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Figure 1: The results of the 2004 US presidential election. In red states the majority of the vote was for the republican (G. W. Bush) and in blue
states the majority was for the democrat (J. Kerry). Note that the circular-arc cartogram makes it easy to see that most blue states are densly
populated (cloud shapes), while the red states are more rural. Exceptions such as Oregon (blue but not densly populated) and North Carolina

(red but dense) stand out.

ABSTRACT

We present a new circular-arc cartogram model in which countries
are drawn as polygons with circular arcs instead of straight-line
segments. Given a political map and values associated with each
country in the map, a cartogram is a distorted map in which the
areas of the countries are proportional to the corresponding values.
In the circular-arc cartogram model straight-line segments can be
replaced by circular arcs in order to modify the areas of the polygons,
while the corners of the polygons remain fixed. The countries in
circular-arc cartograms have the aesthetically pleasing appearance
of clouds or snowflakes, depending on whether their edges are bent
outwards or inwards. This makes it easy to determine whether a
country has grown or shrunk, just by its overall shape. We show
that determining whether a given map and given area-values can be
realized as a circular-arc cartogram is an NP-hard problem. Next we
describe a heuristic method for constructing circular-arc cartograms,
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which uses a max-flow computation on the dual graph of the map,
along with a computation of the straight skeleton of the underlying
polygonal decomposition. Our method is implemented and produces
cartograms that, while not yet perfectly accurate, achieve many of
the desired areas in our real-world examples.

Index Terms: 1.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling

1 INTRODUCTION

A cartogram, or value-by-area diagram, is a thematic cartographic
visualization, in which the areas of countries are modified in order to
represent a given set of values, such as population, gross-domestic
product, or other geo-referenced statistical data. Red-and-blue popu-
lation cartograms of the United States were often used to illustrate
the results in the 2000 and 2004 presidential elections. A geograph-
ically accurate map seemed to show an overwhelming victory for
George W. Bush; see Fig.[Ta] The population cartograms effectively
communicate the near even split, by deflating the rural and suburban
central states. The rectilinear cartogram shows the correct distri-
bution of red and blue squares, each representing one vote in the
electoral college, but many characteristic shapes and adjacencies
are compromised; see Fig.[Tb] For example, Idaho and Washing-
ton are no longer neighbors, and the mirror-image shapes of New



Hampshire and Vermont are lost. The balloon cartogram also shows
the correct areas, but at the cost of distorted shapes and changes in
above/below, left/right relationships; see Fig.

The challenge in creating a good cartogram is thus to shrink or
grow the regions in a map so that they faithfully reflect the set of pre-
specified area values, while still retaining their characteristic shapes,
relative positions, and adjacencies as much as possible. In this paper
we introduce a new circular-arc cartogram model, where circular
arcs can be used in place of straight-line segments, and corners of the
polygons defining each country remain fixed. Intuitively, a region
that grows is inflated and becomes cloud-shaped, whereas a region
that shrinks is deflated and becomes snowflake-shaped.

Consider the circular-arc cartogram for the 2004 US presidential
election: like a traditional cartogram, it also inflates densely pop-
ulated states (which become cloud-shaped) and deflates sparsely
populated ones (which become snowflake shaped); see Fig.[Id} Note
that the circular-arc cartogram preserves adjacencies, and the gen-
eral shape of the states. Moreover, the circular-arc cartogram makes
it easy to see that nearly all blue states are densely populated and
nearly all red states are sparsely populated, something that is not
apparent in the rectilinear cartogram. Finally, exceptions from this
pattern are also easy to spot: Oregon is blue but sparse and North
Carolina is red but dense. Of course, there is no such thing as a
free lunch: the advantages of the circular-arc cartogram come at the
expense of some cartographic errors, where accurate inflation and
deflation cannot be guaranteed.

There are many design and implementation aspects that determine
the effectiveness of a cartogram. Here we consider four of the main
aesthetic and computational criteria:

1. It is important that the cartogram is readable, in that it is
possible to find every country in the map. Moreover, a readable
cartogram makes is possible to visually answer approximate
queries about the relative size of the shown countries.

