = g
1/(xi+γ)

1 . In so doing, TA could publish the public pa-

rameter pub_para = (p, g1, g2,G1,G2,GT , e, ω, H, H0), where

the partial tuple (g1, g2, ω) in [19] is denoted as the group
public key (gpk). For each user i, TA also distributes its group
secret key (gsk), gsk = (xi, Ai), through a secure channel.

(2) Sign: Suppose cloud servers have their unique identifiers

as lcid and hcid, respectively, and every response time session

is assigned with an identifier sid as well, lcid, hcid and sid
are made public and users will then conduct the following

steps to anonymously authenticate themselves. Note that for a

clear presentation, we only exhibit the authentication process

between users and LC while the authentication between users

and the HC can be conducted in a similar manner. However,

we shall demonstrate in the later session that LC and HC

cannot link the user through this process.

1) Generate a tuple in G2 from H0, and then compute their

images in G1 from ψ:

(û, v̂) ← H0(gpk, sid, lcid) ∈ G2,

u ← ψ(û) ∈ G1, v ← ψ (̂v) ∈ G1.

2) Select a random number α ∈ Z∗p , and then compute:

T1 = uα, T2 = Aiv
α .

3) Set δ = αxi and choose random numbers rα, rx, rδ ∈ Z∗p ,

then compute:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1 = urα

R2 = e(T2, g2)rx · e(v, ω)−rα · e(v, g2)−rδ

R3 = Trx
1 · u−rδ

4) Compute a challenge value from H:

c ← H (gpk, sid,T1,T2, R1, R2, R3) ∈ Z∗p .
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5) Compute sα = rα + cα, sx = rx + cxi and sδ = rδ + cδ,

and construct the following authentication message:

σ ← (sid,T1,T2, c, sα, sx, sδ ).

(3) Verify: Upon receiving users’ authentication message

σ, the cloud server proceeds in three phases: it first examines

the validity of the authentication message σ; it then checks if

this user is on the revocation list (RL); finally it ensures this

message is not from the double registration or sybil users. The

cloud servers only accept users’ data (i.e., location and health

data) if these conditions hold.

1) Compute the following tuple:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R1 = usα
/
Tc

1

R2 = e(T2, g2)sx · e(v, ω)−sα · e(v, g2)−sδ ·
[

e(T2, ω)

e(g1, g2)

]c
R3 = T sx

1 · u−sδ
2) Check if the following holds:

c
?
=H (gpk, sid,T1,T2, R1, R2, R3). (2)

3) If so, for every A ∈ RL, check if the following holds to

see if the user is on the revocation list:

e(T2
/
A, û)

?
= e(T1, v̂). (3)

4) If not, check if the following holds to avoid sybil attacks:

e(T2, û)
/
e(T1, v̂)

?
= e(T

′
2, û)
/
e(T

′
1, v̂). (4)

In [19], it is proven that revocation check can be conducted

locally (i.e., in LC and HC in this paper) via examining

whether A is encoded in (T1,T2) through (3). Similarly, in-

spired by (3), we can leverage the relation that e(Ai, û) =

e(T2, û)
/
e(T1, v̂) = e(T

′
2, û)
/
e(T

′
1, v̂) always holds for the same

user i possessing Ai within a response time session sid to

check if the same user (or the sybil node) attempts to double

register in the cloud servers. If misbehaved users are detected

in this process, (T1,T2) shall be reported to the TA which will

later update a new revocation list to the cloud servers.

Briefly, the core idea of our design is to allow the user

to anonymously prove to cloud servers for possession of a

Strong Diffie-Hellman (SDH) tuple, i.e., (xi, Ai), via solving

a challenge problem. And the check for double registration

attack is also in line with this same intuition. For interested

users, the security proofs (e.g., correctness) for this protocol

can be found in [19], but we shall discuss in the later section

that this design will also not allow the LC and HC to link a

specific user if they collude.

C. Privacy-Preserving Data Collection

After the user authenticates itself to the cloud servers, its

location and health data will be sent to the LC and HC,

respectively. To preserve the data privacy, pseudonyms or data

encryption/obfuscation are commonly adopted approaches.

Depending on different application scenarios, for instance,

some literature may consider cloud servers are limited to

access the ciphertext [20], [21]. In this work, we leverage

the pseudonym crypto-system and the cloud servers have

users’ plaintext data so that on one hand they could provision

users services while on the other hand allow PHO to conduct

infectious disease analysis.

