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ABSTRACT

We propose a method to visually summarize collections of net-
works on which a clustering of the vertices is given. Our method
allows for efficient comparison of individual networks, as well as
for visualizing the average composition and structure of a set of
networks. As a concrete application we analyze a set of several
hundred personal networks of migrants. On the individual level
the network images provide visual hints for assessing the mode
of acculturation of the respondent. On the population level they
show how cultural integration varies with specific characteristics of
the migrants such as country of origin, years of residence, or skin
color.

Keywords: Clustered graph visualization, social network analysis,
acculturation.

1 INTRODUCTION

Social networks encode important information about the social con-
tacts of individuals and the overall structure of the community. A
powerful way to explore and represent such networks is the visual-
ization of graphs. Well-designed network images reveal important
structural features and provide means to visually compare two or
more networks, thereby revealing differences between communi-
ties or individual actors. However, graph visualization reaches cer-
tain limits if the networks become very large or if a huge number
of networks has to be displayed simultaneously, since the drawings
inevitably become too crowded.

To overcome these limitations, a growing number of techniques
to draw clustered graphs has been proposed. These methods visu-
alize a potentially large network by exploiting a given clustering
of the vertices and grouping vertices in the same cluster visually
together. Besides reducing the visual complexity, clustered graph
visualizations are often better interpretable than images obtained
without any clustering: For instance, an image that shows how
classes of actors with particular attribute values (such as gender,
age, skin-color, or religion) are connected indicates how actor char-
acteristics influence the creation of ties in the analyzed community.
Thus, the analyst obtains information that might generalize beyond
the given network sample. However, existing methods for clustered
graph visualization are inconvenient for (and, in fact, they are not
targeted at) the task of drawing collections of clustered graphs to al-
low for easy comparison across networks and for visual averaging
over a set of networks.

In this paper we propose a method for drawing clustered graphs
having two application scenarios in mind. First, to draw dozens or
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hundreds of clustered graphs simultaneously so that we can easily
recognize differences and similarities in network composition and
structure. Second, to draw an aggregated view over a potentially
large number of networks, showing the trend (statistical average)
and dispersion (statistical variability) in the analyzed population.
Our images abstract from individual vertices and show only class
sizes, average connectivity within and between classes, and (if de-
sired) mean values and variances of these indicators. This decision
is crucial to obtain small but readable visual summaries of networks
and to make simple comparison between disjoint networks possible
at all. Furthermore, our method is very efficient in terms of run-
ning time (linear in the total number of vertices and edges) and
can therefore be applied to very large networks or large numbers of
networks. Last but not least, our visualization technique is concep-
tually very simple so that it can be expected to introduce only little
artefacts and is also usable by practitioners that are not experts in
graph drawing algorithms.

As a concrete application we present a visual analysis of per-
sonal networks of several hundred migrants to the USA and to
Spain. On the individual level these networks provide a visual mea-
sure for acculturation of migrants to the host culture—improving
traditional measures of acculturation that do not take into account
network structure. On the aggregated level, our images show the
average network composition and structure in purposefully chosen
sub-samples, thereby revealing how the mode of acculturation de-
pends on the country of origin, time of residence, and skin color of
the respondents.

1.1 Related Work

The visualization of graphs (or networks) is an important part of
data and information visualization and a large number of methods
to draw graphs has been developed (see e. g., [6, 11]). Although
efficient methods are presently able to layout (i. e., to compute co-
ordinates of vertices and edges) graphs that have several hundreds
of thousands of vertices, the drawings of such large graphs are too
crowded to be captured by the human cognitive system. To ob-
tain simpler images that still reveal essential information about the
network, several researchers propose to make use of a given clus-
tering of the graph. Proposals include visualization techniques for
hierarchically clustered graphs [7, 10], dynamic drawing of clus-
tered graphs [9], systems for visual navigation trough clustered
graphs [8, 15], visual interpolation between different degrees of
clustering or levels of detail [1, 13], and algorithms to obtain clus-
tered graph layouts that optimize certain esthetic criteria [2].

Out of the abovementioned papers only the method from Frish-
man and Tal [9] is designed to draw several clustered graphs such
that changes from one image to the next can be easily seen. Note
that the method from [9] works only for graphs with largely over-
lapping vertex sets—a task that falls into the area of simultaneous
graph drawing (see, e. g., [12] and references therein). In contrast,
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our method is aimed at visualizing collections of clustered graphs
whose vertex sets may be disjoint and where only a one-to-one cor-
respondence between the cluster labels is given.

Further previous work, which is related to acculturation and net-
work analysis, is overviewed in Sect. 2.

