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ABSTRACT

Information visualization is essential in making sense out of large
data sets. Often, high-dimensional data are visualized as a collec-
tion of points in 2-dimensional space through dimensionality re-
duction techniques. However, these traditional methods often do
not capture well the underlying structural information, clustering,
and neighborhoods. In this paper, we describe GMap, a practical
tool for visualizing relational data with geographic-like maps. We
illustrate the effectiveness of this approach with examples from sev-
eral domains. All the maps referenced in this paper can be found in
www.research.att.com/˜yifanhu/GMap.

Index Terms: G.2 [Discrete Mathematic]: Graph TheoryXX—
[H.3]: Information Storage and Retrieval—Clustering

1 INTRODUCTION

Graphs capture relationships between objects and graph drawing
allows us to visualize such relationships. Typically vertices are rep-
resented by points in two or three dimensional space, and edges
are represented by lines between the corresponding vertices. The
layout optimizes some aesthetic criteria, such as, showing under-
lying symmetries, or minimizing the number of edge crossings.
While such point-and-line representation are most commonly used,
other representations have also been considered. For example,
treemaps [30] use a recursive space filling approach to represent
trees. There is also a large body of work on representing planar
graphs as contact graphs [8, 14, 22], where vertices are embodied
by geometrical objects and edges are shown by two objects touch-
ing in some specified fashion. Koebe’s theorem [18] shows that all
planar graphs can be represented by touching disks. A similar rep-
resentation is possible with triangles, where two adjacent vertices
correspond to a vertex-to-side touching pair of triangles, as shown
by de Fraysseix et al. [8]. If vertices are represented by rectilin-
ear regions and edges correspond to side-to-side contact between
paired regions, He [14] has shown that all planar graphs have such
drawings. Graph representations of side-to-side touching regions
tend to be visually appealing and have the added advantage that
they suggest the familiar metaphor of a geographical map.

In this paper we describe GMap, an algorithm to represent gen-
eral graphs as maps. Clearly, there are theoretical limitations to
what graphs can be represented exactly by touching polygons,
namely, subclasses of planar graphs. However, our aim here is prac-
tical rather than graph theoretical. We do not insist that the created
map be an exact representation of the graph but that it captures the
underlying relationships well. With this in mind, we do not insist
that all vertices are represented by individual polygons either. In
fact, we group closely connected vertices into regions. If we would
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like to show all of the relationships, we can superimpose a graph
drawing on top of the map. Our overall goal is to create a represen-
tation which makes the underlying data understandable and visually
appealing. Our map representation is especially effective when the
underlying graph contains structural information such as clusters
and/or hierarchy.

Given an input a graph (e.g., similarity between books as deter-
mined by purchase behavior at Amazon.com) we produce a map
with a “natural” map-like look, outer boundaries that follow the
outline of the vertex set, and inner boundaries having the twists and
turns found in real maps; see Fig. 1. Our maps also can have lakes,
islands, and peninsulas, similar to those found in real geographic
maps.1

2 RELATED WORK

There is a large body of work on contact polygon representation
of planar graphs, and in floor planning, as discussed in Section 1.
While some theoretical problems from this area are related to our
work, the emphasis in this paper is not on the strict preservation of
adjacency information, but on a practical approach to visualizing
general non-planar graphs.

There is little prior work on representing general (non-planar)
graphs as geographic maps. In geography there are many papers
about accurately and appealingly representing a given geographic
region, or on re-drawing an existing map subject to additional con-
straints. Examples of the first kind of problem are found in tradi-
tional cartography, e.g., the 1569 Mercator projection of the sphere
onto 2D Euclidean space. Examples of the second kind of prob-
lem are found in cartograms, where the goal is to redraw a map
so that the country areas are proportional to some metric, an idea
which dates back to 1934 [28] and is still popular today (e.g., the
New York Times red-blue maps of the US, showing the presidential
election results in 2000 and 2004 with states drawn proportional to
population).

