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Figure 1: Showing all points of a large and time-dependentdata set at once usually results in expensive (non-interactive) rendering, high storage 
requirement, and heavy occlusion. LCCVD allows to drastically reduce the amount of points very quickly using a GPU-friendly algorithm which 
preserves the basic structure of the data set. 

ABSTRACT 

Molecular dynamics is a widely used simul at ion technique to in­
vesti ga te material properties and structural changes under ex ternal 
forces. The avai lability of more powerful clusters and algorithms 
conti nues to increase the spati al and temporal ex ten ts of the simul a­
tion domain. T his poses a particul ar challenge for the visuali zation 
of the underlying processes which might consist of millions of par­
tic les and thousands of time steps. Some app lication domains have 
deve loped special visual metaphors to onl y represent the relevant 
information of such data sets but these approaches typically require 
detailed domain knowledge that might not always be avail able or 
applicable. 

We propose a genera l technique that replaces the huge amount of 
simulated particles by a smaller set o f representatives that are used 
for the visuali zation instead. The representatives capture the char­
acteristi cs of the underl ying partic le density and exhi bit coherency 
over time. We introd uce loose capac ity-constrained Voronoi di a­
grams fo r the generation of these representati ves by means of a 
GPU-friendly, pm'a llel algo ri thm. This way we achieve visuali za­
tions that re nect the particle di stributi on and geometri c structure of 
the original data very faith fu ll y. We evaluate our approach using 
rea l-world data sets from the app lication do mains of material sc i­
ence, thermodynamics and dynamical systems theory. 

Keywords: particle-based visuali zation, molecular dynamics, 
clustering, time-dependent data. 

Index Terms: Computer Grap hics [T.3. I]: Parallel process ing 
Computer Graphics [T.3.8]: Applications 

INTRODUCTION 

Many app licati ons in visuali zation and simulation are based on par­
ticles. Molecular dynamics (MD) is a prominent example: it uses 
particles to represent individual atoms or molecules, and models 
their in teraction wi th each other. This a llows to study effects on 
the micro scale, such as thermodynamical behav ior of the nucle­
ation during phase transi ti on, or the atomistic behav ior of so lid ma-

terial under externa l forces, e.g. deformat ion and destruction of a 
block of metal du ring laser ablation. A realisti c si mul ation typi ­
cally requires a huge amount of parti cles and many ti me steps to 
full y capture the underlying processes. In such a case, data size 
quick ly becomes problematic for visuali zation: a huge number of 
particles, often rendered as spheres, can resul t in high occl usion 
and poor perceptibility due to an overloaded image. While the sim­
ulation and a quantitative analysis may require the full data set, a 
qualitative visual evaluation usually benents fro lll a clearer repre­
sentation using a reduced nUlllber of graphical primi tives. This is 
especia ll y the case fo r the visual analys is of tillle-depe ndent data. 
As a consequence, some application domains have created special 
visual metaphors (e.g. the cartoon representation for pro teins [23]) 
wh ich abstracts from the indiv idual atoms. The ex traction of rel­
evant features, howcver, typ ica lly requires detai led knowledge of 
domain experts, and may require manual parameter tuning. 

In order to generate meaningful visuali zations of arb itrary and 
large time-dependent particle data sets, we propose to generate a 
set of representa ti ves fro m such large co llections of parti cles merely 
by analyzing the data set itse lf. Our representatives reproduce the 
density di stribution of the underl yi ng input parti cles very fa ithfull y 
and thus the characteri stic struc ture of the data. Our approach 
util izes loose capacity constraints based on capaci ty-constrained 
Voronoi diagraills (CCVDs) of the li nite space constitu ted by the 
parti cles. Loosening the capacity constraint a llows the centroids of 
the Voronoi diagrams to adapt well to the incoming data set. 

In parti cular, ou r paper makes the fo llowi ng contributions: 

• Loose capac ity-constrained Voronoi d iagrams (LCCVD) 
which allow a contro ll ab le ass ignment of particles to repre­
sentati ves. 

• A massive ly parallel algori thm for computing the t ime critical 
operations ofCCVDs and LCCVDs on the GPU. 

• A qua lity metri c which captures how well part icles are cov­
ered by represen tati ves. 

The remainder of this paper is structu red as fo llows: In Sec. 2 
we discuss re lated work and CCVDs. Sec. 3 gives a description of 
our LCCVD-based method. Sec. 4 explains the parallel algorith m 
fo r the perfo rmance-cri tical part of our method. Sec. 5 in troduces 
the quali ty metric, which is used in Sec. 6 together wi th quali tative 
visual analys is to demonstrate the effecti veness of our approach. 
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2 RELATED WORK 

Capa city-Constrained Voronoi Diagra ms Capacity-constra ined 
Vuronui ui agrams, brie fl y CCVOs, have b~en u~sl: rib l:u by Au­
renhammer et al. [2]. CCVDs are Voronoi diagrams where each 
region's generator po in t- typica lly ca lled a site-has a predeter­
mined capacity which can be understood as the area of a site's 
Voronoi region weighted with an underl ying density function. In 
discrete spaces, the density function can be represented by a fin ite 
set of poi nts which is analogue to the set of parti cles in our app li ­
cation scenario. An algorithm fo r the computa tion of CCVDs has 
been presented by Balzer et al. [4, 5] who were especially inter­
es ted in the case where each site co incides with the centroid of its 
Voronoi region (centro idal CCVD), and where each site has equal 
capac ity. For di screte spaces, thi s means that each site is ass igned 
the sa l11 e number of points from the unde rlying space. To maintain 
th is strict capacity constraint, Balzer et al. presented an iterative op­
timization technique which swaps the ass ignment of points to sites 
based on a spec ifi ed di stance fun c ti on. such that the sum of squared 
distances from sites to their points converges to a local minimum . 
This swapping operation is perforl11ed by sequentia lly processing 
each cOl11bination of site pairs which, however, yields an algorithm 
of quadrati c cOl11plex ity. 