2. Itis important to ensure that the cartogram keeps the underly-
ing map structure recognizable. This criterion can be expressed
by insisting that the country adjacencies in the original map
and the cartogram remain unchanged. An even stronger ver-
sion of this requirement is to ensure that the relative positions
between pairs of countries (e.g., North-South, East-West) are
not disturbed.

3. Itis important that the cartogram faithfully represents the given
weight function. This criterion is often expressed by the car-
tographic error, defined as the absolute or relative difference
between the given weight and the area of a country.

4. The complexity of a cartogram also impacts its effectiveness.
Here, the complexity is often measured by the maximum num-
ber of vertices (or edges) defining the boundary of any country
in the cartogram. Highly schematized cartograms use as few as
three or four vertices per country, while geographically more
accurate and recognizable cartograms may have arbitrarily
high complexity.

It is easy to see that there is no perfect method for generating
cartograms, that is, there is no method that satisfies all of the main
criteria. Most existing methods aim for no cartographic error and
low complexity, while sacrificing recognizability (e.g., by allowing
adjacencies to be modifies) and/or readability (e.g., by using arbi-
trary country shapes). Circular-arc cartograms ensure readability by
keeping the corners of the countries undisturbed and easily convey
the type of area changes by the cloud-shape and snowflake-shape
of the countries. They are also recognizable as they retain all adja-
cencies and also preserve the relative positions of countries. The
complexity is exactly the same as that of the input map: a highly
schematized input map directly results in low complexity of the

resulting cartogram, which at the same time has the advantage that
longer edges allow for larger area changes and thus potentially lower
cartographic error. These advantages come at a cost: it is possible
that a given map with pre-specified areas cannot be realized as a
circular-arc cartogram, and determining whether such a realization
exists is NP-hard. However, if we are willing to tolerate moderate
cartographic errors we can use a heuristic algorithm, which, while
not perfectly accurate, achieves many of the desired areas in our
real-world examples.

1.1 Related Work

The problem of representing additional information on top of a geo-
graphic map dates back to the 19th century, and highly schematized
rectangular cartograms can be found in the 1934 work of Raisz [25].
With rectangular cartograms it is not always possible to preserve all
country adjacencies and realize all areas accurately [20,27]]. Eppstein
et al. studied area-universal rectangular layouts and characterized
the class of rectangular layouts for which all area-assignments can
be achieved with combinatorially equivalent layouts [17]. If the
requirement that rectangles are used is relaxed to allow the use of
rectilinear regions then de Berg et al. [[12]| showed that all adjacen-
cies can be preserved and all areas can be realized with 40-sided
regions. In a series of papers the polygon complexity that is suffi-
cient to realize any rectilinear cartogram was decreased from 40 over
34 corners [22], 12 corners [|6]], 10 corners [4] down to 8 corners [3]],
which is best possible due to the earlier lower bound of 8-sided
regions [28]].

More general cartograms, without restrictions to rectangular or
rectilinear shapes, have also been studied. Dougenik et al. intro-
duced a method based on force fields where the map is divided
into cells and every cell has a force related to its data value which
affects the other cells [15]. Dorling used a cellular automaton
approach, where regions exchange cells until an equilibrium has
been achieved, i.e., each region has attained the desired amount
of cells [14]. This technique can result in significant distortions,
thereby reducing readability and recognizability. Keim et al. defined
a distance between the original map and the cartogram with a metric
based on Fourier transforms, and then used a scan-line algorithm to
reposition the edges so as to optimize the metric [23]]. Edelsbrunner
and Waupotitsch generated cartograms using a sequence of homeo-
morphic deformations and measured the quality with local distance
distortion metrics [16]]. Kocmoud and House [21]] described a tech-
nique that combines the cell-based approach of Dorling [14]] with the
homeomorphic deformations of Edelsbrunner and Waupotitsch [|16].

A popular method by Gastner and Newman [18]] projects the
original map onto a distorted grid, calculated so that cell areas match
the pre-defined values. This method relies on a physical model
in which the desired areas are achieved via an iterative diffusion
process. Flow moves from one country to another until a balanced
distribution is reached, i.e., the density is the same everywhere.
The cartograms produced this way are mostly readable and have
no cartographic error. However, some countries may be deformed
into shapes very different from those in the original map, and the
complexity of the polygons can increase significantly.

