Prefiltered Cross-Section Occluders

Timothy Condon, Bruce Walter, Kavita Bala & Donald Greenberg
Cornell University
Ithaca, NY

Abstract—We introduce an impostor-based visibility tech-
nique to provide approximate, average visibility for point-to-
cluster and cluster-to-cluster visibility queries. Processing each
object in a view-independent manner allows us to generate a
mip-map-like hierarchy of approximate visibility information
that can report approximate average visibility over conical
shafts or conical shaft frustums. We demonstrate how these
impostors can be used to approximate smooth soft shadow
calculation, and improve the quality of lightcuts and multi-
dimensional lightcuts. In addition, we describe how to use
approximate visibility of shafts to estimate a tighter error
bound for the lightcuts visibility term, yielding speedup by
reducing over-aggressive cut refinement.

Keywords-approximate occlusion, visibility, shadowing, im-
postors

I. INTRODUCTION

The performance of visibility queries plays a significant
role in the total cost of most rendering algorithms; in some
cases, it dominates all other considerations. A variety of
techniques exist to accelerate this important element of ren-
dering technology, but most techniques compute (a) exact,
(b) binary (fully occluded or fully visible), and (c) point-
to-point occlusion. While previous methods have weakened
some subset of these requirements, we introduce a tech-
nique distinguished in that it relaxes all three assumptions.
Recognizing that accurate visibility may be unnecessary in
some situations, we seek to use approximate visibility com-
putations where possible, including over long distances or
wide angles. This is accomplished by supporting fractional
visibility values between source and receiver, rather than
purely binary decisions. Finally, we support point-to-cluster
and cluster-to-cluster queries, averaging the visibility over all
rays that lie inside the frustum from source to receiver. Such
shaft-based visibility calculation can be applied to a wide
variety of rendering problems, including soft shadowing,
estimating visibility bounds, and smoothing artifacts and
aliasing.

Our method encodes visibility over space, direction,
and frustum size as a set of oriented cross-sections and
corresponding texture map hierarchies. Each texture map
hierarchy stores visibility in a particular direction, prefiltered
by increasingly large kernels. To query shaft visibility of a
cross section, we determine the appropriate level in the filter
map hierarchy and look up the texture value at the point
of intersection. The aggregate visibility of a shaft passing

through the impostor is a linear combination of several such
cross section queries oriented nearly orthogonal to the shaft.

In lightcuts, our approximation achieves speedups in the
range of 10% to 300%, in addition to reducing noise for
highly complex scenes.

II. RELATED WORK

Visibility computation and shadow calculation represent
a vast body of work, and a thorough review is beyond the
scope of this paper; we limit our discussion to only those
topics most relevant to our method. For a comprehensive
survey, consult the detailed surveys by [1], [2], and [3].

The use of ray casting to compute occlusion dates to
the use of shadow rays in Whitted-style ray tracing [4].
The introduction of distributed ray tracing [5] achieved
soft shadowing effects by stochastically sampling rays and
averaging their results. This implicit visibility shaft between
area lights and sample points is made explicit in variants of
ray tracing that attempt to leverage the spatial coherence of
nearby rays, including shadow volumes [6], cone tracing [7],
pencil tracing [8], beam tracing [9] [10], and packet tracing
[11] [12].

Shadow maps [13] offers a different paradigm based on
rasterizing depth from the viewpoint of a light on to a
texture, then querying the texture to determine occlusion.
Applying a hierarchy of textures in the spirit of mip-mapping
[14] can correct for viewpoint-distortion of shadow maps,
as in adaptive shadow mapping [15]. The GPU has made
hardware-based shadow mapping feasible [16], and can be
extended to support soft shadow effects as well [17], [18].
Techniques based on convolution can expedite soft shadow
map generation [19]; convolving a shadow map of occluding
geometry with the shape of a light source produces a
corresponding soft shadow map.