Clustering Algorithms Our approach bears similarities to some 
l11et hods fro l11 the fi eld of clustering although the goa ls of both ap­
proaches di ffe r signi ficantly. Applied to our contex t of spatial point 
data sets, clustering means the segmentation of a set o f points into 
subsets (c lusters) according to prox imity. Usually, there are no 
guaranteed constraints restri cting cluster sizes so that an arbitrary 
number of points could be represented by a siilgle centro id. T his 
means that the original point data set is not guaranteed to be fai th­
full y represented by these centroids at all. For a data set consisting 
of groups with varying numbers of poi nts (s imilar to Fig. 2), a stan­
dard clustering would detect one cluster for each of these groups 
and each cluster would simply be represented by its centroid . T his 
way, information about size and shape of the point groups would be 
lost. 

A comprehensive overview on clustering techniques is given by 
Kolatch [ 19]. The clustering algorithm mos t related to our proposed 
technique is the widely used k- means [1 3] algorithm. S tarting with 
an initial seed of cluster centroids (s ites), k- means iterati vely as­
signs points to its nearest cluster centroid , and then cOl11putes a 
new cent ro id fo r each c luster by computing the mean pos ition of 
a ll poin ts . The results strongly depend on the initial seeds. More 
importan tly, the number of points ass igned to each cl uster may di f­
fer significan tl y leading to centro id confi gurations that do not rep­
resent the underlying point density appropriate ly (Fig.2(a». There 
have been attempts to balance k- means [6, 7, 9], but the il11 posed 
restri ctions either cannot be guaranteed or cannot be chosen freely. 
Prc lil11 inary fix in g the num ber of sites, however, a t leas t de termines 
the average number of points assigned to each site. 

C lutter Reduction Techniques Our method uses a set of rep­
resentati ves replacing the orig inal point data set and can thus be 
considered a clutter reduction technique in the sense of E lli s and 
Dix [1 4]. Utili zing their taxono my, our method can be catego­
rized as an appearance-o riented c lustering technique where c lus­
tering describes "a diffe rent representa tion of the group o f individ­
ual lines or points." An alternati ve techn iq ue is based on stati sti ca l 
sampling [II ] where represcntatives are simply picked randomly 
among the full set of points. We will compare our resul ts to thi s 
approach in the eva luation section. Tn contrast, more general reduc­
tion techniques [1 8, 24] or ap proaches aim ing at surface reconstruc­
tion [ 12,26] are not geared towards density function adaptation. 

Moleculal' Dynamics Visualiza tion There ex ists a grea t va ri ety 
of visuali za tion tools fo r parti cle data sets which differ in focus, per-

fo nnance, and fea tures. The most wide-spread tools for MD visu­
ali zation are Chimera [ID] , PyMOL [22], and VMD [27]. Generic 
visuali zation packages, such as AVS [3] or Ami ra [I] , also pro­
vide special modules for molecular vi suali zation. However, these 
tools work in the contex t of bio-chemistry and often lack support 
fo r direct particle-based visualization (e.g. w ith spheres) beyond 
several tens of thousands of atoms. For larger data sets, they apply 
visual metaphors from the app lication domain [23] with less graph­
ica l pri mitives for faster rendering and better perceptibi Iity. 

Beyond the context of bio-chemistry, visualizations have to re­
vert to particle-based rendering, which has been recently optimized 
fo r data sets with opaque spheri cal particles up to tens of mill ions of 
particles [1 6], and for transparent data sets from astrono my even up 
to billions of particles using level-of-detail techniques [1 5]. How­
ever, these visualizations still suffe r from cluttered images and lack 
feas ible aid in analyzing time-dependent data. Thi s is us ually reme­
died by ap plying feature extrac ti on and tracking [28] typically tai­
lorcd to vc ry specific applications. such as schematic views for nu­
cleation processes [ 17], mi xing layers in hydrodynamics [2 1], or 
extraction and visuali zation of so lvent molecules moving paths in 
prox imi ty of acti ve sizes of proteins [8]. Thus, they cannot be ap­
plied directl y to arbitrary particle data. 

3 LCCVD 

Before introducing our method, consider the case shown in Fig. 2 
which demonstrates the shortcomings of existing methods for our 
application scenario. Here, an inhomogeneous set o f particles 
(poin.ts from hereon) is to be represented by a smaller set of repre­
sentati ves (s ites). Applying stri ct capacity constraints as pro posed 
by Balzer e t a l. [4, 5] may result in sites being located inappropri­
ately in-between accumulations of points, making them poor rep­
resentatives fo r their sets of associated points. K-means cluste ri ng 
does not share thi s problem but instead does not allow to draw any 
conclusions about the underl ying poi nt density. This is e mphas ized 
by the closeup images where the top groups of points are repre­
sented by either too few or too many sites. 

We propose loose capaci ty-constrained Voronoi diagrams (LC­
CVD). Loose capac ity constraints mean that the number of points 
ass igned to each site is no t fixed, but may reside within an inter­
val [ClI/ in ,ClI/ax] . In the fo llowing, thi s is also given in terms of the 
capacity looseness I which translates to the interval by cminill/ax = 

max (Ill ' ( I ± l) , I), III denoting the average number o f poin ts per 
site. A typical value is I = D.2 such that the capacity interva l a llows 
a 2D% dev iation from m. As such, LCCVD can be seen as a hy­
brid between the CCVD-based method and the k- means approach, 
a llowing the adjustment of the constraints. 