This brief review of related work is woefully incomplete; a survey
by Tobler [26] provides a more comprehensive overview.

1.2 Our Contributions

Our model combines aspects of existing cartogram types, but at the
same time tries to avoid some of the common shortcomings. By
pinning the vertices at their input positions and only modifying edge
shapes, regions are not displaced and we avoid strong positional dis-
tortions that are common, e.g., in the popular diffusion cartograms.
On the other hand, the shapes of the regions are not as severely
schematized as in rectangular or rectilinear cartograms and recog-
nizability of characteristic shapes is preserved, at least for moderate



area changes. The use of the inflation/deflation metaphor makes is
possible to immediately recognize regions with positive/negative
area changes.

Our results in this paper are as follows. In Section 2] we formally
introduce the circular-arc cartogram model and state the associated
algorithmic problem. In Section [3|we show that the circular-arc car-
togram problem is NP-hard. In Sectiond] we describe a first heuristic
algorithm using network flow and the straight skeleton to minimize
the cartographic error in circular-arc cartograms. In Section 5] we
summarize our results and describe several open problems.

2 MoDEL

Geometrically, a map of countries or administrative regions is a
subdivision S of the plane into a set of disjoint regions or faces
F ={f1,---, fn}- In our model we assume that each face is a simple
polygon. The topological structure of the map can be described by
its face graph or dual graph G, which contains a vertex for each
face and an edge between adjacent faces. In order to construct a
cartogram of S, we additionally need to specify a weight vector
t = (t1,...,tn), where for each i = 1,...,n the value ; is the target
area of face f; in the cartogram. An accurate cartogram of the input
pair (S,1) is a subdivision S’ that is homeomorphic to S and in which
the area of every face f; equals its given weight 7;.

In this paper, we are interested in the special class of circular-arc
cartograms, i.e., cartograms that can be obtained from the input §
by bending each polygon edge e into a circular arc whose endpoints
coincide with the endpoints of e. No two circular arcs are allowed
to cross, but we may allow that two arcs touch. Bending an edge
between two faces f; and f; has the effect of transferring a certain
area from one face to the other. This exchange of area between faces
can be seen as a discrete diffusion process similar to the model of
Gastner and Newman [18]]. The algorithmic problem in creating
a circular-arc cartogram is thus to compute a bending radius for
each edge of the input subdivision so that the resulting circular-arc
subdivision S’ remains topologically equivalent to the polygonal
input subdivision S and each face f; has area ;. We define a bending
configuration of S to be an assignment of a bend radius (including
radius r = oo to represent straight-line arcs) to each edge of S. A
bending configuration is valid if no two circular arcs cross and
the input topology of S is preserved. We say that a cartogram S’
is a strong circular-arc cartogram if for every region f; with a net
decrease (increase) in area no incident edge is bent outward (inward).
Otherwise we call the cartogram a weak circular-arc cartogram. An
immediate consequence of strong cartograms is that edges bounding
two regions with the same sign of area change must remain straight.

In real-world maps there are often regions (e.g., oceans or seas)
whose target area in the cartogram is unspecified. Our model allows
sea faces in S with no specified target area. Note that if there is a
single sea face then its target area change is implicitly given by the
sum of the target area changes of the other faces.

The CIRCULAR-ARC CARTOGRAM (CAC) decision problem
then is:

Problem 1 (CAC). Given a planar polygonal subdivision S and a
weight vector t, is there a valid bending configuration so that the
resulting subdivision S' is an accurate circular-arc cartogram, i.e.,
all face areas in S' comply with t?

While the decision version is mainly of theoretical interest, there
is also a corresponding optimization version of CIRCULAR-ARC
CARTOGRAM. Here the algorithmic problem is to compute a bend-
ing configuration that minimizes the cartographic error, i.e., the sum
of the differences between the target areas and the actual areas of all
faces. In Section[3we show that CAC is NP-hard and in Section (4]
we describe a heuristic algorithm that successfully minimizes the
cartographic error in practice.