The cost of computing visibility usually relates to the
complexity of scene geometry; therefore, many methods
attempt to simplify or approximate complex geometry. Bill-
board clouds [20] reduces 3D models to representative
planes mapped with textures. Dynamic ambient occlusion
[21] approximates a mesh with a hierarchy of disks in real
time applications. Another real-time method approximates
geometry with splatted spheres, using spherical harmonic
exponentiation to compensate for overlap [22]. In work most
similar to ours, complex aggregate geometry is approximated
using a prefiltered volumetric technique [23]. Each node in

a bounding volume hierarchy contains opacity information
for each orthographic direction. Shafts - represented by
a centerline and angle - can be evaluated by recursively
descending through the hierarchy until the ratio of BVH
element projected solid angle to cone projected solid angle
falls below a threshold. Opacity information is accumulated
until the shaft clears the object, or else fully occluded. The
resulting algorithm reduces noise and cost as compared to
stochastic ray tracing.

III. TECHNIQUE

We begin by describing the interface of our technique
and some brief motivating examples. We then discuss the
creation and usage of our impostor’s data structures. Next,
we explain the algorithm to evaluate shaft visibility, and
conclude with further details regarding shaft construction,
visibility query evaluation, and tuning parameters.

A. Interface

The most common form of visibility computation for
rendering algorithms involves intersecting the line segment
between two points against the geometry of the scene. If an
intersection is detected, the points are mutually occluded;
otherwise, they are mutually visible. Many applications
require testing visibility between regions with some finite
extent, however, and in such cases, a single ray test is
insufficient. Most commonly, we can randomly select a point
in each region, test the visibility of the line segment between
the two points and average over many such queries. A
large number of ray queries is necessary to prevent aliasing
and noise, making this method very expensive. Our goal is
to augment the common functionality of ray-based point-
to-point visibility tests with shaft-based tests capable of
evaluating approximate visibility between large regions of
space.

Given a conical shaft, our algorithm attempts to return
a single fractional value for the average (approximate)
occlusion over the solid angle of the shaft. Many visibility
tasks can be expressed in terms of shafts, so the availability
of a primitive shaft-based query offers great utility. Potential
uses include finding visibility between a surface point and
an area light, determining form factors between two patches,
calculating visibility between two clusters of points, and
testing the occlusion over a solid angle (such as when
evaluating visibility between a surface point and a region
of an environment map). Our method is agnostic to how or
why the shaft was created; it simply takes a conical shaft
with a particular direction, angle, and interval defining the
cone frustum and returns a floating point value representing
average visibility.

B. Data Structures

Traditional ray acceleration structures achieve soft effects
by densely sampling sharp geometry. However, another

alternative is to blur the geometry, then make a single query
against this ”soft” geometry. There are several ways one
might go about blurring geometry; one option is to convert
the geometry to a volume, then blur this volumetric data
directly. The cost of storing complex volumetric data can
be prohibitive, though, and most geometry is composed
of triangular meshes. Instead, we represent the geometric
data as a set of cross section silhouette textures mapped
to oriented planes distributed through the volume of space
occupied by the geometry to be approximated. In practice,
we use 16 such oriented planes to represent each object.

Figure 1. Impostors consist of oriented planes mapped with textures

The first level in the blur map is an orthographic pro-
jection of the mesh onto the plane, while each successive
level blurs the first level by an increasingly large kernel
size. The blur map encodes the visibility function across the
silhouette of the object in the direction of the plane’s normal
for various fixed shaft sizes. This impostor thus sparsely
encodes visibility over direction, position, and frustum size;
given a particular shaft, we sample over these dimensions in
order to determine some approximate average visibility for
the shaft.

1) Precomputation: Creating the impostor is a view-
independent preprocess. We generate the cross section planes
with concentric mapping in order to space their normals
evenly over the hemisphere. Since visibility is symmetric
from source-to-receiver and receiver-to-source, we can use
a single plane to represent occlusion in both the positive and
negative normal directions. The billboards are arranged in a
radial manner such that they intersect at the center of the
object’s bounding box (see 1).

Cross section creation begins with rendering an ortho-
graphic silhouette of the object with a camera facing the
plane in the direction of the normal. The resolution of the
image can be modified to trade memory for quality. This
image essentially encodes a point-to-point visibility function
at evenly sampled points. We use an orthographic projection
rather than perspective for two reasons; first, it is desirable
to enforce convergence to the correct solution as distance
increases, and second, we want the texture to be symmetric
in both the positive and negative normal directions. Any

perspective projection would violate these two principles.