Outline of paper. We introduce an exemplary application in
Sect. 2. Networks of individuals are drawn by the methods de-
scribed in Sect. 3, whereas Sect. 4 details how the average and dis-
persion of a set of networks is defined and visualized. In Sect. 5, we
illustrate how average network images give deep insight into a col-
lection of personal networks. We close with a discussion of results
and future work.

2 EXAMPLE APPLICATION:
TOWARDS A NETWORK MEASURE FOR ACCULTURATION

Although this paper presents a method for the visualization of net-
works and is not intended to provide conclusive results for the social
sciences, we nevertheless dedicate this section to introduce a real-
world application. By describing how our visualization technique
helps in the task of analyzing personal networks of migrants, we
provide hints how it can be applied in other scenarios. Besides, we
claim that the study of acculturation is interesting and relevant on
its own.

Acculturation refers to phenomena which result if different cul-
tures come into contact [14]. Recently, the term acculturation is of-
ten used to denote the integration of migrants into a host culture. In
this paper, we understand acculturation in this second, more restric-
tive usage. Migration probably took place throughout the history of
mankind but, due to advances in transportation and communica-
tion means, it is increasing in quantity and speed in recent decades,
explaining an increased interest in understanding and measuring ac-
culturation.

Acculturation scales are not one-dimensional measures ranging
from (say) not integrated to fully integrated, but make finer distinc-
tions. Berry [3] defined four strategies (modes) of acculturation
based on two dimensions for cultural affinity, see Fig. 1.

maintain original culture?

YESNO

adopt host culture?YES

NO

integrated

separated

assimilated

marginalized

Figure 1: Four traditional acculturation strategies (shaded) defined by
the migrant’s affinity to her original culture and to the host culture [3].

The two dimensions for cultural affinity are traditionally mea-
sured by responses to pairs of statements such as the following (in-
tended to measure the integration of Mexican migrants to the USA;
small sample taken from [5]).

1. I speak English / I speak Spanish

2. I enjoy English language TV / I enjoy Spanish language TV

3. My friends now are of Anglo origin / . . . Mexican origin

A criticism to these kind of measurements for acculturation is that
they are too much focused on the respondent’s individual attributes

(such as languages spoken or media consumed) and do not take
sufficiently into account the migrant’s social network. While some
statements (e. g., the third in the list above) are concerned with net-
work composition (who is in the network), the network structure
(how are they connected) is not taken into account at all. Sup-
pose that a migrant knows both, many Mexicans and many An-
glo Americans. Still it makes a big difference whether these two
groups are well connected to each other (one homogeneous bicul-
tural network), or whether they are separated (the migrant lives in
two culturally different societies). The long-term objective of this
project1 is to measure and understand acculturation by simultane-
ously taking into account individual attributes, network composi-
tion, and network structure. Although the use of personal networks
is not so established in the study of acculturation, many results in
social network analysis (see [4, 17] for an overview) demonstrate
the importance of network structure.

Clearly, when incorporating the migrants’ personal networks
into studies of acculturation (and not only their attributes), the data
sets describing individuals become much more complex. For this
reason, good visual support for exploring the empirical network
data becomes even more important.

2.1 Empirical Data Set
For the present paper we used a data set obtained by interview-
ing 500 migrants (alternatively referred to as respondents or egos)
to the USA and to Spain, originally coming from different South-
American, Middle-American, and African countries. Each respon-
dent was asked to provide the following four types of information
with the help of the EgoNet2 software.

1. (questions about ego) 70 questions about the respondent her-
self, including age, skin color, years of residence, questions
from traditional acculturation scales (such as [5]), and health
related questions.

2. (name generator) A list of 45 persons (referred to as alters),
personally known to the respondent. The alters are the ver-
tices in the respondent’s personal network.

3. (questions about alters) 12 questions about each of the 45
alters, including country of origin , country of residence, skin
color, and type of relation to ego.

4. (ties between alters) For each of the 990 undirected pairs of
alters, the evaluation whether they know each other. The three
possible choices were “very likely,” “maybe,” or “unlikely”
and we introduced an edge in the network only if the respon-
dent chose “very likely.”

Note that, although each network is seemingly rather small (only 45
vertices), the number of networks (500) and the many ego-attributes
and alter-attributes make up a quite large and semantically rich data
set.

