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ABSTRACT

Large amounts of time-varying datasets create great challenges for
users to understand and explore them. This paper proposes an effi-
cient visualization method for observing overall data contents and
changes throughout an entire time-varying dataset. We develop
an interactive storyboard approach by composing sample volume
renderings and descriptive geometric primitives that are generated
through data analysis processes. Our storyboard system integrates
automatic visualization generation methods and interactive adjust-
ment procedures to provide new tools for visualizing and explor-
ing time-varying datasets. We also provide a flexible framework
to quantify data differences and automatically select representa-
tive datasets through exploring scientific data distribution features.
Since this approach reduces the visualized data amount into a more
understandable size and format for users, it can be used to effec-
tively visualize, represent, and explore a large time-varying dataset.
Initial user study results show that our approach shortens the explo-
ration time and reduces the number of datasets that users visualized
individually. This visualization method is especially useful for situ-
ations that require close observance or are not capable of interactive
rendering, such as documentation and demonstration.

Index Terms: I.3.6 [Methodology and Techniques]: Interaction
techniques— [I.3.7]: Three-Dimensional Graphics and Realism—
Color, shading, shadowing, and texture

1 INTRODUCTION

The increasing amount of scientific data creates new challenges for
developing effective visualization techniques, especially for time-
varying datasets. Previous work on time-varying data visualization
primarily focused on the topics of accelerated rendering, feature
extraction, change detection, and feature tracking, etc. In this paper,
we propose a new method to visualize and explore overall time-
varying data contents and relations from the entire time range.

It is often difficult to visualize and analyze large scale time-
varying data because of the enormous data volume. To analyze
a time-varying dataset, the most common approach is to perform
interactive rendering at each time step, or to generate snapshots /
composed animations in a batch process. For a time-varying dataset
that has a large number of time steps, both approaches can be quite
ineffective for users to grasp the overall temporal trend and de-
tailed data properties due to the limitation of human perception
systems [32], as pointed out by Joshi and Rheingans that visually
inspecting each snapshot of a time-varying dataset is not practical
for a large number of time steps [16]. Especially when multiple
objects are interacting and changing over time, it is very difficult
for users to analyze complex data relations in mind from numerous
separate information pieces. Therefore, we need to integrate data
analysis results into representation processes for more effective vi-
sualization of time-varying datasets.
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In this paper, we present a new method for visualizing over-
all temporal evolution and salient data features of time-varying
datasets. To address the issue mentioned above, there is a need
to develop new time-varying data visualization techniques that can
summarize complex data dynamics in a concise but effective man-
ner, while still allowing users to closely observe data in greater de-
tails. To achieve this goal, we design anInteractive Storyboard,
which displays sample images and line drawings in a clear story-
board layout to depict data relevancies and differences. Our design
enhances the function of a storyboard by appropriately arranging
snapshots and primitives to assist users to understand essential data
contents and changes. This approach improves time-varying visual-
ization by reducing the amount of data needed to visualize complex
data characteristics. It allows close exploration and observation,
which are especially useful for documentation and demonstration.

To facilitate effective data viewing through our interactive sto-
ryboard, we propose an approach to reducing the number of time
steps that users need to visualize individually to understand essen-
tial data features by selecting representative datasets. We have de-
signed a flexible framework for quantifying data differences using
multiple dissimilarity matrices. This dissimilarity information is
further analyzed through an extremum position detection algorithm
to choose representative datasets. This framework is capable of
showing various data features and it can be easily adjusted accord-
ing to the application requirements by modifying a potential data
feature list. Similar to the previous work on feature extraction and
feature tracking, we treat the problem of representative data selec-
tion as a feature extraction process along the time axis, where the
volume data are viewed as features-of-interest. By combining the
information of data relations and the selection process of represen-
tative datasets, we can preserve salient features in the underlying
time-varying dataset while reducing the amount of time steps re-
quired to generate overall storyboard visualization. Our initial user
study shows that this approach shortens the exploration time and
reduces the number of visualized datasets that are required to un-
derstand a time-varying dataset.

The remainder of the paper is organized as follows: We first
summarize related visualization and graphics work on time-varying
data, motion, and key data selection techniques. In section 3, we
describe our framework for quantifying data differences using mul-
tiple dissimilarity matrices and an optimized weight generation pro-
cess. In section 4, we automatically choose representative datasets
for scientific datasets by incorporating two data distribution fea-
tures. Section 5 describes our interactive storyboard design, auto-
matic generation, and integrated interaction approaches for visu-
alizing overall contents of time-varying datasets. Finally, we will
discuss our results and future work in section 6.