The map of science [5] uses vertex coloring in a graph drawing to
provide an overview of the scientific landscape, based on citations
of journal articles. Treemaps [30], squarified treemaps [7] and the
more recent newsmaps [33] represent hierarchical information by
means of space-filling tilings, allocating area proportional to some
metric.

Representing imagined places on a map as if they were real coun-
tries also has a long history, e.g., the 1930’s Map of Middle Earth by
Tolkien [32] and the Bücherlandes map by Woelfle from the same
period [1]. More recent popular maps include xkcd’s Map of On-
line Communities [4]. While most such maps are generated in an
ad hoc manner and are not strictly based on underlying data, they
are often visually appealing.

In self-organizing maps (SOM) [19] an unsupervised learning
algorithm places objects on a two-dimensional grid such that simi-
lar objects are close to each other. Similar to our GMap algorithm,
SOM also uses a map metaphor to visualize the resulting embed-
ding. Unlike GMap, in SOM the “map” is created by coloring cells

1This paper contains zoomable high resolution images; all the images
are also available at www.research.att.com/˜yifanhu/MAPS.



Figure 1: A map of books related to “1984” from Amazon.com

of the grid based on a feature value, therefore operating on a dis-
crete grid space, without a clear inner boundary between “coun-
tries”. Furthermore, the grid tends to fit a rectangular box, therefore
overall outline of the point set often follows that shape.

Generating synthetic geography has a large literature, connected
to its use in computer games and movies. Most of the work (e.g.,
[23, 25]) relies on variations of a fractal model. These techniques
could provide additional photorealism, and may be used in future
extention of our work.

3 THE GMAP ALGORITHM

The input to our algorithm is a relational data set from which we
extract a graph G = (V,E). The set of vertices V corresponds to
the objects in the data, e.g., authors in the graph drawing commu-
nity, and the set of edges E corresponds to the relationship between
pairs of objects, e.g., co-authoring a paper. In its full generality, the
graph is vertex-weighted and edge-weighted, with vertex weights
corresponding to some notion of the importance of a vertex and
edge weights corresponding to some notion of the distance between
a pair of vertices.

The first step in our GMap algorithm is to embed the graph
in the plane. Possible embedding algorithms include principal
component analysis [17], multidimensional scaling (MDS) [20], a
force-directed algorithm [12], or non-linear dimensionality reduc-
tion such as LLE [29] and Isomap [31].

The second step is a cluster analysis of the underlying graph or
the embedded pointset from step one. In this step, it is important
to match the clustering algorithm to the embedding algorithm. For
example, a geometric clustering algorithm such as k-means [24]
may be suitable for an embedding derived from MDS, as the latter
tends to place similar vertices in the same geometric region with
good separation between clusters. On the other hand, with an em-
bedding derived from a force-directed algorithm [12], a modularity
based clustering [26] could be a better fit. The two algorithms are
strongly related [27] and therefore we can expect vertices that are

in the same cluster to also be physically close to each other in the
embedding.

In the third step the two-dimensional embedding together with
the clustering are used to create the map. In the final step, the coun-
tres are colored using a coloring algorithm to maximize color dif-
ferences between neighboring countries. In the next two subsection
we discuss the last two steps in more detail.

3.1 The mapping algorithm

Given the placement of the vertices from the first step, we want to
create a map, with inner boundaries separating vertices not in the
same cluster and outer boundaries perferably following the general
outline of the point set. A naive approach for creating the map is
to form the Voronoi diagram of the vertices based on the embed-
ding information, together with four points on the corners of the
bounding box; see Fig. 2(a). Such maps often have sharp corners,
and angular outer boundaries. We can generate more natural outer
boundaries by adding random points to the current embedding. A
random point is only accepted if its distance from any of the real
points is more than a preset threshold r away. This leads to bound-
aries that follow the shape of the point set. The randomness of
the points on the outskirts also gives rise to some randomness of
the outer boundaries, thus making them more map-like and natural;
see Fig. 2(b). Furthermore, depending on the value of r, this step
can also result in the creation of lakes (e.g., Fig. 1) in areas where
vertices are far apart from each other. Nevertheless, some inner
boundaries remain artificially straight.