3 VISUAL COMPARISON OF INDIVIDUAL NETWORKS

Suppose that we are given a set of N undirected graphs G1 =
(V1,E1), . . . ,GN = (VN ,EN) and a rule to partition the vertex sets
V1, . . . ,VN . Our goal in this section is to draw the N clustered graphs
simultaneously so that we can easily compare them visually, find
differences and similarities among them, and detect networks hav-
ing specific characteristics. In our drawings we do not show indi-
vidual vertices (the elements of the Vi) but only the classes and the
average connectivity between and within them. This decision is due
to two reasons. First, by doing so it is possible to obtain informative
images of many networks on small space (compare Fig. 2). Second,

1see http://www.egoredes.net for a description of the project
2see http://www.mdlogix.com/egonet.htm



Figure 2: Personal networks of 79 Argentinian migrants to Spain. The four nodes of each network correspond to the four classes defined in
Sect. 3.1 (also see Fig. 3). Node size reflects class size, darkness of a node reflects average connectivity within the class, width and darkness
of a tie between nodes reflects average connectivity between the two classes (compare Sect. 3.2 and Fig. 4).

in the application at hand the vertex sets are disjoint and the individ-
ual alters are normally unknown to the analyst (so that comparison
on the individual level is hard to achieve and hard to interpret), but
the classes have a well-defined interpretation (see Sect. 3.1) that
generalizes across different networks.

Visualizing the class-level networks is done in two steps: defin-
ing the actor classes (Sect. 3.1) and defining how strongly two
classes are connected (Sect. 3.2).

3.1 Definition of Classes
The partitioning of the N vertex sets V1, . . . ,VN , each into k classes
Vi = C1(i)∪ . . .∪Ck(i) (some of which may be empty), is required
to be consistent in the sense that for two different networks Gi and
G j and an index (a class label) p the class Cp(i) corresponds to
class Cp( j). In our application, this labeling is achieved by specific
attribute values as it is explained below. (Note that the requirement
of consistently labeled vertex classes is not only satisfiable in socal
network analysis. For instance, classes of Web-pages might be la-
beled by domain names, classes of Wikipedia pages by membership
in certain categories, etc.) The layout (coordinates) of the k classes
is required to be the same for each network. This decision is crucial
for the applications that we envision here, since it allows for quick
and simple comparison without forcing the analyst to read class la-
bels. The layout of classes can either be chosen by the analyst who
knows about the semantics of the different classes (as in our case),
or it can be computed (e. g., by force-directed graph layout tech-
niques) on an aggregated view of the whole set of networks, so that
classes that are often well-connected are drawn close together.

In our specific application we take (in almost all cases, except
the bottom row in Fig. 11) the definition of actor classes derived
in the following. Since we want to measure the migrant’s affinity
to both her original culture and the host culture, the most impor-
tant distinction is between actors originating from country of origin
(compatriots) and actors from the host country. However, while ex-
ploring the data it turned out that the class of compatriots should be
further refined. Typically, one part of these actors still lives in the
country of origin and others live in the host country. (As a matter of
fact, migrants often become more easily acquainted to compatriots
abroad—even if they did not know them while still being in their
home country.) This distinction is important because (normally) the
migrant interacts with the former class only via the distance (tele-
phone, email, etc.), whereas people currently living in the same host

country make up the real social community of the migrant and play
a role in her everyday life. Finally, a default class contains all ac-
tors that are neither born in the country of origin, nor in the host
country.

The concrete definition, labeling, and layout of these classes is
given in Fig. 3, where we assume for simplicity that the respon-
dent is an Argentinian that migrated to Spain. Note that for a (say)
Puerto Rican that migrated to the USA, the definition of classes
changes in an obvious way, although their labels (ORIGIN, FEL-
LOWS, HOST, and TRANSNATIONALS) stay the same. We show
examples of networks that have been partitioned into more classes
in Fig. 11.

origin fellows

host

transnationals

(origin) born in Argentina,
not living in Spain

(fellows) born in Argentina,
living in Spain

(host) born in Spain
(transnationals) all others

Figure 3: Left : Definition and labeling of specific actor classes, as-
suming that the respondent migrated from Argentina to Spain. Right :
A fixed layout (coordinates) for these classes.

The three corners of the outer triangle in Fig. 3 give a summary
of the network composition: If the class ORIGIN is very large, the
migrant is not only focused on her original culture, she also inter-
acts mostly with people that are not living in her country of resi-
dence. If the network is mostly composed of FELLOWS, the mi-
grant’s social network is located where she is currently living but
she is still attached to her original culture. A migrant whose net-
work is dominated by the HOST class appears to be integrated or
even assimilated (compare Fig. 1). The class of TRANSNATION-
ALS has deliberately be put on the (neutral) position in the middle,
as their cultural orientation is not obvious. Furthermore, migrants
whose networks are dominated by transnationals are rare in our data
set. Respondents having uncommonly many/few alters in specific
classes (as well as more balanced networks) can easily be identified,
e. g., in Fig. 2.



3.2 Intra-class and Inter-class Ties
Besides the relative class-sizes (network composition), it is impor-
tant to know how actors in various classes are connected to each
other (network structure). In the following we derive an indicator
for how strongly actors in a class A ⊆ V are on average connected
to actors in a class B ⊆ V in the network G = (V,E). (Class A and
B may be identical.)