2 RELATED WORK

Time-varying data visualization [15] is a challenging topic because
of the large data size and volume. Feature tracking has been one im-
portant research direction, since it can provide the frame-to-frame
correspondence between objects-of-interest to reveal the temporal
trend of a time-varying dataset. The tracking information can be
further studied to detect significant data changes. Currently, most
feature tracking approaches are based on pre-defined feature mod-
els or user-specified regions-of-interest. The matching of data fea-
tures is generally achieved by the following two mechanisms. First,



based on selected regions-of-interest for feature tracking, data fea-
tures are matched based on their corresponding positions [25] or
topological features are tracked using high dimensional geome-
tries [14]. Critical points of geometry models have also been stud-
ied in many applications [12, 26, 8, 10]. Second, feature attributes,
such as position and size, are derived from data models and used
to measure data changes. For example, Samtaney et al. [24] intro-
duced several evolutionary events and tracked 3D data according
to their feature attributes. Banks and Singer [3] used a predictor-
corrector method to reconstruct and track vortex tubes from tur-
bulent time-dependent flows. Reinders et al. [22] matched several
attributes of features and tracked feature paths based on the motion
continuity. Verma and Pang [29] proposed comparative visualiza-
tion tools for analyzing vector datasets based on streamlines. We
design a general method for comparing data dissimilarities, which
does not require a dense sampling frequency to capture the object
evolution and is not limited by specific feature models, such as ge-
ometry or interval volumes, and their attribute designs. Our method
can also be used to visualize data distributions according to selected
representative datasets.

The usages of snapshots have been explored for various pur-
poses. First, multiple snapshots can be organized to compare
and analyze complex information. Marks et al. [20] automati-
cally generated and organized graphics or animations in the “De-
sign Gallery” interface to help finding desirable input parame-
ters. Ma [19] used image graphs to streamline the process of vi-
sual data exploration through dynamic graph features. Approaches
that explore neural networks and information visualization tech-
niques have also been explored to assist time-varying data visu-
alizations [1]. Second, images can also be used to represent both
static and moving objects, such as “moving images” [9]. Woodring
et al. [35] simulated the chronophotography technique to depict
time-varying data features using a high dimensional direct render-
ing method. Joshi and Rheingans [16] simulated techniques com-
monly used in comic books to convey changes over time. Similar
to their objectives, we propose a different approach to improve the
visualization effectiveness by decreasing the number of time steps
for users to visualize for understanding overall data contents and
relations. There are also relevant video summaries or visualization
techniques [5, 6, 33], which generally focused on handling images
over time.

“Key-poses” or “key-frames” have been mainly used in the do-
mains of computer animation and video for motion retrieval, syn-
thesis, activity recognition, etc. For example, a large number of
key-poses were selected for motion synthesis [17] and video se-
quences [7]. Loy et al. [18] used a clustering algorithm to select
key frames that are centers of frame clusters. Assa et al. [2] pre-
sented human motions in still images by selecting key poses based
on the analysis of a skeletal animation sequence. We are mostly
inspired by this paper to develop a general framework for visualiz-
ing and analyzing time-varying volumetric data, although a volume
dataset typically does not have any specific feature models as hu-
man motions.

3 DATA RELATIONSHIP MEASUREMENT

To efficiently visualize a time-varying dataset with a large number
of time steps, we design a new visualization approach that inte-
grates data analysis results, which are achieved by measuring the
degree of data similarity/difference and selecting important datasets
that contain essential data features. This section discusses the key
component in the comparison and selection processes, which is to
compare all the time steps and measure their similarities or differ-
ences. As illustrated in Figure 1, a large amount of time steps are
reduced to a much smaller number through the process of dissimi-
larity measurement and data distribution analysis. The quantitative
results will be used to analyze representative datasets in section 4

Figure 1: Our system architecture: We integrate the information of
data analysis (b, c) and a single 3D data visualization method (d)
for users to explore and visualize overall time-varying data contents
(e). For a time-varying dataset (a), we calculate data dissimilari-
ties according to selected data features (b) and select representative
datasets by analyzing the distribution of time steps (c). The integra-
tion of data analysis results reduces the visualized data amount and
keeps the essential information for more efficient time-varying data
visualization.

and visualize an entire time-varying dataset in section 5.
Our approach allows users to compare 3D datasets from differ-

ent time steps using a combination of various relevant data features.
For each selected data feature, we calculate a dissimilarity matrix
by comparing every data pair according to the feature definition.
Then, we compose a final matrix as the quantified dissimilarity re-
sult through optimizing the calculation weights. We have explored
a set of potential data features to measure data dissimilarities from
different aspects, including geometry, texture, and statistical infor-
mation. This framework is robust and easy for users to incorporate
additional data comparison criteria. The final dissimilarity matrix
will be affected by the selected data features to represent data rela-
tions that users are interested in.