Another undesirable feature is that the three “countries” all have
roughly the same area, whereas we might often prefer some areas
to be larger than others (e.g., due to the importance of the entities
they represent). As an illustration, in Fig. 2, we assume that “node
1” is more important than the other two nodes, and use a larger
label for that area. To make areas follow the shape of the labels,
we first generate artificial points along the bounding boxes of the
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Figure 2: (a) Voronoi diagram of vertices and corners of bounding
box; (b) better construction of outer boundaries through placement
of random points; (c) Voronoi diagram of vertices and points inserted
around the bounding boxes of the labels; (d) the final map.

labels; see Fig. 2(c)2. To make the inner boundaries less uniform
and more map-like, we perturb these points randomly instead of
running strictly along the boxes. Here Voronoi cells that belong to
the same vertex are colored in the same color, and cells that corre-
spond to the random points on the outskirt are not shown. Cells of
the same color are then merged to give the final map in Fig. 2(d).
Note that instead of the bounding boxes of labels, we could use any
2D shapes, e.g., the outlines of real countries, in order to obtain a
desired look and proportion of area, as long as these shapes do not
overlap.

We note that not all real maps have complicated boundaries. For
example, the state boundaries in a map of the United States are
mostly straight. We believe that maps with irregular boundaries,
such as those in Europe, lead to more map-like results. The same
underlying graph can lead to very different looking maps, depend-
ing on the way inner and outer boundaries are created. We find
the European-style map of Figure 6 more appealing than the masp
obtained with straight boundaries in Figures 8-7). But this is a mat-
ter of personal taste and our algorithm can generate maps of both
styles.

When mapping vertices that contain cluster information, in addi-
tion to merging cells that belong to the same vertex, we also merge
cells that belong to the same cluster, thus forming regions of com-
plicated shapes, with multiple vertices and labels in each region. At
this point we can add more geographic components to strengthen
the map metaphor. For instance, in places where there is significant
space between vertices in neighboring clusters, we can add lakes,
rivers, or mountain ranges to the map to indicate the distance. These
structures can all be formed by a similar insertion of random points
in places where vertices are far away from each other.

In terms of complexity, the algorithm is scalable and has a time
complexity of O(|V | log |V |). We first add na artificial points along
the bounding boxes of the labels; typically, na = 40|V |. We then
insert nr random points of distance r away from any vertices and

2Weighted Voronoi diagrams can be used to make the areas Voronoi cells
proportional to their weight. However, we do not use this approach because
we want the Voronoi cell to also contain a specific shape, e.g., the bounding
box of a label.

artificial points; usually nr is set to between |V | to 40|V |, depend-
ing on the size of the graph. This step is carried out by first forming
a quadtree of the vertices and artificial points, which takes time
O(|V | log |V |), then testing whether a random point is within dis-
tance r of the set of vertices and artificial points. Each test takes
O(log |V |) time, for O(|V | log |V |) time overall. We next compute
a Delaunay triangulation of the points, which can be done in time
O(|V | log |V |) [11]. Next we create the corresponding Voronoi dia-
gram of all points and merge Voronoi cells that belong to the same
cluster. This step requires O(|V |) and thus the overall complexity
of GMap is O(|V | log |V |), with a relatively large coefficient due to
the large number of artificial and random points.

3.2 The map coloring algorithm
In this subsection we consider the problem of assigning good col-
ors to the countries in our maps. The Four Color Theorem states
that only four colors are needed to color any map so that no neigh-
boring countries share the same color. It is implicitly assumed that
each country forms a contiguous region. However, this result is
of limited use to us because countries in our maps are often not
contiguous. For instance, in Fig. 6, a group of North American re-
searchers are placed in a cluster made from three disjoint regions
in light orange color in the southwest corner of the main continent.
In cases where one cluster is represented by several disjoint regions
we must use the same color for all regions to avoid ambiguity. Thus,
four colors (or even five or six) are not enough.