A basic un-normalized measure would be to count the number of
links connecting A and B:

e(A,B) = |{(a,b) ∈ E ; a ∈ A and b ∈ B}| . (1)

However, when using this measure larger classes would (normally)
be stronger connected, so that it has to be normalized appropriately.

A commonly used normalized measure is the density of ties be-
tween A and B, i. e., the fraction of all realized ties over all possible
ties: e(A,B)/(|A| · |B|). Unfortunately, the density normalizes too
much so that two very small classes (that are connected by only a
few ties) reach unjustified high values. For instance, if the sizes
of classes A and B are equal to two and A and B are connected by
only two ties, the density is 0.5 (and thus quite high), although an
A-vertex has on average only one B-neighbor. On the other hand, if
the sizes of classes A and B are equal to 20, then an A-vertex needs
on average 10 B-neighbors to make the density equal to 0.5. Fur-
thermore, note that for sparse graphs the density tends necessarily
to zero when the class-sizes increase.

Taking into account the considerations above, a reasonable mea-
sure of adjacency between classes (which is already close to our
final definition) seems to be the number of B-neighbors that an A-
vertex has on average, i. e., the value e(A,B)/|A|. However, this
measure has the counterintuitive property that the network on the
class-level may be asymmetric (the weight of an edge and its re-
verse may differ), even if the original graph is symmetric (undi-
rected).

A measure that does not have this disadvantage (but that is still
built on the idea of average number of neighbors between classes)
is obtained by taking the geometric mean of the class sizes of A and
B instead of |A| in the denominator, resulting in our final definition
of the weight how strongly two classes A and B are connected:

ω(A,B) =
e(A,B)√
|A| · |B|

. (2)

Even if in some applications other definitions for the edge
weights between classes might be appropriate, we adhere in the
whole paper to that given in (2).

3.2.1 Visual Representation
The class sizes and weights of intra-class ties and inter-class ties are
visually encodes as described in the following, see Fig. 4 for illus-
tration. A class C is drawn as a circle whose area size is proportional
to |C| (the size of C) and hence whose radius is proportional to the
square-root of |C|. The circles (nodes) are filled with a grey color
whose darkness is proportional to the weight of the corresponding
intra-class tie. The nodes are connected by edges whose width is
proportional to the weight of the corresponding inter-class tie (the
color of these edges is chosen by the same rule as for the intra-class
ties). The specific representation of tie weights has been chosen be-
cause it goes smoothly with other visualization techniques for clus-
tered graphs (such as [1, 2]): if vertices belonging to the same class
are connected by many edges, then the area of this class appears
to be intensively colored with the edge color. Similarly, if many
edges connect vertices from two different specific classes, then the
corresponding edge bundle gets wider and/or denser.

Figure 2 shows that we can easily identify instances with specific
characteristics in drawings of dozens of networks. Not only do sizes

a weak inter-class tie

a strong inter-class tie

a strong intra-class tie a large class

a small class

a weak intra-class tie

Figure 4: Illustration for the visualization of class size and tie weight.

of specific classes (network composition) vary enormously between
some instances, we can also detect large differences in the relative
tie-weights (network structure). For instance, the three networks in
Fig. 5 show large differences with respect to which communities are
connected to each other. In the lefthand side the FELLOWS (albeit
small in number) are well-connected to the HOST-class, whereas
the large ORIGIN-class is quite separated from the rest. Thus this
migrant’s network decomposes with respect to where the actors are
currently living. In contrast, the strongest inter-class tie in the net-
work in the middle of Fig. 5 is between ORIGIN and FELLOWS and,
thus, this network decomposes with respect to where the actors are
originally from. Finally, in the network in the righthand size of
Fig. 5 only the two classes ORIGIN and HOST are non-zero and, in
addition, they are well-connected. This network structure is quite
rare in our sample, since typically the tie between these two classes
is rather weak. In fact, these two groups neither have the same
roots, nor are they living in the same country.

Figure 5: Three selected instances from Fig. 2 that show large differ-
ences in the adjacency structure between classes.

4 TENDENCY AND DISPERSION IN A POPULATION

The images developed in Sect. 3 are convenient to compare personal
networks of individuals. However, research in the social sciences
is often targeted at learning about trends in societies. For instance,
a research question could be: “are migrants from South-American
countries on average better integrated in Spain than migrants from
African countries?” A related kind of question is: “do individuals
from a particular country behave rather similar (low variability) or
can we find large differences among them (high variability)?” This
section is about visualizing tendency (statistical average) and dis-
persion (statistical variability) in a population. The definition of av-
erage and variability of a set of clustered networks will be based on
established statistical notions such as arithmetic mean, standard de-
viation, median, and upper and lower quartiles. Nevertheless some
care has to be taken to define these measures for the average tie
weights.