In the remainder of thi s secti on, we di scuss the bas ic approach 
behind LCCVD (see Fig. 3). First, we determ ine an init ial ass ign­
ment of points to sites (Sec. 3. 1). We then exchange poi nts between 
sites until convergence (Sec. 3.2). When it is acceptable to spend 
more ti me on the computati on to achieve better results, we perform 
a step ca lled temporary emin relaxation (Sec. 3.3) which temporaril y 
ignores the minimum constraint to a llow an even better adaptation 
of si tes to points (Fig. 2(d». This is fo llowed by the next phase of 
point exchange. For time-dependent data sets, the whole procedure 
is perfo rmed for each time step, using the results from the previous 
ti me step as ini tia li za tion to exploit coherency. 

3,1 Site Initialization 

We use the input point set to determi ne the initial site pos itions. 
For s tatic data sets (and fo r the fi rst step of a time-dependent se­
ries), si tes are initia ll y placed at the locations of randomly chosen 
points . To fu lfi ll its minimum capacity constrain t, each site then 
searches fo r the CII/in nearest poi nts that have not yet been ass igned 
to another si te . The remain ing po in ts are then ass igned to the clos­
es t site which has not yet reached its maxi mum capacity constrai nt 
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Figure 2: Two-dimensional point dataset represented by sites using LCCVD. Sites are depicted by black circles while points are shown as co lored 
dots. Different co lors depict that points belong to different sites. 

ell/ax. The necessary nearest-neighbor queri es are effic iently per­
formed using a kD-tree, removing points which have been assigned 
to sites, or sites which have reached emax, respectively. For subse­
quent steps of a time-dependent data set, the assignments of points 
to sites are passed on from the previous time step, and sites are 
updated usi ng the mean position of the newly assigned points. 

3.2 Point Exchange using Loose Capacity Constraints 

During the point exchange phase, every site exchanges points with 
a ll other sites until convergence. Tn the strict CCVD-based method 
this is accomplished by pairwise testing sites for potential point 
swaps: two points are swapped between a pair of sites only if the 
sum of squared distances between points and sites decreases. A 
site is relocated to the new mean position of its points at the end 
of each swapping process. Using our loose capacity constraints, a 
point can also simply be re-ass igned without substituting it with an­
other point as long as the constraint interval [elllin , clllax ] of a site is 
not vio lated. Thi s way we allow points to "switch" to better sites 
where the stri ct CCVD-method would have intervened. This user­
dcfined capac ity interva l allows to span the whol e ran gc from thc 
pure distance-based k-means approach (C,nin = 0 and elllax = 00) to 
the strict capacity-constrained approach (elllin = elllax ) ' 

The point exchange phase is by far the most expensive part of 
LCCVD. To thi s end we introduce an optimized parallel algorithm 
suitable for GPUs in Sec. 4. We discuss which pairs of sites to con­
sider for the swappi ng operations (Sec. 4.1 & 4.2), and how to de­
termine point swapping pairs (Sec. 4.3) such that the requirements 
of an cf'ficient GPU impl ementation arc mel. 

-+ Site Initialization (Sec. 3.1) 

Q 
Update Points (Sec. 3.1) 

Temp. <;"In Relaxation (Sec. 3.3) 

Yes Subsequent No 
Time Step? No 

Figure 3: Computation steps and control flow of LCCVD. 

Note that data sets from MD simulations usually e mploy peri­
odic boundary conditions which have to be considered. LCCVD 
handles periodic boundary conditions when calculating distances 
or centroids by virtually shifting the data set's bounding box such 
that the currently considered particle is in its center. Subsequent 
calculations can then be done in a non-periodic manner. 

3.3 TemporaryMinimum Constraint Relaxation 

One problem from CCVD is partly inherited by our LCCVD ap­
proach: sites may get positioned between adjacent point clouds 
(Fig. 2(c)), making this site a bad representative. This is due to the 
minimum constraint Cnlill which can prevent that points are removed 
from sites between two such c louds. Points cannot be swapped to 
another site either, since other points are even further away. We 
denote these problematic sites bad sites in the following. 

We found that temporarily relaxing the minimum constraint for 
bad sites large ly resolves thi s problem which is why we interpose 
an optional correction step after each exchange phase (cf. Fig. 3). 
During this correction step, we perform the following substeps : 

I . Identify bad sites: A site s is considered a bad site when it is 
at its minimum capacity and its farthest point p is much closer 
to any other site sOlher: ISolher - pills - pi < z. In our exper­
iments across all our data sets , Z = 0.85 proved to reliab ly 
detec t bad sites with only a small amount of fa lse positives. 

2. Assign points of bad site to closest sites: Release points to 
closer sites while constantly updating the si te position (tem­
porarily violating Cillill for the bad site) . After thi s step, the 
bad site only represents the points it is closest to. 

3. Bad site takes on points from nearby sites: Identify the 
nearest sites and insert them into a priority queue based on 
their di stance to the bad site. Take the firs t s ite rromthe queue 
and- as long as its minimum constraint is not violated­
reass ign poin ts from it to the bad site in the order of prox­
imity. Proceed with the next site from the queue until the bad 
site has reached its minimum capacity. 

We initiate thi s correction step after each exchange phase (cf. 
Fig. 3), but no more than five times per time step (thi s proved to 
be a good tradeo lT between speed and quality). Thi s avoids infinite 
loops since it is not always possible to resolve a bad si te without 
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Figure 4: Overview on the LCCVD parallel pOint exchange. Selected 
connections between the three steps are indicated by dashed lines. 

permanently violating Clllin' Overall , the temporary relaxation of 
the minimum constraint allows to reduce the number of bad sites 
wi thout losing the fl ex ibility of loose capacity cons train ts. 