Figure 2. Each level in the filter map is blurred by increasingly large
kernels, then downsized to save memory

The initial orthographic projection forms the base (level 0)
of the blur map. It also includes a two-dimensional bounding
box to map texture map coordinates into world space on
the plane. This extent is clipped tightly to the edges of the
silhouette in order to minimize the silhouette’s surface area
in world space. Subsequent maps in the hierarchy are formed
by convolving with truncated Gaussian filters of increasingly
larger size; at level i, the filter size is (2° + 1) x (2! + 1).
In order to accommodate the blur filter on the edges of the
silhouette, we increase both the size of the silhouette by
the diameter of the filter in all directions and the mapping
factor from texture coordinates into world space on the
plane. To save memory, we downsample based on filter
size; the resolution of a map at level 7 is reduced by a
scaling factor f = min(1.0,1.0/2°72). The purpose of
downsizing is purely to reduce memory usage and improve
locality; the method can be adapted to textures of any size.
For this reason, we downsize conservatively, leaving higher
resolution maps at full resolution and only downsizing by a
factor much smaller than the blur kernel.

C. Algorithm

Given a shaft and an approximate impostor, computing
an estimate of visibility involves selecting a set of candidate
planes, intersecting the shaft centerline with each, looking
up the occlusion value in the appropriate levels of the blur
map, and finally weighting the contributions of each plane
to compute a final value.

Each plane is assigned a similarity measure equal to the
absolute value of the dot product between direction of the
shaft’s centerline and the plane’s normal. All planes whose
similarity is greater than some threshold (in practice, 0.85)
are considered candidate planes. For each candidate plane,
we intersect the centerline of the shaft against the plane and
calculate the barycentric coordinates for the point of inter-
section. We determine the area of the shaft’s cross section at
the distance of intersection; this can be found from the angle
of the shaft and the distance to the intersected plane. We then
interpolate between blur map levels based on how closely
the shaft cross section area matches the blur kernel area
on the plane in world space, and bilinearly interpolate over
each map. Thus, the value reported by a single cross section
plane is trilinearly interpolated over barycentric coordinates
and blur map levels. The final visibility value of the shaft is

a linear combination of each candidate plane’s contribution
weighted by its similarity.

When testing a shaft against several approximate impos-
tors, we assume that the underlying geometry is uncorre-
lated, and multiply the contribution of each independent
impostor to accumulate the visibility of the entire shaft.

1) Shaft Construction: For our purposes, a visibility shaft
needs to be able to support two operations. First, we need
to be able to retrieve a ray that defines the centerline of the
shaft, consisting of an origin o, a direction d, and an interval
that indicates the region over which the shaft’s visibility
is to be tested (fstart, tend). Second, we need to be able
to determine the area of the cross section at any given
parametric distance ¢. We store the centerline explicitly in
all cases; for conical shafts, we use an angular measure
from the centerline ray to the outer edge of the shaft, while
for cyndrillical shafts (most commonly, degenerate point-to-
point cylinders), we simply store the (constant) cross section
area. A point-to-point query has an angle of zero, while a
point-to-cluster query is a conical shaft whose apex is the
point and whose base is centered on the cluster. A cluster-
to-cluster query is a frustum of a cone such that the wide
end of the frustum is positioned around the larger cluster,
the narrow end around the smaller cluster, and the virtual
apex of the cone (and origin of the ray) is located some
distance behind the smaller cluster (see 3).

r-crosssection rlarge
rsmaII =0
tstart - tend
tcfosssection
r rIarge

crosssection

end

crosssection

Figure 3. Top: point-to-cluster shaft, Bottom: cluster-to-cluster shaft

To generate a shaft between a source and destination
cluster, we compute a cluster “radius” for source (rsender)
and destination (ryeceiver), €qual to half the diagonal of
each box. Let t,,,, be the distance between the sender
and receiver. If the clusters are the same size (that is,
Tsource = Treceiver), then the shaft’s cross section is
Tcrosssection Treceivers and its centerline
extends from the center of the source cluster to the center
of the destination cluster over the interval (0, ¢4z)-