In GMap we start with a coloring scheme from ColorBrewer [6],
which typically has 5 easy to differentiate base colors, and generate
as many colors as the number of countries by blending the base
colors. As a result our color space is linear and discrete. Because of
the blending, any two consecutive colors in the linear array of colors
are similar to each other. When applying these colors to the map,
we want to avoid coloring neighboring countries with such pairs
of colors. With this in mind, we define the country graph, Gc =
{Vc,Ec}, to be the undirected graph where countries are vertices,
and two countries are connected by an edge if they share a non-
trivial boundary. We then consider the problem of assigning colors
to nodes of Gc so that the color distance between nodes that share
an edge is maximized.

More formally, let C be the color space, i.e., a set of colors; let
c : Vc → C be a function that assigns a color to every vertex; and
let wi j ≥ 0 be weights associated with edges {i, j} ∈ Ec. Let d :
C×C→ R be a color distance function. Define the vector of color
distances along edges to be

v(c) = {wi, j d(c(i),c( j)) | {i, j} ∈ Ec}.

Then we are looking for a color function that maximizes this vector
with respect to some cost function. Two natural cost functions are:

max
c∈C

∑
{i, j}∈Ec

wi, j d(c(i),c( j))2 (2-norm)

or

max
c∈C

min
{i, j}∈Ec

wi, j d(c(i),c( j)) (MaxMin)

The weights along the edges can be used to model the undesir-
able effect of two nearby but not connected countries having very
similar colors by making the country graph a complete graph, and
assigning edge weights to be the inverse of the distance between
two countries.

Dillencourt et al. [9] investigated the case where all colors in the
color spectrum are available. They proposed a force-directed model
aimed at selecting |Vc| colors as far apart as possible in the color
space. However in our map coloring problem, for aesthetic reasons,
we are limited to “map-like” colors, and our color space is discrete.



Therefore we model our coloring problem as one of vertex labeling,
where our color space is C = {1,2, . . . , |Vc|}, and the color function
we are looking for is a permutation that maximizes the labeling
differences along the edges. The cost functions we consider are

max
c ∑
{i, j}∈Ec

wi, j(ci− c j)2, (2-norm) (1)

and

max
c

min
{i, j}∈Ec

wi, j|ci− c j|, (MaxMin)

where ci is the i-th element of the vector c, and c is a permutation
of {1,2, . . . , |Vc|}.

While we are not aware of prior work on this particular vertex la-
beling problem, the complementary problem of finding a permuta-
tion that minimizes the labeling differences along the edges is well-
studied. For example, in the context of minimum bandwidth or
wavefront reduction ordering for sparse matrices, it is known that
the problem is NP-hard, and a number of heuristics [16, 21] were
proposed. One such heuristic is to order vertices using the Fiedler
vector. Motivated by this approach, we approximate (1) by

max ∑
{i, j}∈Ec

wi, j(ci− c j)2, subject to ∑
k∈Vc

c2
k = 1 (2)

where c ∈ R|Vc|. This continuous problem is solved when c is the
eigenvector corresponding to the largest eigenvalue of the weighted
Laplacian of the country graph, while the Fiedler vector (the eigen-
vector corresponding to the second smallest eigenvalue) minimizes
the objective function above. Once (2) is solved, we use the order-
ing of the eigenvector as an approximate solution for (1). We call
this algorithm SPECTRAL.

Figure 3: Coloring schemes RANDOM, SPECTRAL, and
SPECTRAL+GREEDY. Each node is colored by the color index
shown as the node label. Edge labels are the absolute difference
of the endpoint labels.