4 LCCVD PARALLEL POINT EXCHANGE 

Exchanging points between sites is the computationally most de­
manding part of our method and thus its parallelization is crucial for 
the overall performance. One key observation is that point swaps 
occur primarily between neighboring sites. This allows us to restrict 
swapping operations to groups of adjacent sites (Sec. 4.1). These 
groups can then be processed in parallel by different multiproces­
sors on a GPU (cf. Fig. 4). To ensure that close sites which do not 
belong to the same group also get the chance to exchange points, 
we regroup sites over time- still grouping nearby sites- such that 
all sites are able to at least once exchange points with all sites in 
their proximity. Swapping with more distant sites occu rs indirectly 
by successively handing over points from site to site. However, not 
only full site groups, but also the swapping of points between si tes 
within a site group is parallelized in order to fully utilize a GPU 
(Sec. 4.2). For this purpose, we employ a sorting network that de­
termines the optimal ordering of swapping operations between sites 
which are then processed by separate GPU threads on a stream ing 
multiprocessor (Sec. 4.3). 

4.1 Partitioning Sites into Groups 

To determine groups of adjacent sites we enumerate the sites such 
that the enumeration indi ces renec ttheir spatial proximity. For thi s 
purpose, we employ a kD-tree based on the set of input points P, 
because it roughly reflects the points spatial distribution: in densely 
populated regions, kD-tree nodes (i. e. the centroids of their bound­
ing boxes) are close, in less dense regions they are farther apart. To 
determine the index i of a site s E S, we search for its enclosing kD­
tree node, by traversing the tree (starting from the root with i = 0): 
whenever we descend to the left chi ld , i remains unchanged, when­
ever we descend to the ri ght child, i is increased by p . 2- " where h 
denotes the level of the tree (h = 0 for the root node). The traversa l 
is stopped as soon as we reach a node that contains 111 = IPI IISI 
points or less. Subsequently, sites are sorted according to i using 
the in-place GPU radix sorting algorithm of Satish et al. [25] and 
fin all y partitioned intu groups or consecutive sites. 

In order to avoid that sites always belong to the same group, we 
displace the kD-tree splitting planes in each iteration by apply ing 
an offset of a certain direction and magnitude. For the di splace­
ment directions, we alternate between the main axia l directions and 
the diagonal directions, while the displacement magnitude for each 
site- according to our experiments- shou ld be roughly half the ex­
tent of the site group 's bounding box (as determined without any 
displ acements). Since it is impractical to displace the whole tree 
with all different group extents along all directions, we conso lidate 
similar di splacement magnitudes. 

for n in sortin gNetworkPasses : 
(s it eO, site l) = swappingNetwork(n , threadld) 
for pointO, pointl in sitei'oint sO, sit ePo int s I : 

II select poillt swappillg ca lldidat es 
weightO = di st (pointO, sit eO) di st(pointO, s it e l ) 
weight I = di st(pointl, sit e l ) - di st(pointl , s it eO) 
update «111axWeightO, 111axPointO), (weightO , pointO)) 
update «111axWeightl , 111axPointl) , (weightl , pointl)) 
II tak e Iree s lots ill stead oI bad ca lldidates 
if maxWeightO < 0 && freeS lotAva il ab le(s it ePoint sO) : 

111axWeightO = 0 
pointO = getFreeS lol(sitePo int sO) 

end if 
if maxWeightl < 0 && freeSlotAvailab le(sitePointsl): 

111axWeighti = 0 
pointt = getFreeS lot( sitePoint s I) 

end if 
II swap poillts iI swappillg cO llditioll is lIlet 
if rnaxWeightO + maxWeightl > 0: 

swap 111axPointO and max Point I 
rnaxWeightO = maxWeightl 
update sit e positi ons 

e lse 
fi II fre e s lots ahead of free slot index when required 

end if 
end for 
(synchronize threads) 

end for 

Listing 1: Pseudo-code for the LCCVD swapping kernel. The dis­
tance of a free slot to any site is defined to be zero. 

4.2 Swapping Network Construction 

While site groups are di stributed over the streaming multiproces­
sors (SM) of a GPU, the swapping operations between sites (within 
a group) are executed in parallel by each SM. Prior to the swapping 
algorithm, we create a swappi ng network that determines which 
pairs of sites should be processed by a single GPU thread. The net­
work schedules which site pairs are to be processed in parallel, and 
which are to be processed success ively. It needs to ensure that no 
site is processed in more than one thread at a time to avoid read­
write conl1 icts (or ex pensive atomic operati ons). Maximi zing the 
utili zation of threads by distributing pairs as even ly as possible is 
yet another goa l. In principle all pairs of sites would have to be 
considered, but we can signil"i cantly prune the se t of pairs before­
hand by excluding sites which are guaranteed not to swap points 
according to the following criteria: 

I . Bounding Sphere: The distance between two sites is larger 
than the sum of the di stances to their farthermost points. 

2. Stability: Both sites have not exchanged points for N itera­
tions where N denotes the number of displacement directions 
times the number of displacement magnitude groups. 

Thc bOLinuing spherc criterion is parti cularly benefi cial whcn sites 
are roughl y at their fin al position but not yet stable. The stab ility 
criterion has a stTong impact during the fin al steps of the optimi za­
tion when many sites have already reached stable positions. 