T'sender

If the smaller cluster is a point, the centerline ray can be
computed between the point and the center of the larger clus-
ter, over the interval (0, t,,q,). Using similar triangles, we
observe that for a particular distance ¢ and the shaft’s radius
r, % = % Then, we can compute the shaft’s cross
section area a for a particular ¢ with a = 7 (¢ tst’a:tij;m)g

If both clusters have a finite extent, we take advantage of
the symmetry of visibility and assume the shaft is directed
from the smaller cluster toward the larger; regardless of
which is the actual sender, the result will be the same.
We take Tsmall = min(rsourceyrreceiver) and Tlarge =
Max(Tsource, Treceiver); the direction of the centerline d
will simply be the normalized vector from the center of
the smaller cluster to the center of the larger. Its origin is
positioned such that the angle from the centerline ray to the
edge of the source cluster is equal to the angle from the
ray to the edge of the destination cluster - that is, we create
similar triangles between the centerline ray and each of the
clusters, with the cluster radius direction orthogonal to the
ray direction. Given that the center of the smaller cluster
is the point p, the ray’s origin 0 = p — d * t,¢fset, Where

Tsmall

toffset = lerosssection * and terosssection 18

the distance to the point a:tla{;lelicrhmﬁllé centerline intersects
the plane. In order to compensate for the virtual origin
behind the smaller cluster, the centerline ray interval is
(toffseh tlarge + toffset)

2) Visibility Queries: The physical size of the cross
section must be greater than or equal to the size of original
geometry in order to represent the object, but the required
size depends on the shaft size. Since only a shaft’s centerline
ray is actually tested against the geometry, the billboard
size must be equal to the size of the object expanded in
all directions by the diameter of the visibility shaft at the
distance to intersection. Otherwise, a glancing shaft may
fail to intersect the plane and report zero occlusion when
in fact some portion of the shaft should be occluded. This
can lead to a potential discontinuity at the edge of the quad.
On the other hand, a shaft may grow arbitrarily large, but
using correspondingly large planes becomes prohibitively
expensive.

We resolve this problem with Minkowski sums to dynami-
cally resize the mesh’s bounding box based on the shaft size.
Given the bounding box b of the mesh to be approximated
based on the shaft size. Let c be the center of b and let v be
the vector direction of the shaft centerline; then p = c—o and
testimate = D - V. We can compute the radius r of the cross
section of the shaft at distance t.s¢jmate, then expand b in
all directions by d = 2 *r to form a new box against which
we test the shaft’s centerline. If the ray does not intersect
the box, no part of the shaft intersects the approximation,
and we can cull its content.

If the shaft does intersect the box, we gather a set of
candidate cross sections for further testing. We assign each
plane a similarity metric equal to the absolute value of

Figure 4. We expand the bounding box in all directions by the diameter
of the ray at the point it passes closest to the center of the box

the dot product between the centerline ray direction and
the plane’s normal. Planes whose similarity exceeds some
threshold (in practice, 0.85) are added to the set of candidate
planes. Once the candidates have been selected, we assign
each plane p; with similarity s; a weight w; such that
wy; = Sj/ Z?:l Si.

The contribution ¢; of each plane is computed as follows.
First, we intersect the centerline with the plane and deter-
mine the distance and barycentric coordinates of intersec-
tion. From the distance, we compute the cross section area
of of the shaft at the point of intersection. We then find the
levels of the blur map which form upper and lower bound
on the shaft area. Using the barycentric coordinates and the
size scaling factors computed during precomputation, we
determine appropriate texture coordinates for each map and
look up the visibility. The final contribution c; is linearly
interpolated between these two values based on shaft area.

3) Tuning and Errors: This method supports several
parameters for controlling the cost/quality tradeoffs of the
approximation. Both the number of cross sections and their
resolution can be adjusted. The number of cross sections
affects performance directly - at a minimum, similarity
must be computed between a shaft and each cross section
direction - but the effect of changing cross section resolution
is more subtle; devoting more memory to cross section
textures increases the memory footprint of the working set
and adversely affects cache coherency. In our results, we
use 16 cross-sections with a resolution of 256 x 256 for the
highest resolution blur map texture.