The challenge of data collection phase comes from that the

design should allow PHO to link users’ multi-dimensional

(i.e., location and health) data while achieving unlinkability

between LC and HC. Inspired by ID-based encryption (IBE)

proposed by Boneh and Franklin in [18], we develop an IBE-

based access control scheme to fulfill the objective. Suppose

user i sends HC following message tuple (uidi, hi) where

uidi is its pseudonym and hi is the health data. Then, the

user encrypts this pseudonym using IBE scheme as uid
′
i ←

EncIBE (pp, pid, uidi) where pp is the public key generated

by TA and pid represents the cryptographic hash of PHO’s

identity pid. After that, the user sends LC following message

tuple (uid
′
i, loci) where loci is its location information. In

so doing, LC and HC cannot link any two data records in

their database due to the probabilistic encryption nature of

IBE; whereas PHO could associate them by decrypting the

identifier from LC uidi ← DecIBE (pid, uid
′
i) using the private

key obtained from the TA.

D. Privacy-Preserving Data Query

By the end of the response time session, LC and HC have

collected users’ location and health information, respectively.

To enable the infectious analysis using Kulldorf scan statistic,

PHO needs to query the LC and HC to obtain the population

Pj and the count of infected users Cj in each geographical grid

j. Our objective is to let the PHO only access the sum value

(i.e., Pj and Cj) without revealing individual user’s location

and health information. Besides, the query process should be

as computationally efficient as possible since we may deal

with tens of thousands of users’ data records within a city.

This naturally leads us to design a privacy-preserving batch

query scheme, but we have to ensure that the batch query

would not leak additional information to LC or HC to link

any users.

In this design phase, the PHO starts with sending queries to

LC for the list of users’ pseudonyms uid
′
i in every geographical

grid. The PHO only knows a batch of users in a rough

geographical area but is oblivious of where specifically a user

is. Then, the PHO solicits the IBE private key from the TA by

proving its identity credentials in order to decrypt the users’

pseudonyms which was previously encrypted as in Section

IV-C. Now, the PHO has the pseudonym list uid that is exactly

matched with that is stored in HC. On the other hand, HC may

employ some models, like the Naive Bayes in [21], to evaluate

users’ health status based on their submitted health records hi .
Hence, we suppose the HC now maintains a health vector of

0s and 1s representing whether a user is infected (i.e., 1) or not

(i.e., 0); whereas the indices of this vector are users’ respective

pseudonyms uidi . To privately and effectively retrieve the

count of infected users in every geographical grid, the PHO

and HC need to conduct the following computation task. For

demonstrative purposes, we show a toy example in Fig.3.

Suppose the PHO constructs a query matrix Q containing
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users’ residence in each geographical grid. An integer value

1 represents the user is within that grid; 0 otherwise. We

also assume users are not located in the boundary of grids so

every user’s residence can be uniquely captured by a specific

geographical grid. On the other hand, HC keeps users’ infected

status in a data vector H . Note that the user list in Q and H
could be mismatched if some users did not submit the pair

of their location and health information in the data collection

phase. Hence, for accurate analysis, our design is expected to

filter the mismatched entries in a privacy-preserving manner.

In the end, the PHO could derive the case count vector CNT
in each geographical grid via the inner product of Q and H .

Figure 3: A toy example for the batch query: PHO’s

query matrix contains 3 grids and 4 users; HC’s database

holds 4 users’ infected status; and the inner product gives

the count of infected users in each grid.

To preserve users’ location privacy against the HC and the

health privacy against the PHO, PHO’s query matrix Q should

be kept private to the HC and oppositely PHO should be

oblivious to HC’s health vector H as well. Therefore, our

scheme is boiled down into a secure multiparty computation

(SMC) [22], [23] design where the PHO and HC should

collaboratively compute the inner product of Q and H in a

privacy-preserving way.

Our design is inspired by the secure k nearest neighbour

(kNN) scheme [24], which is to securely search the k nearest

database records in the Euclidean distance between a data

record p and a query vector q. To adapt the Euclidean distance,

every data record pi and query record q is firstly extended

to (d + 1)-dimension where the (d + 1)th element is set

as −0.5‖pi ‖2 and 1, respectively. Then, a random invertible

matrix M of dimension (d + 1) × (d + 1) is used to encrypt

the data and query record through the following equation⎧⎪⎨⎪⎩
p
′
i = (pi,−0.5‖pi ‖2) · M