4.3 Swapping Algorithm 

In our GPU implementation , points are stored in an array with CI//t/x 

elements or slots. Slots are placeholders for points from the data 
set such that each site can have at most C I//t/.\' points. Some of these 
slots are free slots in the case that the number of points is smaller 
than Clll t/.\' . Free slots can be used to re-assign a point to another site 
without the requirement to take another point in return. In order to 
determine which points to swap between a pair of sites, the original 



CCVD-based method [4,5] uses a max-heap data structure. Since 
thi s is imprac ti ca l for GPU impl ementations, our a lgorithm on ly 
keeps track of the point with the largest squared di stance to its site. 
Listing I g ives pseudo-code for our swapping kernel. 

Initially, all points are located at the beginning of the array while 
free s lo ts are located at the end. T he free slot index indicates the 
s lot from which no points are stored in the remaining array. A site 
is ab le to trade free slots for points as long as the free slot index does 
not po int to the end of the array. When a point is exchanged for a 
free s lot, the free s lot is stored in the former location of the point. 
T hcsc frcc slots form holcs and arc fi xcd thc ncxt til1lc thc algorithl1l 
ite rates over the array: e ither the free slot forming the hole is used 
to sto re a point of another site, or it is swapped interna lly with the 
poi nt just before the current free slot index. The free s lot index is 
subsequently decrel1lenteduntil it l1l arks the first free s lot. 

5 POINT DISTRIBUTION PRESERVATION QUALITY METRIC 

For the numeri ca l comparison between different methods for gener­
ating representati ves, we propo e a metri c that captures the quality 
of the representation of a set of points P by a set of sites S. rt is in­
depe ndent of any l1lethod-spec ifi c information and operates so lely 
on the sets P and S, i.e. without additional knowledge (e.g. as­
signments of points to s ites). As opposed to conventional density 
estimation and subsequent distance calculation , it is simple and fast 
to compute, and directly determines the points that each si te covers. 
Thi s is critica l for analysis and code debugging purposes. 

One basic assumption is that the set of sites offers a good rep­
resentation for the ' set of points if the ir di stribution proportionally 
foll ows the di stribution of the points, i.e. each site should roughly 
reprcsent an equal amount of points. Since lSI sites have to repre­
sent IPI points, each site should represent an average III = IPI IISI 
points. This is a lso reasonable from the user's point of view who 
expects each representative to be of equal importance. Another as­
sumption is that sites are good representatives for points in their 
prox imity, and less so for more di stant points. These assump tions 
lead to the following metric : a s ite on ly covers (i .e. represents) a 
point if it is amongst its Ill-nearest points. How well it is covered is 
determined by means of its di stance to the s ite. If it is inside a cer­
ta in radius of importance, it counts as fully covered. Beyond thi s 
radius, the influence of the site dec reases quadrati ca ll y, such that 
points that are farth er away are on ly s lightly covered by the site. 

Note that a metri c based on these two assul1lptions alone is 
punishing inappropri ate s ite positi ons- either directly or indirectl y. 
When a certa in subset of points is represented by too few sites (as 
with the k-means example in F ig. 2(a», the coverage va lue III wi ll 
lead to some points not being covered at a ll. On the other hand , 
when a certain subset of points is represented by too many si tes, the 
punishment occurs indirectly as there will be a severe lack of si tes 
in other reg ions. Tn addition , bad sites (Sec. 3.3, Fig. 2(b) and (c» 
are onl y ab le to exert a sl1lali influcnce on their surrounding poi nts 
as most of these wi ll be located outside the site's radius. 

We can subsume these assumptions from the perspecti ve of a 
single point p by compu ting its coverage qua lity q" as: 

q" = min (L I 2' I), with r = "V I in 3D. 
SEN(p,S) (Ip - sllr) 4V2ISI 

N(p,S) denotes all sites which have p as one of their III nearest 
points. The radius r is deri ved from the solution of ci rc le pack­
ing [20] such that each s ite covers as much space as possible with­
out yie lding overlapping spheres. [n o rder to approximately adj ust 
to the bounding box domain , r is sca led with the average side leng th 
II of the bounding box volume enclos ing all points. 

The total quality q is g iven by a normali zed sum: 

I 
q = TPT L qp. 

"EWi 

Sites III Compo Time Norm. Radius a 
Constant [5J our [5J ollr 
1024 .1)% 237.95 129.75 0.7628 0.7 543 
2048 ·",,,, 45 1.9s 152.3s 0.7481 0.7451 
4096 ,,,,,,, 991. 1s 175.65 0.7470 0.7454 
8 192 "0'1(, 24 13.35 24 1.65 0.7455 0 .7588 

16384 "')(, 636 1.85 525.75 0.7367 0.7382 
8 192 .", 83 19. 15 1258.0s 0.7576 0.7588 

24576 I."" 6720.45 125.35 0.7072 0.7035 

Sites III COlllp. Tillie Cap. Error 8" 
p [5 J our [5J Our 

1024 ,,,,,, 214.65 23 1.3s 0.00349 0 .00346 
2048 ,(>'16 421.9s 235.25 0.0029 1 0 .003 18 
4096 ">Ie. 876.6s 338.4s 0 .00263 0.00304 
8 192 , ,,,,, I 927.0s 542.45 0 .00245 0 .00259 

16384 ,,,,,,, 49 11.75 857.35 0.00239 0.00246 
8192 'I'" 6543 .7s 2836.55 0.00204 0.00220 

24576 1.'0" 2734.5s 158.7s 0.00333 0.00327 

Ta ble 1: Computation times and quality metrics for varying numbe rs 
of sites and points pe r site 11/ using a constant and a non-constant 
two-dime nsional dens ity function . All results were obtained by av­
eraging runs from 10 sets of s ites obtained via rejection sampling. 