4.1 Definition of Average and Variability
4.1.1 Arithmetic Mean of Clustered Networks.
If X is a random variable for which we have N observations
x1, . . . ,xN , then the arithmetic mean of the N observations is the
real number µ(x) = ∑

N
i=1 xi/N. Similarly, if we have a sample of

N clustered graphs, we want to define the arithmetic mean to be a
clustered graph that is 1/N times the sum over the sampled graphs,
compare Fig. 6.

All we have to do to make this idea precise is to define the sum
of two clustered networks (an thereby the sum of an arbitrary num-



+ = 2 ·

Figure 6: Arithmetic mean (right) of the two networks on the lefthand
side of the equation. Note that both, the class sizes as well as the tie
weights are averages of the corresponding values in the summands.
The image on the righthand side does not visualize the variability
(compare Sect. 4.2).

ber of networks). Furthermore, considering that the class-level net-
works are just arrays of numbers, this seems to be quite simple. Ac-
tually, it is straightforward for the class sizes and only slightly more
complicated for the tie weights. So let G1 = (V1,E1), . . . ,GN =
(VN ,EN) be a set of graphs whose vertex sets are all partitioned
into k classes Vi = C1(i)∪ . . .∪Ck(i) and let p be a class-label. The
size of class p in the arithmetic mean of the N graphs is defined to
be

µ|Cp|=
N

∑
i=1

|Cp(i)|/N .

Now let p,q = 1, . . . ,k be two indices of classes. The tie-
weight between the p’th and the q’th class in the arithmetic
mean is not defined to be the mean of the individual weights,
∑

N
i=1 ω(Cp(i),Cq(i))/N, as these weights are averages themselves

(compare (2)). Before explaining how the mean tie weight is ac-
tually defined, we first illustrate why the last-mentioned formula
would be a bad choice and how a better measure can be de-
rived. Suppose we want to average over two networks G1 and
G2, where the classes Cp(1) and Cq(1) have both size 10 and are
connected by 100 edges, while the classes Cp(2) and Cq(2) have
both size one and are connected by no edge. The naı̈ve formula
(ω(Cp(1),Cq(1)) + ω(Cp(2),Cq(2))/2 would determine an aver-
age weight of (only) five for the tie (Cp,Cq), although 20 out of 22
vertices are connected each by ten edges to the other class. Thus,
the two vertices from network number two would get a dispro-
portionally high influence on the average. On the other hand, if
we consider the disjoint union G1∪2 = G1 ∪G2, then the classes
Cp(1∪2) and Cq(1∪2) have both size 11, are connected altogether
by 100 edges, and thus the weight of the tie (Cp(1∪ 2),Cq(1∪ 2))
is 100/11, which is actually the average number of q-neighbors of
a p-vertex.

Our measure for the mean tie weight is built on this idea of con-
sidering the disjoint union of the N networks. More precisely, we
compute first the mean of the un-normalized edge counts (1)

µe(Cp,Cq) =
N

∑
i=1

e(Cp(i),Cq(i))/N

and normalize by the geometric mean of the average class sizes to
obtain the mean tie weight, µω(Cp,Cq), i. e.,

µω(Cp,Cq) =
µe(Cp,Cq)√
µ|Cp| ·µ|Cq|

.

The arithmetic mean of class-level networks is determined by the
average class sizes µ|Cp|, (1 ≤ p ≤ k) and the average tie weights
µω(Cp,Cq), (1 ≤ p ≤ q ≤ k). It can be regarded as a single in-
stance of a clustered graph (albeit having fractional instead of inte-
ger class-sizes) and, thus, can be drawn exactly as in Sect. 3.

4.1.2 Standard Deviation of Clustered Networks
If X is a random variable for which we have N observations
x1, . . . ,xN and µ(x) is the mean of these observations, then the

variance is defined to be σ2(x) = ∑
N
i=1(xi − µ(x))2/N (i. e., the

variance is the average squared difference between observation and
mean), and the standard deviation is σ(x) =

√
σ2(x).

This formula can be directly used to define the standard deviation
of the class sizes

σ |Cp|=

√√√√ N

∑
i=1

(|Cp(i)|−µ|Cp|)2/N .

Similarly to the mean values, the standard deviation
of tie-weights is not directly obtained from the values
ω(Cp(1),Cq(1)), . . . ,ω(Cp(N),Cq(N)). Instead, we first compute
the standard deviation of the un-normalized edge counts

σe(Cp,Cq) =

√√√√ N

∑
i=1

[e(Cp(i),Cq(i))−µe(Cp,Cq)]2/N ,

and normalize these by the geometric mean of the average class
sizes to obtain the standard deviation of the tie weights

σω(Cp,Cq) =
σe(Cp,Cq)√
µ|Cp| ·µ|Cq|

.