Fig. 3 illustrates three coloring schemes on a 4×4 unweighted
grid graph given 16 colors in the Blue-Yellow spectrum. A ran-
dom assignment of colors, RANDOM, does reasonably well, but
has one edge with a color difference of 2. SPECTRAL performs
better, with the minimum color difference of 4. However there are
still 2 edges with a color difference of only 4. It is easy to see that
SPECTRAL can be improved (e.g., swapping colors 6 and 2 would
improve the measurements according to both cost functions). With
this in mind we propose GREEDY, a greedy refinement algorithm
based on repeatedly swapping pairs of vertices, provided that the
swap improves the coloring scheme according to one of the two
cost functions. Starting from a coloring scheme obtained by SPEC-
TRAL and applying GREEDY often leads to significant improve-
ments.

So far we have been using a simple grid graph to illustrate the
algorithms. The actual country graphs are usually more complex.
Fig. 4 (left) gives the country graph corresponding to the map in
Fig. 6, with color assignment given by SPECTRAL. There are two
edges of color difference 1. Applying GREEDY algorithm guided

by the MaxMin cost function to the result of SPECTRAL gives
Fig. 4 (right). Now the minimum color difference along any edges
is 4, a large improvement. This is indeed the coloring scheme used
to create Fig. 6.

Figure 4: Applying coloring schemes for the country graph corre-
sponding to the map in Fig. 6. Left: SPECTRAL. There are two
edges of color difference 1. Right: SPECTRAL+GREEDY, the small-
est color difference along any edges is now 4. Node labels are the
color index given to the node, and edge label are the absolute differ-
ence of the node color index. Nodes are positioned at the center of
the polygons in Fig. 6.

The GREEDY algorithm has a high computational complexity
as we consider all possible O(|Vc|2) pairs of vertices for poten-
tial swapping. Since recomputing the cost functions can be done
in time proportional to the sum of degrees of the pair on nodes
considered for swapping, the overall complexity of GREEDY is
O(|Vc|2 + |Ec|2). Because the country graph GC is typically much
smaller than the underlying graph G, GREEDY is still quite fast and
all maps in this paper were colored using SPECTRAL+GREEDY.

We note in passing that GREEDY is flexible enough to be used
with any other cost function. For example, the MaxMin cost func-
tion could be modified to measure the distance between two colors
in terms of their Euclidean distance in the RGB or Lab color space,
instead of the index difference.

4 RESULTS

In this section we apply the GMap algorithm to two applications.
In the first application, we use GMap to visualizing collaboration
relations. In the second application, we visualizing the “landscape”
of books as implied by user purchase behavior at Amazon.

4.1 Collaboration Graph

This graph has authors as vertices and collaborations as edges. That
is, there is an edge between two authors if they have collaborated
on a paper. The graph has 509 vertices and 1517 edges. The largest
component has 275 vertices and 784 edges, and thus contains about
54% of all authors. The data comes from the first 10 years of the
Symposium on Graph Drawing, 1994-2004 [10]. We look at the
first eight largest connected components. This graph is cumulative,
in the sense that two authors are connected with an edge if they
have written at least one joint paper in the first ten years of the
symposium. Even when drawn with a high-quality scalable force-
directed algorithm [15] and after applying a node-overlap removal
step, the resulting graph looks more like a hairball than anything
else; see Fig. 5.

On the other hand, the corresponding map, as shown in Fig. 6,
seems much more “readable”. The map shows one continent cor-
responding to the largest connected component and seven islands,
corresponding to the seven largest remaining connected compo-
nents. The continent contains about a dozen “countries” determined
by the collaboration patterns. The size of each label is determined



Figure 5: Graph Drawing author collaboration, 1994-2004.

Figure 6: Collaboration graph drawn by GMap.

Figure 7: Map without interior artificial points.

by the logarithm of the number of publications and the edge thick-
ness is similarly proportional to the number of collaborations. How-
ever, node weights and edge weights are not used in the layout cal-
culations.