Note that q" ranges from 0 (unrepresented by surrounding sites) 
to I (fully covered). A site complete ly covers a point in its radius r, 
whi le its inlluence quadrati ca lly decreases beyund thaI. Full cuver­
age of a point may still be achieved through other adjacent sites. 

6 E VALUATION 

This section presents the evaluation of our approach in different sce­
narios. First, we compare the performance of our method fo r com­
puting strict CCVDs to the ori ginal CPU-based method by Balzer 
et a l. [4, 5] to show the advantages of our para ll e l algorithm . We 
then present LCCVD results, including comments from application 
domain experts, for real-world data sets using 3D mo lecular dy­
namics si mul ation and fl ow data. All measurements were done us­
ing a NVTD[A GTX 480 and an Intel Core i7. The partitioning 
of sites into groups and the swapping algorithm were imple mented 
in CUDA using a block size of 128 threads and a g roup size of 128 
sites. The remaining computational steps ofLCCVD were executed 
on the CPU using OpenMP. 

6.1 CCVD of 2D Point Distributions 

Tn their original work, Balzer et a l. [5] generated initial 20 
point data sets by rejection sampling a g iven density function. 
One densi ty functi on was simply a constant, while an exemplary 

non-constant density function was chosen as p = e( - 20-,' - 20>") + 
0. 2sin2 (nx)s in2 (ny). Table I li sts timings and quality results fo r 
the quality metrics lIormalized radill s a [20] which should be 
around 0.75 , and capacity error Oc [5] which should be c lose to 
zero . Both metrics underline that our improved para lle l a lgorithm 
does not sacrifi ce the quality o r the resulting site di stributi ons. 

As expec ted, our paralle l approach becomes more and more ben­
eficia l as the number ur sites increases. It dues no t s luw duwn as 
drasti ca ll y as the original implementation for large numbers of sites. 
This is mainly due to the fact that the higher utili zation of the GPU 
cushions the increased computation costs (see Sec. 6.2 fo r a detailed 
di scuss ion). Even g reater impact can be observed fo r the number 
of points per site Ill: fo r small III the parallel nature of our approach 
shows its strength much more c lea rl y and we achieve timings which 
are faste r by an order of magnitude. We altribute thi s dependency 
on 111 to the less sophisti ca ted selection of point swapping candi ­
datcs which is un avo idab le to mcct the I'eq uircillents o r an e rfi cien t 
G PU implementation as desc ribed in Sec. 4.3. 



(a) Sites path lines 1 = 0.2, 11/ = 8 192, t = (0 ,400) 

(b) Points, t = 90 (c) Sites, 11/ = 5 12, 
1 = 0.2, t = 90 

(d) Sites, 11/ = 5 12, 
random, t = 90 

Figure 5: Arnold-Beltrami-Childress flow. (a) Data set represented 
by a set of sites over numerous time steps. (b) Full data set for a 
single time step t ; 90. (c) Reduced version for t ; 90 sites which 
represents m ; 512 points on average. It fully preserves the basic 
structure and allows better insight into the data set, e.g. the point 
density at the left is much lower than in the middle or on the right. 
(d) Reduced version based on random sampling exhibits an irregular 
structure that does not preserve densities and results in the loss of 
smaller features (e.g. thin structures on the bottom left and top right 
indicated by arrows). 

(a) Points path lines, 
t = (0,400) 

..• . .. 
", . ". '., 
, .. .. .. .. :, ': 

... 

(b) Sites , 
1= 0. 2, 11/ = 125 , 

t = 400 

(c) Sites path lines, 
1= 0.2, 11/ = 125 , 

t = (0,400) 

Figure 6: Laser ablation from a block of solid aluminum. (a) Extract­
ing path lines using the full data set. (b) Reduced version for a single 
time step. (c) Extracting path lines from the reduced version. In (c) 
the structure of the molecule movement as well as the amount of 
molecules being expelled from the block is visualized more clearly. 

6.2 LCCVD of 3D Molecular Dynamics Data Sets 

Tn the application domains of thermodynamics, physics, and mate­
rial science a direct, particle-based visuali zation is commonly used 
to visualize the individual time steps or a simulation. Ty pically, ev­
ery partic le representing a molecule or atom is rendered as a small 
sphere. If time seri es data needs to be visualized, ei ther anima­
tions are used to depict the evolution of partic les over time, or 
path lines are rendered for small subsets of particles. Using a set 
or representatives (sites) instead or the original parti cles (points) 
not only reduces both storage requirements and rendering time, but 
also improves comprehensibility. We demonstrate the effective­
ness of our approach by using a data set from parti cle tracing for 
vector fi eld visualization- A rn old-Beltrami-Childress (ABC, with 
A = J3, B = .J2, C = I and T = - 8) shown in Fig. 5- and by 
means of three molecular simulation data sets: laser ablation from 
a block of solid aluminum (Fig. 6), compressed argon surrounded 
by vacuum (Fig. 7), and two colliding liquid droplets (methane and 
ethane) (Fig. 8). Particle numbers and the amount of time steps per 
data set are listed in Table 2. 

Vi suali zing sitcs instcau or points has numcmus hc ndits apart 
from rendering speed and storage requirements. For example, 
Fig. 5(a) illustrates the structure of the fl ow of the AB C data set. It 
can be seen that sites move smoothly over time as long as there are 
no rapid , incoherent movements in the data set. Fig. 5(c) shows that 
the density in different regions of the data set can be estimated much 
better with a set of site representatives than with rendering points 
directly (Fig. 5(b». Tt also demonstrates that the basic structure 
of the data set is preserved even when using a drastica lly reduced 
amount of points. Random sampling (Fig. 5(d)) does not preserve 
the structure of data set as well and results the in the loss of many 
small features. Occlusion problems are illustrated in the laser ab­
lation example in Fig. 6(a). When rendering all points of all time 
steps at once, most of the important inFormation remains hidden 
due to the extensive mutual occlusion of the molecules. Further­
more, it i s almost impossible to estimate the amount of molecules 
being expelled. The reduced version in which one site represents 
III = 125 points illustrates thi s much better (Fig. 6(c» . 