The simultaneous visualization of mean and standard deviation
is described in Sect. 4.2.

4.1.3 Median and Quartiles
Arithmetic mean and standard deviation have the advantage that
they take into account every element of the sample. On the other
hand, they have the disadvantage to be heavily influenced by strong
outliers. Considering that in quantitative social network analysis
strong outliers are very common, we wish to have more stable mea-
sures for average and variability. Such measures are, for instance,
the median and (upper and lower) quartiles.

If X is a random variable for which we have N observations
x1, . . . ,xN , sorted in non-decreasing order, then the median of these
observations is the value that cuts this sequence into two equally-
sized halves. More precisely, if N is odd then the median is xdN/2e,
if N is even then the median is the arithmetic mean of xN/2 and
xN/2+1. Similarly, the lower quartile is xdN/4e (except if N is di-
visible by four, in which case it is the arithmetic mean of xN/4 and
xN/4+1) and the upper quartile is xb3N/4c (except if N is divisible by
four, in which case it is the arithmetic mean of x3N/4 and x3N/4+1).

If we apply these definitions componentwise to the class-sizes
and un-normalized edge counts (and normalize afterwards), we ob-
tain the median and quartiles of clustered networks, just as the mean
and deviation (details are omitted).

Obviously, besides mean/deviation and median/quartiles, any
other measure for statistical average and variability could be taken.

4.2 Visualization of Average and Variability
To get an idea how average and variability of clustered networks
can be visualized, we first have a look at how the popular box plots
or box-and-whisker diagrams [16] achieve this for samples of one-
dimensional variables in Fig. 7.

To apply the idea of box plots to visualizations of clustered net-
works, some adaptions have to be made. First, the networks are
multidimensional data sets. More precisely, if we have four classes,
then drawings such as Fig. 4 visualize 14 values (four class sizes,
four intra-class ties, and six inter-class ties). Clearly, we would like
to have all values for mean and deviation in one image. Second,
while the value of the variable Y in Fig. 7 is visually encoded in
the position on the vertical y-axis, the indicator values for clustered
networks are represented differently: class size by the area of the



y

observation #

µ(y)−σ(y)

µ(y)+σ(y)
µ(y)

ymax
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Figure 7: Traditional box plot (right) of a sample of a one-dimensional
random variable Y . Alternatively, box plots could visualize any other
measure for average and variability, e. g.,the median (instead of
mean) and upper/lower quartiles (instead of µ(y)±σ(y)).

circles, intra-class weights by grey-values, inter-class weights by
edge width. Taking into account these differences, the idea of box
plots can straightforwardly be adapted to images of clustered net-
works (see Fig. 8 for illustration): The deviation of the size of class
C2 is visualized by drawing a small segment in the lower part of
the circle with the radii determined by µ|C2| ±σ |C2|. Similarly,
the deviation of the inter-class tie between C1 and C2 is visualized
by increasing/reducing the width on a small part of the correspond-
ing edge by the value determined by σω(C1,C2). The deviation
of the intra-class tie of C1 is visualized by increasing/reducing the
darkness of two wedges in the upper part of the circle by the value
determined by σω(C1,C1). To facilitate the comparison of values,
the width of these wedges is proportional to σω(C1,C1)

µω(C1,C1)

µω(C1,C1)−σω(C1,C1)

µω(C1,C1)+σω(C1,C1)

c−2 c+
2 c+

2

2 ·σω(C1,C2)
2 ·µω(C1,C2)

Figure 8: Visual representation of mean and deviation of intra-class
weights, inter-class weights, and class sizes for two classes C1 (left)
and C2 (right). (Let c2 =

√
µ|C2| denote the square root of the mean

size of C2 and c±2 =
√

µ|C2|±σ |C2| respectively.). Instead of mean
and standard deviation, any other measure for average and variability
(e. g., median and upper/lower quartiles) could be taken.

At least in our empirical data set, the observed maximal and
minimal values are often close to (or identical with) the feasible
maximal and minimal values which are determined by the research
design. (For instance, the maximal class size is typically close to
45 and the minimal class size equal to zero.) Since only little in-
formation is provided by the feasible extremal values and since the
drawings would become vary unbalanced, we do not visualize min-
imal and maximal values. However, in a scenario where extremal
values do not differ so much from the mean/median, these could
easily be incorporated into the drawings.