3.1 Dissimilarity Matrix Computation

We first select relevant data features and regions-of-interest through
visualizing single time steps using a direct 3D volume rendering
approach. The data features can be selected from our sample list,
as shown in Table 1, which includes multiple geometry, statistics,
and texture differences. We have concentrated on general data fea-
tures in object space, since feature space approaches require prior
knowledge of the data models and image space algorithms need
pre-selected viewpoint for volumetric data.

Assuming that a time-varying dataset includesn time steps, one
n×n dissimilarity matrix will be generated for each potential data
feature. To make sure that the final dissimilarity matrix is inde-
pendent of the scales of different data features, we first calculate
the maximum and minimum values of a feature in theory and then
normalize the dissimilarity matrix using these two values. For ex-
ample, the maximum and minimum values of the volume difference
count are the data size and 0, and those of theχ2 statistics are the
histogram length and 0. If the volumes at two time steps have very
similar data values, the matrix will mostly be filled with zero. This
normalization process avoids having bias toward any particular data
features, but preserves the degree of dissimilarity within any given
feature criterion.

A time window,T(d1,d2), can be used to modulate the dissim-
ilarity matrix M(d1,d2) based on their time interval, whered1 and



Table 1: Our potential dissimilarity matrix computation list. The framework allows easy modifications for additional data features.

Dissimilarity Items Measurements
Geometry & Topology

Volume difference A scanning process is performed to calculate the volume of regions-of-interest
Area difference Approximated as the number of voxels that belong to the regions-of-interest

Center position shift The shift of the weighted object center position
Boundingbox size change The change of the boundingbox size for regions-of-interest

Shape change The shape difference of regions-of-interest after the bounding boxes are aligned
Region number change The number changes of separate geometries [25, 14]

Texture
K-L divergence and J. divergencedJ(H,K) = ∑i(hi log hi

mi
+ki log ki

mi
),where mi = hi+ki

2 [23]

χ2 statistics dχ2(H,K) = ∑i
(hi−mi)

2

mi
,where mi = hi+ki

2 [28]
Match distance dM(H,K) = ∑i | ĥi − k̂i |, whereĥi andk̂i are the cumulative histogram of{hi} and{ki}

EMD The minimal cost need to transform H to K to the total flow [23]
Statistic difference

Scalar value, gradient, curvature Differences of the average and standard deviation
Gradient and curvature directionsDifferences of the angular separation

Transfer functions From extended distance matrices of the texture approaches

d2 are a data pair:

M̂(d1,d2) = T(d1,d2)∗M(d1,d2) (1)

Two functions can be applied in different applications according to
the requirement of enhancing or reducing the time dependency in
the dissimilarity values [2, 30]. Generally,e−α|td1−td2 | is used to
enhance the changes that are temporally closed and 1−e−α|td1−td2 |

is used to reduce it, whereα is a constant. We use a smallα in
the second format to reduce the time dependency, since we want to
choose representative datasets mainly from the information of data
dissimilarities.

To accelerate the computation process, we collect and prepare
information from all the data volumes during the preprocessing
step, including detecting the number of separate objects and gather-
ing basic data information (e.g., gradient and curvature). Figure 2
shows 11 dissimilarity matrices and the final matrix for analyzing a
time-varying energy dataset.

3.2 Weight Optimization
After calculating individual dissimilarity matrices for a selected set
of data features, we need to merge all of them into one final matrix,
which will be used later to choose representative datasets. Assum-
ing m dissimilarity matrices are generated, we use their weighted
sum to compose a final matrixD(d1,d2).