3 NP-HARDNESS

First note that positive as well as negative CAC instances can be
constructed easily: Only polygons whose vertices are cocircular can
be made arbitrarily small by bending edges; all other polygons have
some positive lower bound on their area in a circular-arc cartogram.
Hence, for example, no simple non-convex polygon can attain area
close to 0 by replacing straight edges with circular arcs. On the
other hand, any subdivision with a target area vector that contains
the exact initial face areas is a positive instance.

Theorem 1. CIRCULAR-ARC CARTOGRAM is NP-hard.

Proof. Our reduction is from the NP-complete problem PLANAR
MONOTONE 3-SAT [[11]]. This problem is a special variant of the
PLANAR 3-SAT problem [24]: We are given a Boolean formula ¢, in
which every clause consists of three literals. Each clause, however,
must be monotone, i.e., it may contain either only positive or only
negative literals. The planarity of the formula refers to the planarity
of the associated bipartite variable-clause graph G (with a vertex
for every clause and variable of ¢ and an edge between a variable
vertex and a clause vertex if and only if the variable appears in the
clause). It is known that for every instance of PLANAR MONOTONE
3-SAT the graph G can be drawn in a planar rectilinear fashion by
placing the variable vertices on a horizontal line, the positive clauses
above that line, and the negative clauses below; see Fig. [
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Figure 2: A planar rectilinear drawing of a PLANAR MONOTONE
3-SAT instance.

Our reduction constructs a subdivision S¢, for the Boolean formula
¢ that resembles the general structure of the rectilinear drawing of
G¢. The weight vector 7 is chosen so that Sy can be transformed
into a valid circular-arc cartogram if and only if ¢ is satisfiable. The
subdivision consists of three types of gadgets: the variable, literal,
and clause gadgets, which we describe below.

A basic building block in all three gadgets is a triangle with target
area 0. It is easy to verify that there are exactly three configurations
that realize a 0-area circular-arc triangle, all of which consist of
circular arcs of the unique circle defined by the three points; see
Fig.|3] This building block is used to control the possible shapes of
regions in the cartogram.

Figure 3: The three possibilities to realize a circular-arc triangle
with area 0.

Variable gadget The variable gadget consists of a horizontal
row of rectangles with height 4 and width 2, except for some taller
rectangles in between of height 5 that serve as connectors to the
literal gadgets; see Fig. With the exception of the connector
rectangles, all rectangles are enclosed on their two short sides by



skinny triangles with a base side of length 2. These triangles have
target area 0. They are designed so that two of the three possibilities
to achieve area 0 would require edges to become circular arcs that
pass beyond some of the input vertices of the rectangles. Hence
only a single configuration remains feasible. This immediately fixes
the shape of the rectangles’ short edges by bending them slightly
outward and increases the area of each rectangle by the area of two
circular segments. We define the area of the circular segment thus
attached to each rectangle as c¢;. We also need a scaled-down version
of this triangle with base length 1 instead of 2 whose corresponding
circular segment thus has area c; = ¢1 /4.

(a) Input subdivision

(b) Variable set to true

(c) Variable set to false

Figure 4: Variable gadget. The central decision rectangle is shown
in purple, connector rectangles in green, O-area triangles in blue and
the remaining rectangles in brown.

There is one special decision rectangle (purple) in the center
of the gadget. The target area change of this rectangle is set to
2c1 — 2w, where 27 is exactly the area of a half-circle with radius
2. All other rectangles of height 4 have a target area change of 2¢,
i.e., they can be extended by the two circular segments at their short
sides but otherwise want to keep their area constant. Finally, the
taller connector rectangles (which actually consist of six vertices)
are adjacent to a literal gadget on one of their short sides (indicated
by dots in Fig. ) and to a right triangle on the other short side.
This triangle has target area 0, but other than the skinny triangles
described before, all three possible 0-area configurations in Fig. [3]

are feasible. The area change of the connector rectangles is 2¢;, the
area gained from the two small skinny triangles adjacent to the left
and right sides of the length-1 edges that stick out of the variable
TOW.