From Figure 6, it is easy to see that European authors domi-
nate the main continent. Several well-defined German groups can
be seen on the west and southwest coasts. A largely Italian clus-
ter occupies the center, with an adjacent Spanish peninsula in the
east. The northwest contains a mostly Australasian cluster. Two
North American clusters are to be found in the southeast and in
the southwest, the latter one made up of three distinct components.
A combinatorial geometry cluster forms the northernmost point of
the main continent. Most Canadian researchers can be found in the
central Italian cluster and the Spanish peninsula. Northeast of the
mainland lies a large Japanese island and southeast of the main-
land there is a large Czech island. Northwest of the mainland is a
Crossings Number island.

Figure 7 shows a map generated without adding artificial points
around the labels, which results in more regular boundaries, when
compared to the map in Figure 6. The size of the two maps in
the paper makes it difficult to compare them, but the differences
are easy to see on the screen when the images are zoomed in. We
found that the map on Figure 6 with more European-style borders
was more appealing, but our algorithm can generate maps of both
styles. The map generated without adding random points to define
the outer boundaries is even more noticably un-map-like; see Fig. 8.

Figure 8: Map without outer artificial points.

4.2 BookLand Maps

Many e-commerce websites provide recommendations to allow for
exploration of related items. Traditionally this is done in the form
of a flat list. For example, Amazon typically lists around 5-6 books



Figure 9: Two of the central clusters in BookLand.

under “Customers Who Bought This Item Also Bought”, with a
clickable arrow to allow a customer to see further related items.

Instead of a flat list, which provides a very limited view of the
neighborhood, there have been attempts to convey the underlining
connectivity of the products through graph visualization. For exam-
ple, TouchGraph [3], has an Amazon browser which shows a graph
defined on a small neighborhood surrounding the book of interest.
None of the existing approaches, however, gives a comprehensive
view of the relationship and the clustering structures.

Using our GMap algorithm, we obtained the map in Fig. 1. The
underlying data is obtained with a breadth-first traversal following
Amazon’s “Customers Who Bought This Item Also Bought” links,
starting from the root node, George Orwell’s 1984. Links are fol-
lowed up to a distance of 12 from the root node. We then trim the
graph by keeping only vertices of distance 9 or less from the root
vertex. We further merge nodes that represent the same book, but
with different publishers or different bindings, by matching books
with the same title. As can be seen by the 5 versions of Chinua

Achebe’s Things Fall Apart in the central cluster, we are not always
successful because the titles can vary slightly. The underlying graph
for this map contains 913 vertices and 3410 edges. With an average
degree of nearly eight, peripheral vertices in this map have only a
handful of edges while central vertices have more than 20 immedi-
ate neighbors, reflecting the directed nature of this graph. We next
examine several of the “countries” in the map in more detail.

Americana: Somewhat surprisingly, George Orwell’s 1984
along with Animal Farm ended up in the west corner of a region
populated mostly by American writers. Britain is also represented
by William Golding’s The Lord of the Flies and Aldous Huxley’s
Brave New World along with Anthony Burgess’s Clockwork Or-
ange, which connect the British corner of the region to the main
part dominated by 20th century American classics. Ray Bradbury’s
Fahrenheit 451 and Salinger’s Catcher in the Rye provide a tran-
sition to a variety of well-known novels: Steinbeck’s Grapes of
Wrath and Of Mice and Men, Ernest Hemingway’s For Whom the
Bell Tolls and The Old Man and the Sea, F. Scot Fitzgerald’s Great



Table 1: CPU time (in seconds) for the GMap algorithm.

Graph |V| ncluster npoly CPU
Fig. 6 340 19 27 0.26
Fig. 1 913 26 95 0.95

Movie map [2] 1981 41 108 2.65

Gatsby, Harper Lee’s To Kill a Mockingbird and Ralph Ellison’s
Invisible Man, Joseph Heller’s Catch 22, Kurt Vonnegut’s Slaugh-
terhouse Five, Ken Kesey’s One Flew Over a Cuckoo’s Nest. Some
19th century novels can also be found here: Nathaniel Hawthorne’s
Scarlet Letter and Mark Twain’s Adventures of Huckleberry Finn.