D(d1,d2) =
m

∑
i=1

pi ∗ M̂(d1,d2) (2)

The weightspi(i = 1, ...,m) play an important role in the final
matrix, which will be used to select representative datasets. We
propose an automatic process for generating the matrix weights by
maximizing the data differences. We argue that the final matrix
should catch the majority data differences and thereby compose a
larger variety of values. Therefore, we use the standard deviation
of the final matrix as our objective function in the optimization pro-
cess. Since the different scales of data dissimilarities have already
been considered in the matrices, the weights are only calculated
according to their value distributions. The weights can be auto-
matically solved by using the direction set method to minimize this
objective function [21]:

f (pi , i = 1, ...,m) = δ (D(d1,d2)) (3)

Figure 2: Dissimilarity matrices of an energy dataset for value-of-
interest, volume value differences, value standard deviation, average
value, gradient direction, gradient magnitude, volume of regions-of-
interest, surface area, center position shift, KL divergence, χ2 statis-
tics, and the final matrix respectively. Brighter regions indicate larger
dissimilarity values.

which does not require an explicit function format.

4 REPRESENTATIVE DATASETS ANALYSIS

We automatically select representative datasets to reduce the re-
quired data amount for understanding time-varying data contents
by analyzing the final dissimilarity matrix. Assa et al. [2] presented
an approach to selecting key frames of animation sequences by
measuring the similarities among a character’s joint positions. Our
main difference is that we want to interactively select representa-
tive datasets that include a significant portion of features for scien-
tific data, whose data distribution requires more analysis than time
sequence. The use of representative datesets reduces the amount
of data to visualize and still keeps the essential data information,
which can be used to improve the efficiency of time-varying data
visualization.



4.1 Dimensionality Reduction

Because of the following three factors, we apply dimensionality re-
duction approaches to decrease the dimension of final dissimilarity
matrix. First, since the dissimilarity matrix is composed of multiple
measuring criteria, there may exist redundant information. Second,
it is much faster when we perform the selection process in a lower
dimensional space. Most importantly, we need to reduce the data
information into a space where they can be visualized effectively.

Inspired by the human motion analysis work [2], we use the
multi-dimensional scaling (MDS) [27, 4], which is a set of data
analysis techniques that can display the pattern of proximities (i.e.,
similarities or distances) among multiple objects. Here, we can di-
rectly input the final dissimilarity matrix and outputsn point po-
sitions in a specified dimension, with each point corresponding to
a time step. The Euclidean distances among output points are op-
timized to best express their dissimilarity values. Since the out-
put point positions from our final dissimilarity matrix do not have
real physical meanings, we test two types of non-classical MDS
approaches and do not find significant differences between non-
classical metric MDS and non-metric MDS methods. In this paper,
we use the non-classical metric MDS for all the results.

To determine appropriate dimensions, we can use the MDS stress
curve (si , i = 1,2, . . .), which measures the difference between the
dissimilarity values and output point distances. Starting from di-
mension 2, we calculate the difference of stress values between two
adjacent dimensions (|si −si−1|) and automatically choose the one
whose difference with previous dimension is smaller than a thresh-

old, such as|si−si−1|
si

< 10%. For all the data used in this paper, the
dimensions range between 2 to 12 were found to be appropriate for
further analysis.

4.2 Representative Datasets Selection

Since we want to locate representative datasets mainly from the
characteristics of data distributions, we do not take the order of time
steps into consideration at this stage and it will be used later in the
visualization process in section 5.

From the reconstructed point cloud of MDS output (section 4.1),
we have found two obvious distribution properties of scientific data
which can be used to select representative datasets. As shown in
Figure 3, when we connect points in the order of time steps, clear
curve shapes can be seen from the original point cloud. Also, sev-
eral clusters are formed among the point cloud, where close points
indicate similar data contents at these time steps. We will need to
combine these two distribution properties to locate representative
datasets.

For each point in the MDS output, we calculate its suitability
value of being a presentative dataset using the following three fac-
tors: representative size, change speed, and distances to the points
that are already in the set. These factors are designed using ge-
ometry properties of the extremum locations in a high dimensional
space, which indicate key time steps, according to the two data dis-
tribution properties.

First, the representative sizeS(d) of each pointd. The points
are first clustered using the mean shift algorithm [11], which can
be used without pre-knowledge of cluster number and shape. The
cluster radiusr(ci) is set as the maximum distance of the points
belonging to a clusterci to the cluster center. We design a weight
gi(d) for calculatingS(d) in a way that data closer to the center
of larger clusters have bigger representative sizes, as shown below,
where‖ci‖ is the number of points in clusterci andDisi(d) is the
distance of pointd to the center of clusterci .