In order to hide inconsistencies at the transition border
from accurate geometry to the approximation, we blend both
methods according to a linear fall-off based on distance over
some region. However, this requires all rays that originate or
terminate in this region to be tested twice. Performance can
be improved by shrinking the size of this overlapping region,
albeit at the risk of making the transition more obvious.

Because cross sections are generated by orthographic
projection, they approach the exact value of the visibility
function as the distance approaches infinity. However, for

short shafts and wide angles, our approximation fails to
capture perspective effects. In addition, while pre-blurring
by a Gaussian function in some sense captures an average
light source shape and power distribution, it cannot perfectly
reproduce the effects of a particular light source or cluster.
For example, a long, narrow light or oddly distributed
cluster of point lights will produce characteristic shadows
we cannot reproduce. This limitation could be partially
overcome with anisotropic mip-mapping, but would require
tracking information about shaft size and light distribution.

IV. APPLICATIONS

The applicability of shaft-based visibility is broad; we
suggest three specific applications of the method. 1) By
replacing point-to-point visibility queries in lightcuts with
shaft visibility, we can reduce noise and improve quality.
2) Shaft visibility provides a means to estimate a bound on
visibility, and use it tighten the lightcuts refinement criteria.
3) We use shaft-based visibility to compute approximate soft
shadow effects.

A. Lightcuts

Instant radiosity [24] computes indirect illumination by
tracing particles from direct sources and depositing virtual
point lights on surfaces. For a set S of point lights created in
such a manner, the radiance L,, at point p can be computed
by summing the intensity [, of each light source s € S mul-
tiplied by its material (M;), geometric (G;), and visibility
(Vi) terms: Ly(v,w) = 3 g Mo(z,w)Gs(2) Vs ().

Lightcuts [25] is a scalable VPL algorithm that improves
on instant radiosity by building a hierarchy of lights. To
shade a pixel, it dynamically computes a partition of lights
into clusters by refining a cut through the the light tree.
Error bounds can be computed individually for material,
geometric, and visibility terms, and the product of these
terms bounds the maximum possible error introduced by the
node. It is this visibility term which we modulate with our
approximation in order to improve performance.

Multidimensional lightcuts [26] extends lighcuts by intro-
ducing a gather tree. Gather points can be distributed over
time, volume, aperture, and pixel area, providing a means for
scalable rendering of motion blur, volume scattering, depth
of field, and antialiasing. The refinement process generalizes
to a cut on the product graph of the light and gather tree.

Lightcuts offers a natural environment for exercising
the full power of our shaft-based visibility approximation.
Fundamentally, lightcuts reduces all illumination to a cloud
of primitive, point-based lights, then clusters them hierar-
chically based on position and orientation. In order to shade
a point, lightcuts computes a set of light clusters so as to
enforce bounded error. Multidimensional lightcuts is based
on three kinds of cluster relationships: point-to-point, point-
to-cluster, and cluster-to cluster [27]. This presents an ideal
environment to leverage the full power of our approximation.

We replace the existing point-to-point visibility in lightcuts
with shaft-based visibility that matches the size of the light
and gather clusters and/or points being evaluated.

1) Smooth Approximate Visibility: When evaluating vis-
ibility between a single gather point and a single light,
we retain the established practice of performing a ray-
based point-to-point query. However, when testing visibility
between a single gather point and a cluster of lights, we
form a point-to-cluster shaft from the gather point to the
representative light, and compute a shaft size based on
the size of the light cluster. Likewise, when computing
visibility between a cluster of gather points and a cluster
of light points, we form a cluster-to-cluster shaft based on
the sizes of both the light and gather clusters. Then, we
simply weight the contribution of the cluster by the visibility.
Though the performance characteristics of this method do
not vary widely from the point-to-point method, the errors
in illumination are smoothed, and thus less objectionable.