5 EXAMPLES

In this section we illustrate how we can get insight into a collec-
tion of personal networks by averaging over purposefully chosen
subsets. We emphasize once more that the goal of this paper is to
propose and illustrate a network visualization technique and not to
derive conclusive results about acculturation. Although we detect
in the following quite interesting trends, we do not address issues
such as significance of statistical observations or representativeness
of data sets in this paper. Thus, the results may or may not general-
ize beyond our given sample.

5.1 Examples for Average and Variability
5.1.1 Dependence on Countries of Origin/Host
First we want to assess how country of origin and host country in-
fluence the average acculturation strategy of migrants. To visualize
this dependency, we partitioned the whole set of respondents into
sub-sets determined by country of origin and target country. We
computed the network median and upper/lower quartiles over these
sub-samples and visualized them in Fig. 9.

The images in Fig. 9 indeed reveal considerable differences. In
the upper row we can see that migrants from Senegal/Gambia have
on average many alters originating from and still living in their
country of origin and, in addition, actors in this class are tightly
connected (dark node color). Most of the alters of the Domini-
can migrants to Spain belong either to the ORIGIN-class or the
FELLOWS-class and—as for the Senegambians—few are originally
from the host country. The average networks of Moroccans and
Argentineans are more balanced in this respect. In contrast to the
Dominicans in Spain, the Dominican migrants to the USA have a
much smaller ORIGIN-class. An extremal example in this respect
are the Cubans (although we have only seven respondents from this
country), whose FELLOW and HOST classes are large and very well
connected, whereas the ORIGIN-class is zero. Note that (since we
visualize in Fig. 9 the median and quartiles) this does not imply
that the ORIGIN-class of all Cuban respondents is zero—just that
at most one quarter of the respondents have an alter in this class
(in our case it is just one of the seven respondents). A remarkable
difference between the upper and lower row is that most migrants
to the USA (if we do not consider the seven Cubans) seem to re-
port fewer ties (light-grey colors) in their personal networks than
the migrants to Spain (darker colors).

Besides differences in the average we can also observe large dif-
ferences in the variability. For instance, the Cubans consistently
have many alters in their FELLOWS and HOST classes, so that the
deviation in the radii is quite small. In contrast, the Dominican mi-
grants to the USA yield a sub-sample with very high variability (so
that the median might not well represent many of them). For in-
stance, the lower quartile of the size of their FELLOWS-class is zero
and thus very far from the median. Also the tie-weights show dif-
ferent variability: while, e. g., the FELLOWS class of the Haitians
shows a small variability in its intra class tie weight (the colors of
the two segments are close to the median color), the tie within the
FELLOWS of the Dominican migrants to the USA has a high vari-
ability (a dark and a bright segment within this node).

5.1.2 Dependence on Time of Residence
We hypothesize that the level of acculturation also depends on the
time of residence. To visualize this, we partitioned the whole set of
respondents into sub-sets entering in the same year into their host
country and visualize the averages (median and quartiles) over these
sub-samples in Fig. 10.

The images in Fig. 10 show an almost monotonic transformation
from the country of origin towards the host country. The average
migrant seems to start with a social network where most alters are
from the ORIGIN-class and form a densely connected community
(Y=1). Then the FELLOWS-class and later the HOST-class succes-
sively get larger (although not exactly monotonically). In conclu-
sion, Fig. 10 suggests a tendency towards integration over time,
although the two ties from HOST to FELLOWS and from FELLOWS
to ORIGIN remain important (relatively high weight).

5.2 Refinement of Classes
Until now, all network images in this paper showed the four actor
classes defined in Fig. 3. In this section we present some examples
of network images with more than just four classes. Exemplary we
want to visualize relations between the skin color of respondents
and their network composition and structure.



migration to Spain:

SEN(N=68) DOM(N=64) MOR(N=71) ARG(N=79)

origin fellows
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transnationals

migration to the USA:

COL(N=15) DOM(N=98) PUE(N=77) HAI(N=9) CUB(N=7)

Figure 9: Average networks of migrants with the same country of origin and host country. The network diagram in the upper right position is
to remind the positions of the different classes (compare Fig. 3). Upper row are migrants to Spain, lower row are migrants to the USA. The
country of origin is encoded as follows: SEN for Senegal/Gambia, DOM for the Dominican Republic, MOR for Morocco, ARG for Argentina, COL for
Colombia, PUE for Puerto Rico, HAI for Haiti, and CUB for Cuba,. The integer N denotes the number of individuals in the respective sub-sample.

Y=1,N=16 Y=2,N=34 Y=3,N=33 Y=4,N=34 Y=5,N=37 Y=6,N=16 Y=7,N=14

Y=8,N=6 Y=9,N=5 Y=10,N=6 Y=11,N=6 Y=12,N=5

5 years

Y=17,N=10

Figure 10: Average networks of migrants with the same year of entry in the host country. The integer Y denotes the years of residence in the
host country, the integer N denotes the number of individuals in the respective sub-sample (we only shown networks with N ≥ 5).