Victoriana: To the southwest of Americana is a region domi-
nated by Dickens, Austen and Bronte novels. Starting with A Tale
of Two Cities, Great Expectations and Oliver Twist in the north and
going through Jane Eyre, Pride and Prejudice, Sense and Sensibil-
ity and Wuthering Heights in the middle, the region ends with more
Dickens’ books in the southwest (The Pickwick Papers) and George
Elliot novels in the southeast (Middlemarch).

Russiana: To the north of Americana lies one of the largest
countries in BookLand, dominated by Russian literature and his-
tory. The core contains classic novels by Dostoyevsky (Crime and
Punishment, The Brothers Karamazov), Tolstoy (War and Peace,
Anna Karenina), and Solzhenitsyn (The Gulag Archipelago, Can-
cer Ward). In the northern part of the region is a collection of books
about Russia and Russian history: Stalin: The Court of the Red
Tsar, Khrushchev: The Man and His Era and Potemkin: Cather-
ine the Great’s Imperial Partner. In the west there is a cluster of
Albert Camus books (The Stranger, The Plague, The Fall), all well
connected with the Russian classics.

Graecoromania: Another large region to the west of Ameri-
cana contains a diverse collection of Graeco-Roman books. His-
tory books by Thucydides, Plutarch, Livy, Suetonius, Salust share
the region with philosophy by St. Augustine, Plato, Socrates, and
Aristotle. Greek theater is represented by Aristophanes, Aeschylus,
Euripides, Sophocles and epic poetry by Homer and Virgil.

Shakespearea: Very centrally located, neighboring Victoriana,
Americana, Russiana, and Graecoromania lies the land of Shake-
speare. It is not surprising that nearly all tragedies, comedies
and histories are present but it is interesting to observe what non-
Shakespeare books are in this region: Chaucer’s Canterbury Tales,
Tennyson’s Idyls of the King, Dante’s Divine Comedy, One Thou-
sand and One Arabian Nights, Beowulf and The Adventures of
Robin Hood.

4.3 Running Time

In Table 1, we show the running times of GMap on a few input
graphs. We only report the CPU time for mapping, not the color-
ing, since unlike the mapping algorithm which is implemented in
C efficiently, the coloring part of our algorithm is implemented in
Mathematica, and is not optimized. In addition, the amount of time
spent on coloring is proportional to the number of clusters, which
is much smaller than the size of the graph.

The two maps in this paper are both generated in less than one
second. A larger map of the popular movies on NetFlix (not shown
in this paper but is available at [2]), mapping takes 2.65 seconds. As
a reference point, GMap generated a map for a graph with 440,000
nodes in four minutes. All experiments were carried out using a
single thread on a Linux machine with 16 Intel Xeon processors,
each with 4 cores running at 2.4 GHz, with 16 GB memory per
processor.

4.4 Map defragmentation
While the force-directed algorithm tends to work well with modu-
larity based clustering, in the sense that vertices in the same cluster
often form a contiguous region, this is not always the case.

There are two cases for a possible mismatch of these two algo-
rithms. In the first case, the connectivity information necessitates
discontiguity if connected vertices are to be placed closeby. For
example, in Figure 5, the light orange cluster of researchers from
AT&T in the SW is separated from a region NE of the AT&T clus-
ter, with one research “North” who is from the same organization.
The reason is that North co-authored papers with many non-AT&T
authors and if he is to be placed with the rest of the AT&T group
this would lead to longer edges to the non-AT&T authors.

In the second case, the problem arises in the overlap removal
stage. Often after force-directed embedding there are many over-
lapping vertex labels and an overlap-removal algorithm is used to
remove then. As a result vertices can move sufficiently far from
their original positions to break an initially contiguous region. In
many cases, such as the maps in this paper, a small degree of dis-
contiguity does not hinder the overall visualization. However, a
high degree of discontiguity can make the map too fragmented, ne-
cessiating a defragmentation step.