It is possible to use our approximation to replace all point-
to-cluster queries, but in practice we limited its usage to
indirect lights and environment map lights. This allows us
to preserve the sharpness and accuracy of individually dis-
cernible shadows, while smoothing and accelerating softer
occlusion effects.

2) Visibility Bounds Estimation: We achieve additional
improvements by incorporating partial approximate visibility
into lightcut’s error bound calculation. Although the approx-
imate nature of our method means the error is no longer
strictly bounded, the results are nonetheless qualitatively
adequate in practice. The maximum error of a node in
a cut is computed by separately bounding the geometric,
material, and visibility terms, then multiplying the product
by the total power of all sources in a cluster. Prior to
this work, however, the visibility bound was always set
conservatively to one - that is, in the worst case the entire
cluster is fully visible. For lightcuts, this is unavoidable;
because visibility is calculated only point-to-point from the
surface to the light representative, there is no information
about occlusion or lack thereof to the rest of the light cluster.
Using our method, however, we can approximate the average
occlusion between the surface point and the entire light
cluster. We could use the visibility estimate directly, but to
compensate for the approximate nature of our solution, we
add a small offset (0.125 in practice) to account for errors in
our visibility calculation. Because lightcuts drives refinement
with an upper bound on error, underestimating occlusion
adversely affects performance, but overestimating occlusion
compromises quality. Thus, offsetting the error by a small
amount incur some performance cost, but the improvement
in quality is generally worth it.

B. Multidimensional Lightcuts

Adapting our technique to multidimensional lightcuts re-
quires very few changes. The main difference is that instead

of individual gather points, we must now handle gather
clusters. Thus, we simply replace the point-to-cluster query
in lightcuts with a cluster-to-cluster query.

C. Soft Shadows

Traditional soft shadow calculation involves computing
visibility between an area light and surface point by sam-
pling rays to points scattered stochastically over the light
source. Not only is this process expensive, but the results
tend to exhibit noise. Our method allows one to compute
approximate average visibility between a surface point and
the entire area light. We simply form a point-to-cluster
shaft from the surface point to a region of space that
surrounds the light source. If the light source is anisotropic
or highly irregular, the cluster may be too loose. In such
cases, the light can be subdivided into k regular, isotropic
subcomponents. We can then form a total of k shafts, one
for each subcomponent, test each, and aggregate the results.
Not only is the method fast, but the results are smooth even
with just one shaft.

V. RESULTS

All results were rendered as a single-threaded application
on a 3.33 GHz Intel Xeon CPU. However, adapting the
algorithm to be multi-threaded would be straightforward.

A. Lightcuts & Multidimensional Lightcuts

We report results for four scenes: Air War, Tentacles,
Forest, and Colonnade. Each scene is lit by directional lights
generated by sampling an environment map; the first three
scenes use 8000 directional lights, while Colonnade uses 80k
directional lights and 10k indirect VPLs. Air War contains
120k triangles spread over 400 airplane models scattered
above a plane. Tentacles consists of 100k triangles arranged
in four clusters. The forest has six tree models surrounding
the bunny, for 300k total triangles. Colonnade consists of
an armadillo inside an mostly-enclosed box, except for one
open side lined by columns, and totals 200k triangles.

First, replacing point-to-point visibility queries with ap-
propriate cluster-to-cluster queries improves the quality of
the final rendered image. Normally, lightcuts must accom-
plish all soft rendering effects - particularly soft shadows

Scene Accurate Approximate Speedup
Time (sec) | Cut Size | Time (sec) | Cut Size
Air War 1215.9 388.9 1081.1 301.4 1.12x
Colonnade | 3408.9 3771.5 1151.8 1784.2 | 2.96x
Tentacles 448.0 353.7 378.2 316.3 1.19x
Forest 598.6 399.0 461.1 350.6 1.30x
Table I

RENDER TIMES AND AVERAGE CUT SIZES BY SCENE TYPE USING
MULTI-DIMENSIONAL LIGHTCUTS WITH 16X ANTIALIASING

- by averaging over many sharp queries. Simply replacing
these ray tests with smooth shaft-based visibility reduces
the discontinuity artifacts of lightcuts, particularly in scenes
with highly complex visibility.