S(d) = ∑clusters‖ci‖ ·gi(d) (4)

where gi(d) =

{

0,Disi(d) > r(ci)
1− (Disi(d)/r(ci))

2,Disi(d) ≤ r(ci)

Figure 3: The top row illustrates the selection process of representa-
tive datasets. The bottom row demonstrates the two general proper-
ties of reconstructed data distributions: time sequence (left of each
pair) and cluster tendency (right of each pair).

Second, data changesC(d) of a pointd within its local neighbor-
hood, including changes in direction and distance. Assuming points
d1 andd2 are two neighbors of pointd, we use the direction change
between

−−−→
d1−d and

−−−→
d2−d to approximate extremum locations in

the MDS output space, with a constantpc to control the effect of
direction changes, and their lengths to measure the degree of lo-
cal data changes. This is consistent with our observance that close
points on a relative straight line represent smooth transitions and
have small change values. The total data changesC(d) of a point
d is calculated by adding changes between every neighbor pair of
pointd.

C(d) = ∑
d1,d2

(
(
−−−−→
|d1−d| ·

−−−−→
|d2−d|+1)

2
)pc‖d1−d‖‖d2−d‖ (5)

Third, the distance of a pointd to the points that are already
selected as representative datasets. This can ensure the differences
among selected representative datasets, which can be adjusted using
a constant weightpd.

Di f (d) = ∑
di∈Set

(‖di −d‖)pd (6)

Finally, the suitability of a point as a representative dataset is
calculated by combining the above three factors:

V(d) = S(d)∗C(d)∗Di f (d) (7)

The representative proportion of a set of selected datasets is mea-
sured as the sum of suitability values of selected datasets to the total
value of all the points.

p(Set) =
∑d∈SetV(d)

∑d∈DataV(d)
(8)

Given a desired number of representative datasets or a represen-
tative portion value from users, we can perform a greedy algorithm
to select representative datasets. We continuously select a point
with the largest suitability valueV(d), until the desired stop criteria
is reached. When we set 100% as the desired representative portion,
this process assigns each point a sequence number, which is used in
the user interaction later for adjusting details shown from represen-
tative datasets. We can also select representative datasets without
any parameter by calculating the maximum average representative
proportionp(Set)/ ‖ Set‖. This can be achieved by traversing all
possible combinations to find a best solution. Both procedures se-
lect representative datasets mainly from data distributions derived
from the final data dissimilarity matrix. As shown in Figures 5-7,
only the datasets that are special to the entire time range are se-
lected.

We can significantly accelerate the selection procedure by pre-
computing the majority values, especially for multiple selection



Figure 4: Visualization design. (Top) The right images show our time-
lines for the 5 left datasets respectively. Smaller data changes on the
second row result closer MDS point positions. (Bottom) Similarly,
point positions in a complete color/grey timeline represent informa-
tion of data dissimilarity and time sequence, which will be further
used to visualize overall time-varying data contents.

processes. SinceS(d) andC(d) do not change once MDS is fin-
ished, they can be calculated before the selection. AlthoughDi f (d)
varies, an× n distance table between all the points can be pre-
generated for fast lookup. By gathering all these values, the greedy
selection process can run interactively.

5 INTERACTIVE STORYBOARD

We design a new visualization approach, interactive storyboard,
to visualize and explore overall contents of time-varying datasets
through composing suitable amount of information that can be ef-
ficiently understood by users. Our design principle is to visualize
both data contents and relations through integrating data analysis
results in this storyboard visualization system, including the final
data dissimilarity matrix, point cloud from MDS output, and repre-
sentative datasets from the previous two Sections. Since the selec-
tion of representative datasets preserves essential features of data
contents and significantly reduces the number of datasets for users
to visualize, it is more effective than asking users to visualize each
time step individually and analyze all the datasets afterwards. We
develop an automatic composition process for generating and ren-
dering the interactive storyboard system. We also integrate several
interaction approaches to allow users to control storyboard results
and explore data evolution during different time periods.

For exploring time-varying datasets, our storyboard is designed
by arranging data relations, data dissimilarity distributions, and
snapshots of representative datasets to visualize overall data con-
tents. Storyboard is a powerful descriptive tool that has been suc-
cessfully used to describe events [13], actions [2], or visualize vol-
ume data [34]. We will show that various complex evolutions of
time-varying datasets can be visualized through our flexible story-
board generation method.