Let us consider the purple decision rectangle in the center, with its
two short edges fixed by the shape of the attached skinny triangles.
If one of its long edges is bent inside the rectangle as exactly a half-
circle and the opposite edge remains a straight-line segment, then
the specified area constraint is satisfied. It is, however, geometrically
impossible to achieve the given target area by bending both edges
simultaneously inside the rectangle like in a concave lens. Hence
we can use the two possible configurations of the decision rectangle
to encode the two truth values of the variable; see Fig. @b and .
Since by pulling one long edge inside the decision rectangle the
area of the adjacent rectangle in the gadget enlarges, that adjacent
rectangle must in turn pull the opposite long edge inwards by the
same amount. So the semi-circle arcs propagate, similar to negative
air pressure in a physical model, on one side of the gadget, namely
that side whose connecting literals evaluate to false in the current
state.

It remains to describe the behavior of the connector rectangles.
Since the long edges are bent into half-circles and no two edges of
the subdivision may cross, the right triangle attached to the connec-
tor rectangle must be in the state that forms a half-circle and thus
increases the area of the connector rectangle. In order to balance
this area increase, the opposite short edge must be bent inwards and
form an identical half-circle. This gives us a means to transmit the
negative pressure from the center of the variable towards all literals
that evaluate to false.

There is no negative pressure on the positive side of the variable
gadget, i.e., the side whose literals evaluate to true. Hence the long
edges of the rectangles on this side can remain straight, and there
are two possible configuration for the short edges of each connector
rectangle, one of which pushes the half-circles towards the literal
gadgets rather than pulling them away as it is the case on the negative
side.

Literal gadget The main task of the literal gadget is to maintain
and transmit the truth state that is found at the variable gadget to-
wards the clause gadget. The gadget can be seen as a pipe composed
of chains of rectangles that connects variable and clause. In the pipe
the truth value is transmitted by pulling or pushing the long edges
of the rectangles into half-circles similarly as in the variable gadget.
Three literal gadgets are depicted (together with a clause gadget) in
Fig.

There is one notable difference from the transmission of the truth
value in the variable gadget since two of the incoming literals for
each clause make a turn of 90°. The turn is realized by a square of
side length 2 with target area 4 and two right triangles with target
area 0 (as those in the connector rectangles of the variable gadget).
Since the two right triangles are placed on adjacent sides of the
square, one of them must bend to the outside of the square while
the other one must bend to the inside. If the literal is in state false
(left and right in Fig. [5p) and the half-circles are pulled towards
the variable gadget, then both the left and right edges of the square
are bent inward while the top and bottom edges are bent outward.
This is exactly what is needed to transmit negative pressure to the
horizontal part of the literal gadget. For a literal in state frue we
observe exactly the opposite behavior. Fig. 5t shows a true literal
on the left and a false literal on the right.

Clause gadget The clause gadget consists of a cross-shaped
rectilinear clause polygon joining the three incoming literal gadgets;
see Fig.[f] In its top part there are three right triangles with target
area 0. The target area increase of the clause polygon is 8¢y, the
area increase caused by the eight skinny triangles attached to some
of its edges. Note that of the three right triangles at most two can
simultaneously bend as half-circles inside the polygon, while they



(a) Input subdivision

(b) Three false literals

(c) One true and two false literals

Figure 5: Cross-shaped clause gadget with three literal gadgets.

all can bend to the outside independently. As long as one of the
incoming literals is true, i.e., it pushes a half-circle inside the clause
polygon, the three triangles in the top part can balance the area
change of the clause polygon caused by any other combination of
the remaining two literals; see Fig. Ef: However, if all three literals
are false, the area of three half-circles is added to the clause region
(indicated by dotted line segments). Consequently, the area of three
half-circles must be removed from the clause region, but at most
two half-circles can be removed by the right triangles; see Fig. B|b).
This shows that the area requirement of the clause polygon can be
realized if and only if the clause evaluates to true in the given truth
assignment.

Reduction From the construction of the gadgets it follows that
if the Boolean formula ¢ has a satisfying variable assignment, then
the subdivision Sy and the weights 7, are a positive instance of
CIRCULAR-ARC CARTOGRAM. On the other hand, we can immedi-
ately obtain a satisfying truth assignment for the variables of ¢ from
a valid circular-arc cartogram of Sy. The vertices of the subdivision
S¢ all lie on a grid of polynomial size and the target weights are
either O or can be encoded algebraically in polynomial space. This
concludes the proof. O

We note that all vertices in the subdivision Sy €ither belong to
triangles or have degree at least 3. Thus the complexity of S cannot
be decreased further and the hardness result continues to hold for
maps that are minimal in that sense.