Second, estimating the visibility bound with shafts im-
proves performance. Tighter bounds allows lightcuts to
correctly determine which portions of the cut to refine next.
Previous versions of lightcuts made no attempt to tightly
bound visibility, and while our method does not compute
a strict bound, our estimate of the visibility is generally
good enough to improve performance without compromising
quality. Generally, we see the greatest performance gains
for highly occluded regions of the scene; typically, lightcuts
does significant refinement for these regions in order to
prove no light can reach them, but bounds estimation allows
for earlier termination of refinement. Specific runtimes are
tabulated in I. All scenes are 512 x 512 with 16x antialiasing,
and were rendered with an error threshold of 1% (except
Forest, which used an error threshold of 0.5%).

(a) Tentacles cut sizes using
approximation; maximum corre-
sponds to 5008

(b) Tentacle cut sizes without
approximation; maximum corre-
sponds to 5008

vy Vv

—

(c) Colonnade cut sizes using
approximation; maximum corre-
sponds to 4464

(d) Colonnade cut sizes without
approximation; maximum corre-
sponds to 4464

Figure 6. Cut size images

B. Soft Shadows

We demonstrate soft shadows with a scene consisting of
a tree on a plane. Testing visibility with 2048 samples per
pixel requires 187 seconds and still exhibits noise, while the
approximation takes 28 seconds and yields smooth results.

(a) Air war using approximate vis-
ibility

(c) Tentacles using approximate (d) Tentacles using accurate visibil-
visibility ity

(e) Colonnade using approximate
visibility

(f) Colonnade using accurate visi-
bility

Figure 5.

However, perspective and depth-dependent features are lost,
and blending between planes introduces additional blurring
to the shadow, removing some high-frequency features.
While insufficient for final rendering, this may be effective
for rapid preview.

il

(a) Distributed ray tracing with
2048 samples

(b) Approximate visibility

Figure 7. Soft shadow comparison

VI. CONCLUSION

We presented an approximate soft visibility system capa-
ble of handling point-to-point, point-to-cluster, and cluster-
to-cluster queries. We demonstrated a variety of applications,

(g) Forest using approximate visi-
bility

(h) Forest using accurate visibility

Comparison renders using accurate and approximate visibility

including soft shadows, bound estimation, and cluster-to-
cluster visibility computation.

There are several improvements that could be made to
our system. First and foremost, the algorithm would be a
natural fit for the GPU, with a corresponding increase in
performance. Our method generates one impostor per mesh,
but the solution would be substantially more scalable if
adapted to a hierarchy over meshes. Oriented planes are
distributed radially at the center of objects, but fitting them
more closely to the geometry might address some artifacts
of our method.

ACKNOWLEDGMENT

This work was supported by research grants provided by
Autodesk, Inc. and NSF CPA-G&V 0811680. We would
also like to thank the team members of Autodesk Labs
Project Showroom for fruitful discussions related to problem
specification, usage patterns, and system requirements.

REFERENCES
[1] A. Woo, P. Poulin, and A. Fournier, “A survey of shadow algo-
rithms,” IEEE Computer Graphics and Applications, vol. 10,
no. 6, pp. 13-32, Nov. 1990.

[2] F. Durand, “A multidisciplinary survey of visibility,” 2000.

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

J.-M. Hasenfratz, M. Lapierre, N. Holzschuch, and
F. Sillion, “A survey of real-time soft shadows algorithms,”
in Eurographics, FEurographics. Eurographics, 2003,
state-of-the-Art Report. [Online]. Available: http://www-
imagis.imag.fr/Publications/2003/HLHS03

T. Whitted, “An improved illumination model for shaded
display,” CACM, vol. 23, no. 6, pp. 343-349, 1980.

R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray
tracing,” in SIGGRAPH ’84, 1984, pp. 137-145.

U. Assarsson and T. Akenine-Mller, “A geometry-based soft
shadow volume algorithm using graphics hardware,” in ACM
Transactions on Graphics, Jul. 2003.