5.1 Visualization Design

Our visualization layout is generated from two components: data
relations and sample snapshots. The data relations are mainly rep-
resented by the MDS output and sample snapshots can be gener-
ated for representative datasets using any direct volume rendering
approach (we use texture-based volume rendering for results in this
paper). We use sample snapshots from key time steps to represent
essential data contents at different levels, and reduce the details of
others by showing their relations to the adjacent time steps.

We design the overall time-varying visualization by embedding
sample snapshots generated from representative datasets into a lay-
out that is organized from the point cloud of MDS output. Since
close points represent similar datasets (small dissimilarity values),
it is intuitive for users to understand that the contents of these
datasets are similar. The effectiveness of this approach is simi-
lar to various MDS applications for demonstrating data relations

Figure 5: (a) Final dissimilarity matrix for a simple sphere time-
varying data shows that it is difficult to select the representative
datasets (in red dots) directly. (b) An example of the automatic layout
generation process by adding circle templates and organizing point
positions. (c) Our storyboard describing a sphere moves back and
forth when the timeline changes from blue to red.

in many social, science, and engineering fields. Our initial layout
shape comes from the 2D/3D MDS reconstruction result, which is
a series of 2D/3D point positions. Since the timeline may be dif-
ficult to understand directly when the points are connected in the
order of time steps, we smooth the timeline between representa-
tive datasets using the weighted average position between each two
adjacent points. This preserves their original distances, which rep-
resent data dissimilarity degrees, and displays them in a more read-
able format. As shown in Figure 4, both the data similarities (ac-
cording to point locations) and time sequence (indicated by rainbow
or grey colors) can be visualized through our timelines.

According to the selection process of representative datasets, we
assign a rendering level for each time step to decide the size of
rendering primitives. Representative datasets will be shown using
their snapshots with different sizes and the rest will only be shown
as points. Since a 3D volume may face any direction in a 3D space,
we use a circular shape as the template for embedding sample snap-
shots, as shown in Figure 5. Each sample image will be zoomed to
best fit the template around the circle center. We assign grey scale
background colors to represent the importance of a time step and
optional edge colors to strengthen its time sequence.

For smooth exploration and visualization of a time-varying
dataset, the snapshots of all the time steps are pre-generated so that
any selected time step can be displayed in real time during interac-
tion. We also include volume boundaries in the snapshots to show
the volume orientation. The snapshots from all the time steps are
generated from the same view to avoid confusions in the case that
objects are changing over time. The view direction can be selected
automatically by maximizing entropy values or minimizing the oc-
clusions of regions-of-interest [31].

5.2 Automatic Generation

We automatically adjust the storyboard layout and rendering set-
tings through the following three steps: basic layout generation,
automatic fitting, and primitive property assignment. Our basic sto-
ryboard layout is generated from processed timelines of MDS out-
put, as shown in Figures 4 and 5.

We then automatically embed sample snapshots into the basic
layout by using their previous assigned rendering levels and circle
templates. For 3D layout, snapshots are embedded directly using
the corresponding point positions as the centers of circle templates.
For 2D layout, we re-arrange point locations to avoid snapshots
overlapping in the storyboard. Our approach is to add extra space



Figure 6: Storyboards for an energy dataset with different level-of-
details. The storyboard on the top clearly shows the most impor-
tant data information along the timeline: the main object starts from
the bottom, expands to the top, shrinks to the bottom, and finalizes
around the center. The bottom storyboard contains more details by
using less smoothed timeline and more representative datasets.

for each snapshot and adjust storyboard according to accumulated
size of all the points and snapshots. Assuming our circle templates
have sizer l for rendering levell and there are totallyn different
levels. We first measure the distances between each snapshot pair
and push them along the opposite direction if they are closer than
the required circle template sizes. Then, starting from the first time
step, we traverse all the point positions in the initial layout. A time
step corresponding to a representative dataset with rendering levell
will be expanded along the previous and following directions using
a circle template with sizer l . During this accumulation process, we
keep the proportion of adjacent point distances except representa-
tive datasets to preserve the overall data dissimilarity information.
After we traverse all the time steps, we stretch the whole layout lin-
early to fit the assigned rendering space with the same scale on both
x and y axes. A user can control the mapping direction from the
accumulated layout to the rendering space. We leave this control
to the user to keep the interface consistent during the interaction.
In our examples, the maximum snapshot size is assigned to be 10
times of the average point distance, and a lower level snapshot size
is 60% of the higher one.