q
′
= M−1 · (q, 1)T

where it is proven in [24] that the scheme can deter-

mine whether pi is closer to q than p j is by compar-

ing (p
′
i − p

′
j ) · q

′
with 0. The reason is that to examine

if

√
‖ pi ‖2 − 2pi · q + ‖q‖2 ≥

√			p j
			2 − 2p j · q + ‖q‖2, it is

equivalent to evaluate whether ‖pi ‖2 − 			p j
			2 − 2(pi − p j )q ≥

0 or not. Using the secure kNN scheme in [24], we have the

inner product of encrypted data record p
′
i and query record

q
′
i equals pi · q − 0.5‖pi ‖2 which can be further used to

compare ‖ pi ‖2 − 			p j
			2 − 2(pi − p j )q with 0 via calculating

(p
′
i− p

′
j ) ·q

′
. Furthermore, the work [24] also presents to apply

random asymmetric splitting and add artificial dimensions to

enhance the security of the secure kNN scheme.

However, we need to do some modifications on this con-

ventional scheme as the random matrix M in our framework

should be kept private to the query side (i.e., HC) and the

PHO needs to derive the exact value of the inner product of

Q and H instead of a relative number. Therefore, we propose

a Key-Oblivious Inner Product Encryption (KOIPE) scheme,

which bears a similar idea with [24], [25]. Our proposed

scheme consists of the following components: (1) matrix

synchronization, (2) query randomization, (3) data encryption,

(4) key embedment, (5) inner product. To give a clearer

picture, we also show the overall information exchange of the

data query phase in Fig.4.

Figure 4: Three party information exchange diagram for

the privacy-preserving data query.

(1)MtxSync: Before executing the secure inner product, the

PHO and HC should “synchronize” or “align” their matrices

so that any mismatched records could be eliminated. Instead of

sorting user list uid according to their resided location grids,

PHO applies a permutation mechanism π1 to randomize the

sequence of the user list, which is then sent to HC to filter

mismatched records and to re-order the health record H .

(2)QryRnd: PHO selects a random invertible matrix M of

size N × N , to encrypt the query matrix into the following

form Q = Q · M−1. To enhance the security level, we

further randomize the encrypted query matrix using another

permutation mechanism π2 and then send the transformed

encrypted query matrix ˜Q (i.e., ˜Q = π2(Q)) to the HC.

Note that applying another round of permutation is to further

randomize the matrix while we are aware of the fact that the

same permutation on two vectors does not change the inner

product of them.

(3)DataEnc: We resort to the Paillier cryptosystem [26] in

our scheme to support the additively homomorphic encryption,

so the HC firstly obtains the key pair as (pkHC, skHC ) from

the TA. Then, HC encrypts its health data vector using the

public key pkHC into H , which is then sent back to PHO.

Specifically, for each record hi in H , the encryption operates

112



as hi = EncpkHC (hi, ri) where EncpkHC () is the encryption

function in the Paillier cryptosystem and ri is a random

number selected in correspondence with the ith record of

H . Clearly, it is in the nature of probabilistic encryption

so every record of H will not be encrypted into the same

value. Interested reader can refer to [26] for more detailed

descriptions.

(4)KeyEmd: Our intention here is to embed (or encrypt) the

random invertible matrix M in H . We attempt to leverage the

property of the Paillier cryptosystem in providing the additive

homomorphism, which is described as 1) Encpk (m1, r1) ×
Encpk (m2, r2) = Encpk (m1 +m2, r1r2) and 2) Encpk (m1, r1)k

= Encpk (k ×m1, rk1 ), to embed M . Specifically, PHO need to

calculate H
′
= EncpkHC (M · H ) and to do so, the following

arithmetic computation for each element in H should be

executed:

h
′
i =
∏N

j=1
EncpkHC (h j, r j )

mi, j

=
∏N

j=1
EncpkHC (mi, jh j, r

mi, j

j )

= EncpkHC (
∑N

j=1
mi, jh j,

∏N

j=1
rmi, j

j ), 1 ≤ i ≤ N .

Then, PHO applies the same permutation π2 as presented in

Step 2 to randomize the H
′
, which is then sent back to HC

along with the encrypted query matrix ˜Q.

(4)InPrd: After receiving the two matrices from PHO in

Step 4, HC first decrypts the health data vector using the secret

key skHC into ˜H and then computes the inner product to

derive the count of infected users as CNT = ˜Q ·˜HT . Then,

HC sends the vector CNT back to the PHO, which concludes

the whole process.

Upon obtaining the disease case count cj and the respective

population (i.e., number of participants) pj for every geograph-

ical grid area s j , PHO first calculates the cluster density Dj

according to (1) and then runs the randomization test to search

for the spatial clusters that exhibit the statistical significance.