4 HEeuURISTIC METHOD FOR COMPUTING CIRCULAR-ARC
CARTOGRAMS

Here we describe a versatile heuristic method for generating circular-
arc cartograms based on network flows and polygonal straight skele-
tons. In practice we may assume that our input map is already a
simplified or even schematized map that retains the characteristic
shapes of the countries but at the same time strongly reduces the
polygon complexities. The more simplified the shapes the longer the
edges and, consequently, the larger the potential area changes that
can be realized by bending the edges. Buchin ef al. [§]] or de Berg et
al. [|[13]] described suitable algorithms for computing topologically
correct subdivision simplifications and schematizations.

Recall that in our model a map is a subdivision S of the plane
into a set of disjoint faces, % = {f1,..., fu}, where each face is a
simple polygon. The topological structure of the map is described
by its dual face graph G, which contains a vertex v; for each face
fi and an edge {v;,v;} between adjacent faces f; and f;. Here we
convert G into a directed graph: for any two adjacent countries in §
the corresponding vertices in G are connected with two edges, one
for each direction.

The initial face areas are described by the vector a = (ay,...,a,)
and the target areas are given by the vector t = (r1,...,#,). Without
loss of generality, we can assume that both vectors are normalized,
ie, Y a; =Y  ti = 1. This means that the total area of the
map remains the same. From a and ¢ we can obtain the vector
A= (Ay,...,A,) of desired area changes, where A; = t; — a; for
eachi=1,...,n. Note that 7 | A; =0.

The goal of our algorithm is to compute a valid bending configu-
ration in which the resulting face areas b = (by,...,b,) are as close
to the given target areas ¢ as possible. More precisely, we aim to
minimize the error Y7, |b; —1;].

4.1 A Network Flow Model for Circular-Arc Cartograms

We use the directed face graph G to define a flow network in which
the flow along an edge e = (u,v) corresponds to the area exchange
from the face vertex u to the face vertex v. We define the capacity
c(e) to be equal to an area that can be safely transferred from u
to v. To compute valid capacities we use the geometry of the face
polygons that specify the countries. If we want to restrict ourselves
to strong circular-arc cartograms we set c(e) = 0 for all edges e
between two regions f; and f; for which A;-A; > 0; for weak
cartograms there is no such restriction.

The straight skeleton of a simple m-edge polygon, P, is made of
straight-line segments and partitions the interior of P into m disjoint
regions, each corresponding to exactly one edge of P [3|]. The
straight skeleton is similar to the medial axis but does not require
parabolic curves and can be efficiently computed in subquadratic
time [9]. Because the straight skeleton partitions a polygon into
disjoint regions, we can define a “safe” bending limit for each edge
of the polygon by requiring that the circular arcs remain inside their
skeleton regions; see Fig.[6] This guarantees that no two circular arcs
cross. For each edge e = (u,v) we can thus define the capacity c(e)
as the maximally transferable area from face u to face v subject to
the constraint that every circular arc on the boundary between u and
v remains inside its skeleton regions. The capacities are by definition
static and independent of each other. We note that there is still room
for enlarging the capacities over this definition, e.g., by considering
to remove some degree-2 vertices and consequently merge their
incident boundary edges and their skeleton regions. This yields
longer boundary edges that allow larger arcs with larger transferable
areas.



Figure 6: The straight skeleton of two adjacent polygons and the
maximally realizable circular-arcs within the safe bending limits of
each edge.

Once we have computed a set of valid edge capacities for G, we
create a new vertex v} for every vertex v; in G. If A; > 0 we make v}
a source vertex and add the edge (v}, v;) with capacity c(v},v;) = A;
to G; otherwise if A; < 0 we make vé a sink vertex and add the edge
(vi,v}) with capacity c(v;,vi) = —A; to G. Let S be the set of sources
and T the set of sinks.