The time steps that correspond to non-representative datasets are
simply shown as points. We use point size to represent local data
density, which is approximated by the distances to the closest time
steps. The point colors are used to represent time sequence by us-
ing the blue to red portion of a rainbow, where blue indicates the
first time step and red indicates the last time step. The widths and
colors of line segments are interpolated between the attributes of
connecting points.

5.3 User Interaction
We provide several interaction and exploration functions that allow
users to select important time ranges and control storyboard results.
The amount of user effort to achieve these interactions is largely re-
duced through integrating user interaction and our automatic time-
line adjustment process. These interaction functions especially en-
hance the exploration and analysis capability of our interactive sto-
ryboard.

We first provide a function to adjust the details of storyboard
contents with a scalar valuescalebetweenmin andmax. This al-
low users to expand storyboard to observe more details or shrink
it for a higher level view. When the scale of details is increased,
we enrich the storyboard contents by providing more detailed time-
line layouts and adding snapshots of lower level representative time
steps. The timeline is less smoothed for representing more accurate
information of data distribution. Lower level representative time
steps are selected by continuously locating the next representative
dataset from the time steps that have not been included, according
to the selection sequence calculated using suitability valuesV(d) in
section 4.2, until the new representative portionp(Set) (calculated
from equation 8) is larger or equal to the user-specified degreescale

max .
The sizes of snapshots are used to indicate their “importance” in the
entire time range. Figure 6 shows the storyboard at two representa-
tive levels, noticing that the representative datasets for a larger scale
value (bottom) include all the selected datasets on the top. When
the value of details is decreased, the shrinking process is achieved
by reversing the increasing process: we use less detailed timeline
and reduce the number of snapshots in the layouts. Themin level
only includes one snapshot and themax level uses snapshots for
all the time steps. The usages of one scalar value and automatic
update process make it very convenient for users to adjust the level-
of-details.

We also allow users to select their interested time periods and
modify the scale of details for each time period respectively. The
important time periods are selected by indicating the start and end
time steps, represented by two small black triangles on the top of
colorbar in Figure 7. For every selected time period, users can con-
trol its level of details using the above detail adjustment tool. The
rest of the time periods will be rendered at the default highest level.
As shown in Figure 7, the second half of the time range is enriched
with more timeline details and sample snapshots.

Another useful interaction function is to provide an overview
of data distributions surrounding a particular time step selected by
users. To achieve this function, we automatically modify the sto-
ryboard contents from the following two aspects. First, we add the
specified time step as a representative dataset. Then, we select rep-
resentative datasets by using difference values to the specified time
stepds in the final dissimilarity matrix as the weights of suitability
values:

V
′

(d) = ‖d−ds‖×V(d) (9)

This modification favors the datasets that are more different from
the specified time step. As shown in Figure 8, the storyboard pro-
vides an overview of data relations around the selected time step
from the entire time range.

We also add a direct 3D volume rendering window in addition
to the storyboard for enhancing the exploration function of our sys-
tem, as shown in Figure 9. The storyboard portion is used as a
guideline and summary of the data contents throughout the entire
time range. The users can still visualize each individual dataset
through the 3D volume rendering portion. Users can interactively
select a time step, as indicated on the left bottom corner of the sto-
ryboard, to visualize in the 3D rendering window. This combina-
tion provides a more comprehensive tool for exploring time-varying
datasets, especially those with a large number of time steps.

Our storyboard system also includes a key frame display window
that can be used to enlarge snapshots from multiple selected time



Figure 7: Storyboards for a vortex dataset. Representative datasets
are connected by smooth timelines to visualize overall time-varying
data contents and changes. A user can interactively select their in-
terested time ranges and explore additional information by expanding
corresponding portions of the storyboard.

Figure 8: Concentration on a particular time step. When a user se-
lects time step 58, which is highlighted with a red template boundary,
the storyboard automatically update representative datasets for visu-
alizing overall data relations around the selected time step.

Figure 9: The storyboard system is composed of the bottom timeline
portion and the top key frames portion. In this figure, the bottom is
a 3D storyboard for an energy data with three key time steps. The
red dot in the middle is used to control the time step shown in the
right top corner and a separate single data rendering window where
a user can perform common interaction tasks, such as rotating and
selecting regions-of-interest.

steps for better comparison, as shown in Figure 9. For each time
step, users can increase its rendering level by adding it to represen-
tative datasets or shrink it to a point. A simple interaction interface
is also provided to adjust the potential feature list for measuring
data dissimilarity matrices. The regions-of-interest are selected us-
ing standard 2D transfer function.