Table 1 shows the number of clusters, and the number of poly-
gons, for the two maps in Figures 6 and 1. If the number of poly-
gons is the same as the number of clusters, then all vertices in a
given cluster are also in the same polygon, and each country is con-
tiguous. In general there are more polygons than the number of
clusters and the ratio gives us a measure of how fragmented the
maps are.

If defragmentation is needed, such a step can be performed after
the clustering and before the embedding steps of GMap. Specifi-
cally, given the clustering, we can modify the underlying graph with
the goal of generating the embedding in which vertices in the same
cluster are placed closer together. Instead of a traditional force-
directed embedding step on the input graph, we modify the edge
weights as follows: edge lengths of intra-cluster edges are set to
1 and intra-cluster edges to a number α > 1. The embedding is
obtained using a stress majorization algorithm [13] to give an em-
bedding that takes into account the clustering information.

Figure 10 shows the result of this defragmentation algorithm ap-
plied to Figure 5 with α = 50. Compared with force directed em-
bedding which gives 27 polygons (see Table 1), now there are only
19 polygons, and every country is contiguous. However this conti-
guity comes at the expense of some long edges.

In applying our GMap algorithm to many graphs from different
domains, we found that for graphs of up to a few thousand vertices
fragmentation is not a serious problem. All the maps in this paper,
with the exception of Figure 10, are generated without defragmen-
tation.

5 CONCLUSION AND FUTURE WORK

In this paper we described GMap, an efficient algorithm for drawing
graphs as geographic maps. Using a number of structurally differ-
ent graphs and graphs of different sizes, we illustrated the aesthetic
appeal of the map metaphor for displaying underlying structures
and clustering information. While the approach of visualizing re-
lational information with the aid of geographical maps is general,
here we showed one particular implementation where a scalable
force-directed layout algorithm was coupled with a modularity-
based clustering algorithm. Exploring different combinations of
layout and clustering algorithms is one clear direction for future
work.

Informal studies of the way users interact with traditional graph
drawings and maps of the same data seem to indicate different in-
teraction patterns. Specifically, users are more likely to stop by and
examine a poster of a map that the exact same data drawn as a graph.



Figure 10: Author collaboration graph for the GD conference, 1994-
2004, using the defragmentation algorithm.

Moreover, users tend to spend significantly longer time studying the
maps, and they find non-trivial structural information without any
prompting. For example, several viewers of BookLand observed
that the “gateway” to Fringistan is Ayn Rand’s Atlas Shrugged. We
plan to perform formal user studies of the interaction with graphs
and maps.

There are practical and theoretical obstacles to obtaining “per-
fect” maps, that is, maps that do not omit or distort the under-
lying information. However, a similar drawback plagues any 2-
dimensional representation of data that is not 2-dimensional, in-
cluding the standard geographical maps of Earth. Clearly, in dense
graphs it is impossible to realize all graph adjacencies as neighbor-
ing countries. For example, with 8 countries we can have at most 18
pairwise neighbors (from Euler’s formula for planar graphs), pos-
sibly forming some unavoidable “false negative associations”. It is
easier to deal with “false positive associations”. Such an associ-
ation between two countries can be formed if they are physically
adjacent in the map but there is no strong relationship between the
objects in the two countries. One way to alleviate such a problem
is to add “rivers” or “fords” along such borders near the coasts and
“mountain ranges” inland, to convey that the two sides are close but
not strongly connected.

Finally, while our algorithm is efficient and can handle large
graphs, the resulting maps look best on large wall-sized posters and
display walls. To make such maps more useful for exploration of
large data sets on commonly available media, we plan to develop an
interactive interface that can zoom and pan easily on the maps. We
are exploring the combination of GMap and a map service, such as
OpenLayer (http://openlayers.org), as an effective tool
for displaying relations among a large collection of objects, such as
database search results. A prototype is available at http://www.
research.att.com/˜yifanhu/MAPS/imap.html.
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