One domain expert concluded that " since attributes li ke angle, 
velocity, or cluster size di stribution highly depend on the applied 
laser, a quick way to grasp the ablation process qualitatively (e.g. 
the opening-angle of the evolving gas plume as can be seen from the 
reduced trajectories) and without major data post-process ing is very 
useful." Another expert mentioned, more concrete ly, that " whi le 
the basic verti ca l movement [of the expelled particles] is captured 
by appropriate co lor coding, the diagonal movement (which is in­
herent to the data) i s better visible in Fig. 6(e) than in Fig. 6(a)." 
Similarl y, one expert found that for the vi sualization of the colli­
sion scenario "Fig. I (a) is not use ful , and that Figures I (b) and I (c) 
miss the temporal information. Fig. I (d), however, faithru lly cap­
tures the main trend of the collision where distant path lines also 
cap ture the left droplet's instability." He also stated an analogue vi ­
suali zation could be "very useful for lab-on-a-chip systems where 
one could es timale where the desired now is di sturbed, i .e. where 
one wou ld have to adjust the channel structure for undisturbed sub­
stance transportation." 

Tn the fo llowing examples, we analyze the efrect of the looseness 
parameter I more deeply. First, we show key problems of strict 
and unrestricted point constraints as occurring with the CCVD and 
the k-means approach, respecti vely, and demonstrate that they can 
be resolved using LCCVD. We then present detai led tim ings and 
quality measures based on our quali ty metric introduced in Sec . 5. 

Fi g. 7 illustrates that a strict capacity constraint (I = 0) poten­
tia ll y fo rces sites to represent points from two or more dense clus­
tL!rs. This leads to sites noating in-between clusters or points such 
that they are located where no associated points are (e.g. the purple 



(a) Sites, I = 0.2, //I = 500, t = 70 

(b) Closeup for I = 0, //I = 50 with inappropriate sites highlighted (c) Closeup for 1= 0.2, //I = 50 

Figure 7: Argon in vacuum. (a) Overview over the reduced version. (b) Strict capacity constraints (I = 0) force inappropriate site locations between 
dense point groups, falsely creating the impression of occupied space. (c) Usi ng loose constraints (I = 0 .2) largely remedies this problem. 

site on the left, or the green site on the right in Fig. 7(b)). Loosen­
ing the capacity constraint using a va lue of 1= 0.2 and teJ1lporarily 
relax ing the J1linimuJ1l constraint as described in Sec. 3.3 largely 
avoids these i ssues (see Fig. 7(c)). 

However, too loose constraints may lead to an over- or under­
representati{)n of the point density, i.e. regions where a site either 
represents a too small or too big porti on of the data set. F ig. 8 
demonstrates overrepresentation for the methane-ethane collision 
data set with a very loose constraint of l = 5 (Fig. 8(a)). Thus, 
when displaying sites only, the surrounding of the droplets appears 
much J1lore dense than it actually is. Thi s way, path lines gener­
ated with a very loose constraint (Fig. 8(b)) give the impress ion of 
a J1luch larger aJ1lount of poin ts being spread (Fig. 8(d)). 

These observations froJ1l the exaJ1lple data sets are underlined by 
our quality J1letri c for which we present detailed results in Table 2. 
For each data set, we li st both the quality q and the associated COJ1l ­
putation tiJ1l es while varying the capaci ty looseness I froJ1l I = 5 
(a lJ1lost unconstrained) to I = 0 (strictly constrained). For better 
cOJ1lparability, we oJ1litted the teJ1lporary relaxation of the J1liniJ1luJ1l 
constraint as described in Sec. 3.3 for this test series. Acro s all 
data sets, the best results were obtained by applyi ng a loose capac­
ity constraint of I "", 0.2 despite the variations due to different data 
sc ts or site configurati ons; I = 0. 1 delivercd nearly as good results 
and J1light be favorable if stri cter bounds are required. Note that a 
difference in the quali ty metric of 0.001 is equal to the difference of 
a thousand points being cOJ1lp letely covered or uncovered in a data 
set of a million points. Smaller quality va lues thus ei ther indicate 
poorly located sites, or an inappropriate aJ1lount of sites covering 
a parti cular part of the data set. As demonstrated in the exaJ1lples, 
these cases typica lly occur in regions with a rapid change in point 
density. In turn, we J1leasure negligible differences for our exa J1l ­
pie data sets for regions of approx iJ1lately constant density. Qual ity 
results for a stati sti ca l saJ1lpling-based approach (provided for CO J1l­
pari son) are typically around "", 0.62. 

The tiJ1ling results in Table 2 underline that the cOJ1lputation tiJ1le 
for LCCYD strongly depends on the aJ1lount of points per site Ill . 