5.4 Results and Discussions

Figures 5-8 show several 2D storyboards and Figure 9 shows a 3D
storyboard for visualizing overall time-varying data contents and
relationships throughout the entire time range. The dimension of
all the time-varying datasets used in this paper is 128×128×128.
The number of time steps for the sphere data is 128, energy data
is 200, and vortex data is 100. The system performance of the sto-
ryboard is interactive for the above datasets. The preparation time
can be long according to the selected feature combinations: the final
dissimilarity matrix takes hours and all the snapshots are generated
within a few minutes. This process can be shortened by optimizing
our distance matrix calculation algorithm or with parallel methods.
Since user time is viewed as much more precious than computer
time, we believe that it is practical to utilize computing resources
to shorten the required user interaction time and allow users to vi-
sualize a time-varying dataset with a large number of time steps
interactively.

We find that 2D layout has less occlusion problem caused by
displaying 3D objects; thereby more suitable for representation and
demonstration purposes. Since a 3D layout can be integrated with
more interactions, such as rotation, it is more interesting for ex-
ploring and interacting with the contents of a time-varying dataset.
There is a tradeoff issue for adjusting the timeline shape: smooth
lines are easier to understand and winding lines are better in repre-
senting the original data distribution. We perform a small amount
of smoothing operations and a user can adjust the modification de-
gree with a variable. We also make the circle template transparent
for a clearer view on the underlying timelines.

5.5 User Study

We have conducted an initial user study to evaluate the effective-
ness of the proposed interactive storyboard method. We use two
systems, our interactive storyboard and a standard direct volume
rendering system, for visualizing six different time-varying datasets
(each with 20 time steps). Each subject is asked to explore the con-
tents of these six datasets until he or she is fully confident in under-
standing the entire datasets. We randomize test data sequence and
alternate the two provided systems for balancing other factors. Dur-
ing the experiments, we recorded the time steps that subjects chose
to visualize using the 3D rendering window/system, so that we can
summarize the total numbers of visualized time steps and the dura-
tions of experiments. Our initial data analysis results from 7 sub-
jects (students and faculties in the field of visualization) show that
the storyboard method can shorten the average performance time
and decrease the number of visualized time steps. This is consistent
with our expectation since the storyboard is designed for reducing
avoidable comparison and visualization operations for users. We
plan to perform a formal user study to test more subjects and the
significance of these results.

6 CONCLUSIONS AND FUTURE WORK

This paper presents an interactive storyboard method that can be
used to visualize and explore overall contents of time-varying
datasets. Through this new data/information visualization format,
we integrate data analysis results into visualization processes so
that users can understand overall data contents without visualizing
each individual time step. The effectiveness of this method is de-
rived from the suitable amount of information that are composed



from data analysis results, including essential data contents, distri-
butions, and relationships. The essential data information preserves
a significant portion of data features from the entire time range,
greatly reduces the amount of information our users need to digest,
and provides new visualization capabilities to interact with time-
varying datasets. We show that this approach can provide new visu-
alization tools with convenient user interactions, such as exploring
and representing time-series datasets for scientific studies.

We have developed a framework for analyzing data relations and
selecting representative time steps for time-varying datasets. This
is achieved by quantifying data differences into multiple dissimilar-
ity matrices and choosing representative datasets through detecting
extremum positions in the final dissimilarity matrix. This frame-
work is flexible for measuring various data features and can be eas-
ily modified according to the application requirements by adjusting
the potential data feature list. In this paper, we consider representa-
tive datasets selection as the feature extraction process from a group
of temporally related datasets. Therefore, our applications using
representative datasets can reveal the essential data features from a
large number of time steps. We demonstrate the usages of repre-
sentative datasets for better data digestion effect in our interactive
storyboard method.

Our future work includes investigating the following approaches
to extend the proposed interactive storyboard method. We will per-
form a formal user study and test the scalability of the storyboard
system. We plan to accelerate the preparation process for selecting
representative datasets by optimizing the computation components
and developing parallel algorithms. We are interested in including
snapshots from different viewpoints into the storyboard layout to
provide more comprehensive information. We also plan to extend
this approach to improve the direct time-varying visualization ap-
proaches by utilizing the information of representative datasets. Fi-
nally, we will develop representative dataset selection methods for
3D vector data by exploring additional vector dissimilarity mea-
surements.
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