These discovered clusters will be marked as infectious areas

requiring follow-up actions from the PHO.

V. SECURITY ANALYSIS

Theorem 1. Our scheme preserves users’ privacy against the
LC, HC and PHO.

Proof. In the data collection phase, we require users to authen-

ticate themselves to LC and HC to avoid double registration

attacks. The authentication is a process of knowledge proof

which means by rewinding a prover it is possible to extract

an SDH pair (i.e., (x, A)) but the verifier (i.e., HC and LC)

is oblivious of the identity of the user. The only exception is

that for the revoked user, the verifier is aware of whom he is

interacting with but this information will not help the verifier

deduce additional knowledge about other legitimate users as

(x, A) is generated by the TA separately.

Besides, since A is ElGamal-encrypted in (T1,T2) and

(û, v̂) is publicly known, one nature concern is whether

the LC and HC can collude by sharing (T1,T2) to link

a specific user through the authentication process. Firstly,

the LC and HC cannot find the arithmetic relation between

(T1,HC,T2,HC ) and (T1,LC,T2,LC ) due to the blinding number

α for which the LC/HC has to solve a Discrete Loga-

rithm (DL) problem. Secondly, e(T2,HC, ûHC )
/
e(T1,HC, v̂HC )

� e(T2,LC, ûLC )
/
e(T1,LC, v̂LC ) as e(A, ûHC ) � e(A, ûLC ), and

even though (û, v̂) is known, A cannot be derived due to the

hardness of solving a Computational Diffie-Hellman (CDH)

problem. Moreover, when users submit their data, HC/LC

cannot link users’ pseudonyms as they need to have PHO’s

secret key in the IBE crypto-system.

Last but not least, in the data query phase, the PHO on

one hand has no idea where a specific user is due to the

batch query to the LC; on the other hand it cannot deduce

each user’s health status because HC employs the additively

homomorphic encryption which is a probabilistic encryption

approach. The HC, however, is oblivious of where each user

is during the interaction with the PHO. The reason is that

by observing PHO’s ˜Q the HC has to solve a system of

linear equations which has K equations but K · N variables to

derive the randomization matrix M so as to revert Q. However,

there lacks sufficient information to solve the M thus the HC

cannot obtain users’ relative location with each other through

interacting with PHO. After getting the sum of disease count

back from HC, we argue that each user’s health information is

“hidden in the crowd” (i.e., sum statistic) unless there is only

one user in a geographical grid area.

Note that our privacy-preserving design is relied on the

cryptographic pseudonym system. Although some research

findings show that the pseudonym-based approach could fail

for individual data privacy in some contexts if the adversary

has side information to re-identify or de-anonymize the user.

We do not see this is the case in our scenario but if this

truly happens we could easily employ certain randomization

approaches (e.g., differential privacy) to perturbate the location

and health data. �

Theorem 2. Our scheme is resilient to the double registration
attack.

Proof. To let HC and LC accept the data, a malicious user has

to pass the authentication process by submitting the (T1,T2)

tuple in the signature message. For a given time session,

(û, v̂) is fixed and known to HC and LC. To bypass the

double-registration verification in (4), the malicious user needs

to construct another tuple (T
′
1,T

′
2) such that e(T2, û)

/
e(T1, v̂)

� e(T
′
2, û)
/
e(T

′
1, v̂) while allowing LC and HC to solve the

challenge in (2). To do so, the malicious user needs to compose

another group secret key (x
′
, A

′
), for which it has to derive

the secret seed γ from the parameter in the group public key

ω but it is a DL problem. Therefore, a malicious user cannot

pass the authentication process and meanwhile double register

its record in servers. �

VI. PERFORMANCE EVALUATION

In this section, we attempt to evaluate the incurred storage

and computing overhead of our scheme for each entity, namely

the user, LC, HC and PHO. Firstly of all, we put forward

details of the simulation setup.
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A. Simulation Setup

We use a workstation of 3.2GHz Intel(R) Core(TM) i3 CPU

and 8GB memory to emulate the LC’s, HC’s and PHO’s

computing facility. We implement our security mechanism

using the JPBC library [27] with Type D159 pairing internal

to realize short group signature in our design. Specifically, it

offers 160-bit prime order p, 159-bit length for elements in

group G1 and is equivalent to 954 bits Discrete Logarithm

security. Besides, we employ 2048-bit modulus as the secret

key length, as with the RSA, in the Paillier cryptosystem.