J. Amanatides, “Ray tracing with cones,” in Computer
Graphics (SIGGRAPH 84 Proceedings), H. Christiansen,
Ed., vol. 18, 1984, pp. 129-135. [Online]. Available:
citeseer.nj.nec.com/amanatides84ray.html

M. Shinya, T. Takahashi, and S. Naito, “Principles and
applications of pencil tracing,” SIGGRAPH Comput. Graph.,
vol. 21, no. 4, pp. 45-54, 1987.

P. Heckbert and P. Hanrahan, “Beam tracing polygonal ob-
jects,” Computer Graphics (Proc. Siggraph ’84), vol. 18,
no. 3, pp. 119-127, 1984.

R. Overbeck, R. Ramamoorthi, and W. R. Mark, “A Real-
time Beam Tracer with Application to Exact Soft Shadows,”
in Eurographics Symposium on Rendering, Jun 2007.

I. Wald, C. Benthin, M. Wagner, and P. Slusallek, “Interactive
rendering with coherent ray tracing,” in Proc. of Eurograph-
ics, 2001, pp. 153-164.

R. Overbeck, R. Ramamoorthi, and W. R. Mark, “Large Ray
Packets for Real-time Whitted Ray Tracing,” in IEEE/EG
Symposium on Interactive Ray Tracing (IRT), Aug 2008, pp.
41—-48.

L. Williams, “Casting curved shadows on curved surfaces,”
in Computer Graphics (Proceedings of SIGGRAPH 78), vol.
12-3, Aug. 1978, pp. 270-274.

——, “Pyramidal parametrics,” in SIGGRAPH ’83, 1983, pp.
1-11.

R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg,
“Adaptive shadow maps,” in Proceedings of ACM SIGGRAPH
2001, ser. Computer Graphics Proceedings, Annual Confer-
ence Series, Aug. 2001, pp. 387-390.

C. Everitt, A. Rege, and C. Cebenoyan, “Hardware shadow
mapping,” in In ACM SIGGRAPH 2002 Tutorial Course #31:
Interactive Geometric Computations, 2002, pp. 38-51.

M. Herf, “Efficient generation of soft shadow textures,” Tech.
Rep., 1997.

P. S. Heckbert and M. Herf, “Simulating soft shadows with
graphics hardware,” Tech. Rep., 1997.

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

C. Soler and F. X. Sillion, “Fast calculation of soft shadow
textures using convolution,” in Proceedings of SIGGRAPH
98, ser. Computer Graphics Proceedings, Annual Conference
Series, Jul. 1998, pp. 321-332.

X. Décoret, F. Durand, F. Sillion, and J. Dorsey, “Billboard
clouds for extreme model simplification,” in ACM Transac-
tions on Graphics, 2003.

M. Bunnell, “Dynamic ambient occlusoin and indirect light-
ing,” in GPU Gems 2, M. Pharr, Ed., 2005.

Z. Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun, P.-P.
Sloan, H. Bao, Q. Peng, and B. Guo, “Real-time soft shadows
in dynamic scenes using spherical harmonic exponentiation,”
SIGGRAPH, 2006.

D. Lacewell, B. Burley, S. Boulos, and P. Shirley, “Raytrac-
ing prefiltered occlusion for aggregate geometry,” in [EEE
Symposium on Interactive Raytracing 2008, 2008.

A. Keller, “Instant radiosity,” in Proceedings of SIGGRAPH
97, ser. Computer Graphics Proceedings, Annual Conference
Series, Aug. 1997, pp. 49-56.

B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian,
and D. P. Greenberg, “Lightcuts: a scalable approach to
illumination,” ACM Transactions on Graphics, vol. 24, no. 3,
pp- 1098-1107, 2005.

B. Walter, A. Arbree, K. Bala, and D. P. Greenberg, “Multi-
dimensional lightcuts,” in To appear in Proceedings of SIG-
GRAPH 2006, ser. Computer Graphics Proceedings, Annual
Conference Series, Aug. 2006.

E. Veldzquez-Armenddriz, S. Zhao, M. HaSan, B. Walter, and
K. Bala, “Automatic bounding of programmable shaders for
efficient global illumination,” ACM Trans. Graph., vol. 28,
no. 5, pp. 1-9, 2009.