To assess this dependence, we partitioned for each network the
four classes (ORIGIN, FELLOWS, HOST, and TRANSNATIONALS)
into four subclasses dependent on whether the actors’ skin color
has been denoted by the respondent as BLACK, BROWN, WHITE,
or OTHER. Similarly, we partitioned the set of respondents (i. e.,
the set of personal networks) into four sub-samples dependent on
whether they declared their own skin color as BLACK, BROWN,
WHITE, or OTHER. In a first step we computed for each of these
sub-samples the arithmetic mean network (as described in Sect. 4)
and, in addition, the mean sizes of the “skin color”-subclasses (by
exactly the same formulas as we compute the average sizes of
classes). The composition of each class is visually encoded in a
pie chart (see the top row in Fig. 11).

As for country of origin and time of residence, we can detect
considerable dependence on the skin color. On average, BLACK,
BROWN, and WHITE respondents know more alters that have their
own skin color respectively. (On the other hand, those that declared
their own skin color as OTHER seem to have the most multi-racial
network.) However, the HOST class does not follow this rule: the
largest subclass of the HOST class consists of WHITES, indepen-
dent on the skin color of the respondent (although the ratio varies).
Presumably, this is a characteristic of the two host countries (Spain

and the USA) whose populations consist mostly of WHITE people.
Furthermore, note that the BLACK respondents have the smallest
HOST class, followed by the BROWN, WHITE, and OTHER migrants.
This observation leads to the hypothesis that having a different skin
color than the largest part of the host society hinders integration.
(Although it is unclear why exactly those who declared their skin
color as OTHER have the largest HOST class.)

In the bottom row in Fig. 11 we have drawn the networks consist-
ing of the 16 subclasses (ORIGIN, FELLOWS, HOST, and TRANSNA-
TIONALS intersected with the four skin color classes) in a standard
circular layout. These images confirm what we observed in the
images in the upper row but, in addition, reveal the adjacency struc-
ture between subclasses. Although, this structure gets more com-
plicated, some structural properties can be recognized: First, alters
having the same skin color seem to be on average better connected,
so that dense squares (including diagonals) that connect equally col-
ored nodes become visible. Second, the four sub-classes belonging
to the same super-class are often better connected.

The circular layout (as in the bottom row of Fig. 11) could be ap-
plied to any number of classes. However, it is evident that choosing
too many classes produces images that are too complex. In addi-
tion, having too many classes increases the risk of overfitting to the
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Figure 11: Average networks of migrants (respondents) with the same skin color. The labels in the middle row denote the skin color of the
respondent (the color of these labels is used to encode the skin color in the network images), the integer N denotes the number of respondents
in the respective sub-sample. In the top row the four classes have been subdivided (as in a pie chart) each into four segments proportional to
the relative sizes of sub-classes. The networks in the bottom row show the average adjacency structure of the 16 sub-classes. For simplicity we
visualize only the mean and not the deviation in these images.

particular sample, i. e., to obtain observations that do not generalize
well to a larger population. A small number of well-chosen classes
is likely to yield more useful information to the analyst.

6 CONCLUSION

We propose techniques for visualizing collections of clustered
graphs that may have disjoint vertex sets and where only a one-
to-one correspondence between the class labels is given. A distin-
guishing property of our method is that we abstract from individual
vertices and show only the size of vertex classes and how vertices
from specific classes are connected on average. In addition, the
classes are always displayed at the same position, independent of
the specific graph structure. These decisions have been crucial to
get small and concise images of graphs, to facilitate easy compar-
ison between disjoint graphs, and to allow for averaging over col-
lections of graphs. Furthermore, we claim that our clustered graph
visualizations support the analyst in building models for the gener-
ation of ties, i. e., models that predict the probability of ties depen-
dent on the characteristics of the connected actors. We illustrated
the usefulness of our method by analyzing a collection of personal
networks of migrants. Our images yield visual measures for assess-
ing the mode of acculturation of individuals and show interesting
trends in sub-samples, thereby revealing dependency of cultural in-
tegration on country of origin, time of residence, and skin color.

A promising direction for future work is to develop techniques
to visualize collections of graphs that are hierarchically clustered—
and thereby to deal with larger numbers of classes. The subdivision
of classes as in a pie-chart (shown in the top row of Fig. 11) is
a simple approach, but it does not show the adjacency structure
between subclasses. It is likely that other methods for hierarchical
clusterings (e. g., [1, 2, 7]) could be adapted to our application.
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