Furthermore, we exploit two real-life datasets, namely the

lung cancer incidence in New York State [28] and the birth

defect data in New York State [29]. The former dataset is

constructed by collecting 67,217 tumor incidences from 2005-

2009 out of an average of 19.34 million population covering

13,848 spatial groups. The latter dataset contains 1,237,189

new born children from 2005-2009 and 24,940 of them have

the congenital malformations. This dataset is geographically

organized by the ZIP code (1,600 and 1,143 after aggregation).

B. Communication Overhead Analysis

We first evaluate the communication overhead on the user

side. In the authentication phase, the user generates a signature

message σ containing two elements of G1, four elements of

Z
∗
p , and one short session indicator. Given the prior simulation

setup, the signature length of σ is equal to l1,u = 159 × 2 +
160×4+16 = 974 bits where we assume the length of session

ID is 16bits but it depends on how granular the PHO attempts

to collect the data. In the data submission phase, the user

generates a pseudonym and then encrypts it using PHO’s ID,

which altogether counts for two elements of Z∗p . Thus, the

length of the two pseudonyms is l2,u = 160×2 = 320 bits. Here

we neglect the data payload (i.e., location and health data) as

they are inevitable regardless of what security mechanisms are

developed, so the incurred extra data size for communications

between one user and LC/HC is lu = l1,u + l2,u = 974+ 320 =
1, 294 bits. Note that we do not measure the latency as the

communication channel conditions (e.g., Wi-Fi or cellular) are

difficult to obtain. Therefore, we use the metric of transmitted

data size to indicate the communication overhead.

For the communications on the server side, the overhead for

PHO’s location query to LC is too negligible to be counted.

The response message from LC to PHO, however, has the data

size of llc = N × 160 bits where N is the number participant

users and each user’s pseudonym length is 160 bits. The

communications between HC and PHO, on the other hand, is

more complicated. Specifically, the communication overhead

of PHO in the phase of MtxSync is l1,PHO = N × 160 bits

whereas HC has roughly the same communication overhead.

The PHO generates a randomized query matrix Q in QryRnd

which is sent to HC. Suppose the element in Q is stored in

double type of 64 bits; then the communication overhead for

PHO is l2,PHO = N × K × 64 bits. In the phase of DataEnc,

every element in health vector H is encrypted via the additive

homomorphic encryption scheme so the data size of each

record in H is 4096 bits which amounts to l2,HC = N × 4096

bits. The PHO then encodes the random invertible matrix M
into H in the KeyEmd phase and the data size of H

′
equals

to l3,PHO = N × 4096 bits. After computing the inner product

in the InPrd phase, the HC sends CNT back to PHO which

contributes the communication overhead of l3,HC = K × 64
bits.

Notice that for communications between servers, there

exists high speed channels (e.g., optic fibers) between them

so the actual communication delay could be neglected. To

give a clearer picture, we summarize the total communication

overhead, measured in bits, for each entity at each process in

Table I.

C. Computation Overhead Analysis

We first theoretically examine the computation complexity

in performing our proposed security scheme. Denote Tmul ,

Texp, Tpar , T̂mul and T̂exp as the time to compute one mul-

tiplication over G1, one exponentiation over G1, one pairing

over GT , one multiplication over GT and one exponentiation

over GT , respectively. We neglect the computation overhead of

the hash operation and multiplication over Z∗p as they are not

comparable to other operations. Besides, we do not consider

the advanced pre-processing or parallelization approaches to

expedite the running time, such as the one to accelerate the

encryption in Paillier cryptosystem [30], instead we inspect

the worst-case computation overhead of our security scheme.

In the authentication phase, it takes 2Tmul + 5Texp + 3Tpar +

2T̂mul + 3T̂exp for each user to generate a signature. On the

server side, the HC and LC spend at least [(2 + |RL |)Tmul +

4Texp+ (7+ |RL |)Tpar +5T̂mul +4T̂exp]×N time to validate the

authenticity of all participants if no malicious users attempt to

double register in the clouds.

In the data collection phase, each user generates two

pseudonyms where one is derived from the other one using

the Boneh and Franklin’s IBE scheme. That means it takes

each user Texp +Tpar + T̂exp time to obtain the pseudonym for

HC while the time for generating the pseudonym for LC can

be neglected. Later, PHO receives the users’ pseudonyms from

LC and reverts them using its identity as the decryption key

which takes one pairing time per user so it amounts to a total

of Tpar × N time.