The J1lain reason for thi s is that the GPU load decreases with a de­
creasing nUJ1lber of sites. For exaJ1lp le, a GTX 480 features 15 
SMs, each o f which can execute two warps concurrently. As each 
warp processes point swapping operat ions in groups of 128 si tes, 
any nUJ1lber of sites below 15 ·2 · 128 = 3840 is not able to fully uti ­
li ze the GPU. In order to hide latencies, the actual number of sites 

4000 sites, I/l - 500 points per site (random sampling: .6 1829) 

.02709 J .00549 I .001 59 I .00006 I .86951 I .01683 
11162.6s 17 157.7s 1637 1.I s I 5289.4s I 4469.7s 14028.0s 

20000 sites , 111 - 100 points per si te (random sam pling: .62090) 

.03593 J .00806 J .00 182 1 .86262 I .00040 I .02100 
9005.7s 7476.3 7374.2s 7306.4s 701 2.6s 64 12.8s 

40000 si tes, //I - 50 points per site (random sampling: .62269) 

.04639 I 0.00957 1 .00 183 1 .85439 1 .00073 I .02050 
9003. l s 10038.3s 101 59.0s 9986.l s 9846.4s 9572.3s 

Laser Ablati on 562500 POints 400 time steps pen od lc ,. ., 
11 25 sites, I/l - 500 points per sitc (random sampling: .63140) 

.00723 I .00234 I 0.00057 I .89489 I .00136 I .02374 
10545.7s 10066.8s 94 19.4s 8753 .3s 9460.2s 4559.7s 

11 250 sites, III - 50 points per sitc (random sampling: .63249) 

.03 189 I .00698 I .00 190 I .89575 I .00026 

I 
.03704 

4497.3s 4529.9s 3801.6s 4476.6s 4438.ls 5954.0s 

Metll.lne-Eth,tne ColliSion 8 1672 POliltS 1782 tllne steps pellodlc 

3403 sites, //I - 24 points per site (random sampling: .6 1536) 
.1 7199 I .01 9660 J .00369 1 .85184 1 .001 49 

I 
.072 16 

1586.8 1566.4 1575.2 1575.0 1984.2 1476.4 

1992 sites, //I - 41 points per site (random sampling: .6 1234) 

.17063 I .02065 I .00299 I .00007 1 .84938 I .02328 
I 894.3s I 847.6s 2228. 1 s 1865.8s 1837.3s 1633.8s 

ABC 2097 152 pOints 400 time steps 

16384 sites, //I - 128 points per site (random sampling: .62235) 

.02554 1 
4002.4s 

.01 22 1 I .00335 I 
4 195.0s 4 178.9s 

.85882 I 
4 135.7s 

.0001 8 I .0 1205 
3974.0s 42 17.0s 

4096 s ites, III - 5 12 points per site (random sampling: .62 183) 

.06424 1 
6566.4s 

.02968 1 
8393.2s 

.01034 1 
8180.8s 

.00307 1 .86803 I 0.008 10 
7886.8s 7027.9s 5 124.9s 

Table 2: Performance of LCCVD for different data sets, loose con­
straints I and no emi" relaxation. The top rows depicts the best (mean­
ing largest) quality results in bold while the other results are given as 
the difference to this reference value. The bottoJ1l rows give the COJ1l ­
putation times in seconds. Additionally, quality resu lts for random 
sampling are provided for comparison. 



(a) I = 5. 11/ = 23. t = 400 (b) 1 = 5. III = 23.t = (0,400) 

(c) 1 = 0 .2. 11/ = 23, t = 400 (d) 1 = 0 .2. 11/ = 23. t = (0,400) 

Figure 8: Collision of methane and ethane. (a, b) Ve ry loose or no 
capacity constraints lead to pOints that are highly overrepresented 
by sites which gives the false impression of a substantial amount of 
particles in the outer regions. (c, d) A loose constraint of I ~ 0.2 yields 
a much more genuine result. 

should even be significantly higher s ince warps may be paused or 
stalled. In contrast to the number of points per site Ill, the capacity 
looseness I on ly has minor inl1uencc on the runtime . 

Lastly, we measured the e ffect of the temporary elllill relaxation 
compared to the best quality va lues li sted in Table 2. In general , the 
lc:dllliqul: is most bl:nl:iil:ial I'or data Sl: lS which inducl: lhl: gl:nl:ra­
tion of bad sites- e.g. due to multiple groups of points of varying 
density-as di scussed in Sec. 3.3. This particularly applies to the 
argon in vacuum data set (Fig. 7). In thi s scenario , the quality q can 
approximately be improved by 0.0 I for III = 50. At the same time, 
however, the execution time is a lmost tripled to 28409s. For data 
sets with signifi cantly less bad siles, e.g. the laser ab lation data set, 
the quality improvement is only about .00 I on average at rough ly 
twice the execution time. The coverage quality of the methane­
ethane coll ision data set with 3403 and 1992 sites increases by 
.00153 and .00055 respec tively, whi le the runtime roughly doubles. 
Fu rthermore, we observed that the process ing time as well as the 
quality value ach ieved for a s ingle time step is largely independent 
01' whether it has been computed as part of a time series or individ­
ually. Tn some cases, however, time steps which are part of a series 
arc processed sign ificantly fastcr if the changes between two sub­
sequent time steps are rather small. [n such a case, the site-to-point 
assignment of the new time step only req uires minor adjustments 
compared to the previous step in the series. 

7 CONCLUSION AND FUTURE WORK 

We presented a novel technique for partic le-based visua li zations 
that uses a set of representatives instead 01' a large number of parti­
cles. To obtain these representatives, we introduced loose capacity­
constrained Yoronoi diagrams and presented a fast, para ll el method 
for their computation. We demonstrated that the representatives 
faithfu lly capture the underlying particle density and exh ibit coher­
ent movement for time-dependent s imulations. Using these repre­
sentatives, we are ab le to generate sparse yet concise renderings 
with spheres and path lines in the context of different app lication 
domains. For future work, we plan to compare our metric results 
to traditional density based techniques. We also would like to in­
ves tigate the usage of LCCYD to build hie rarchical structures froJ11 
large point data sets (e.g. for LOD techniques). 
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