In the data query phase, PHO first obtains the matched

pseudonyms from LC. Then, PHO generates a random N × N
invertible matrix M and two permutation vectors π which

accounts for the computation complexity of O
(
N2
)
. Af-

terwards, PHO conducts matrix multiplication (e.g., arith-

metic additions/multiplications) and permutation which costs

O
(
K N2

)
. The HC, on the other hand, firstly generates secret

keys from the Paillier cryptosystem (O(1)) and then performs

encryption over the health data H (i.e., O(N log n)). In the

stage of KeyEmd, PHO performs O
(
N2
)

multiplications and

O
(
N2
)

additive homomorphic encryptions, thus, its computa-

tion complexity is O(N2 + N2 log n). In the end, HC conducts

decryption (i.e., O(N )) and inner product (i.e., O(K N )) to

return the vector CNT to PHO. Furthermore, for notational

convenience, we utilize TPHO and THC to represent the

absolute computation time in aforementioned procedures for

114



Table I: Communication Overhead

Process
Entity Authentication Data Collection Data Query

User 974 320 0
LC N × 974 N × 320 N × 160
HC N × 974 N × 320 N × 8352 + K × 64 + N × K × 64

PHO 0 0 N × 8512 + K × 64 + N × K × 64

Table II: Computation Complexity

Process
Entity Authentication Data Collection Data Query

User 2Tmul + 5Texp + 3Tpar + 2 �Tmul + 3T̂exp Texp +Tpar + T̂exp 0

LC [(2 + |RL |)Tmul + 4Texp + (7 + |RL |)Tpar + 5 �Tmul + 4T̂exp] × N 0 0

HC [(2 + |RL |)Tmul + 4Texp + (7 + |RL |)Tpar + 5 �Tmul + 4T̂exp] × N 0 THC

PHO 0 0 Tpar × N +TPHO

PHO and HC, respectively. In so doing, we could summarize

the computation complexity of each entity in Table II.

Furthermore, we examine the computational overhead of our

design over two real-life datasets on a desktop server. The

inhomogeneous Poisson and Bernoulli processes are utilized

to test whether an area of disease over-density is indeed

statistically significant among others. We generate R = 999
replications and set p to be 0.05. The simulation is carried out

following two phases, data query and statistic analysis, while

the computational overhead for them is measured separately

to demonstrate how the incurred overhead due to the security

mechanism could impact the overall complexity. The result of

running time for data query and statistic analysis is shown in

Table III. Under different test distributions (i.e., Poisson and

Bernoulli), the detected clusters with the same p-value are

the same for two clusters. Specifically, 4 and 20 clusters are

found to have outlier disease rates whose p value is less than

0.05 for birth defect and lung cancer datasets, respectively.

However, the analysis time using Poisson process is much

shorter than that using Bernoulli process. Another insight is

that the analysis time using Kulldorf scan statistic is only

dependent on the granularity of spatial grids but irrelevant

to population. However, the running time of our proposed

scheme is actually determined by the number of participants.

As we can see, it consumes a significant amount of running

time for PHO in the data query phase, which is due to the

bilinear pairing operation to decrypt a large number of users’

pseudonyms. The HC, on the other hand, takes moderate

amount of time using the Paillier cryptosystem during the

collaborative computation phase with the PHO. However, the

actual PHO/HC server is tremendously powerful (e.g., com-

puter clusters) than our simulation environment; and by further

integrating preprocessing or parallelization and considering the

participating users are much fewer, the computation overhead

is expected to be reduced significantly.

VII. CONCLUSION

In this paper, we proposed a new paradigm that exploits the

multi-cloud platforms to extract users’ multi-dimensional data

Dataset
Entity Birth Defect in NYS’05 Lung Cancer in NYS’09

Poisson Bernoulli Poisson Bernoulli

PHO
2s 7s 140s 188s

1.72hrs 118.21hrs
HC 2.82s 216.56s

Table III: Running Time for Data Query & Analysis

to enable the statistic analysis of infectious diseases. Specifi-

cally, we developed a secure protocol to ensure the collected

data are not mislead by malicious participants while legitimate

users’ health and location privacy could be well preserved.

Moreover, a novel secure multi-party computation scheme was

designed so that the untrusted entities are only allowed to

obtain the desired aggregation data for the proposed Kulldorff

scan statistic analysis while oblivious of each individual’s data

records. A rigorous security proof was presented to show

our design is both secure and privacy-preserving. Numerical

simulations based on real-life datasets also demonstrated the

communication and computation overhead of our scheme.
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