The quadruple .4 = (G,c,S,T) now forms a multiple-source
multiple-sink flow network, which is planar since the original face
graph of S was planar. If a maximum flow in .#” with a value of
D = Y 5,504 can be found, we know that all target areas can be
achieved. Furthermore, even if the maximum flow has a value of less
than D, it still corresponds to a bending configuration that minimizes
the cartographic error Y| |b; —1;| under the given safety constraints
for the circular arcs.
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Figure 7: Cartogram of the population in Italy; the first number indi-
cates the success rate, the second number the relative cartographic
error.
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Figure 8: Cartogram of the agricultural use area in Italy; the first
number indicates the success rate, the second number the relative
cartographic error.

The expected running time for computing the straight skeleton
of a k-vertex polygon is O(klog® k) [EI] So if the input subdivision
S consists of n faces with N vertices in total, we can compute the
straight skeletons in O(N log? N ) expected time in total. To solve the
multiple-source multiple-sink maximum-flow problem in our flow
network based on the planar face graph of S we can use the recent
O(rzlog3 n)-time algorithm of Borradaile et al. .

4.2 Implementation and Results

We implemented a prototype of our method in C++ using the CGAL
library [2] for computing the straight skeletons and Boost [[I]] for
solving the max-flow problem. In this section we present four exam-
ples of circular-arc cartograms produced with our implementation,
which currently supports only weak circular-arc cartograms. As in-
put subdivisions we used octilinear and rectilinear schematized maps
generated with the algorithm of Buchin et al. [8] for area-preserving
subdivision schematization. We note here that keeping the vertex
positions fixed in our method only makes sense if these vertices
are actually characteristic corners of the original shape. This is an
interesting problem in its own right, which could be addressed with a
shape simplification method that identifies and retains characteristic
points, but out of scope in this paper. To demonstrate our circular-arc
approach, we can assume that the vertices have been chosen in a
meaningful way so the polygonal shapes represent the corresponding
countries well. In the appendix, we present four additional examples
using a manually simplified input map.

For each example below, we measure both the success rate, which
is defined as (a; — b;) /A, i.e., the relative achieved area change, and
the relative cartographic error, which is defined as |b; — ;| /1; [27).
‘We show the input polygons in gray and overlay the circular-arc
cartogram and label each country with the pair (success rate, carto-
graphic error).

Figures[7]and 8] show cartograms of the regions in Italy. Figure[7]



represents the population distribution in Italy|and Figurerepre—
sents the agricultural use areas in each region°| This is an example
of a map where our algorithm performs well. The average success
rate in Figure[7]is 0.78 and the average cartographic error is 0.3. In
Figure[§]the average success rate is as high as 0.97 and the average
error is 0.11; here only two regions have non-zero error. In the case
of Italy most regions have access to the external sea face where
the maximum size of circular arcs is less restricted. Moreover, the
desired area changes are relatively moderate. With the removal of
a few degree-2 vertices, i.e., a further simplification of the input
subdivision, we could improve the area accuracy in Figure [7]even
more (in Sardegna or Campania) without the need of displacing
vertices.

0.99/0.01

Figure 9: Cartogram of the population in the Netherlands.

Figure 9] shows a cartogram for the population distribution in the
Netherlandaﬂ This cartogram is based on a rectilinear rather than
an octilinear schematization. The Netherlands are quite unevenly
populated: for example the three provinces of Noord-Brabant, Zuid-
Holland and Noord-Holland (containing all important urban areas),
contribute more than half of the Dutch population. This imbalance
between south and north can bee seen well in the cartogram. The re-
gions of the metropolitan south are cloud-shaped, while the northern
rural areas are more snowflake-shaped. The imbalance in the data
leads to slightly worse performance than in the previous example of
Italy; the average success rate is 0.61 and the average cartographic
error is 0.37. Further simplification of polygons and potentially
some vertex displacements will help to increase the area accuracies.

Figure[10|shows a cartogram based on the length of main roads
per country{*} All regions in both outputs are recognizable. We can

12010 population data from http://demo.istat.it/pop2010.

22010 superficie agricola utilizzata data from Noi Italia 2012,
http://www3.1istat.it/dati/catalogo/20120215_00/Noi_
Italia_2012.pdf

52004 population data from http://en.wikipedia.org/wiki/
Ranked_list_of_Dutch_provinces,

#2012 road length data from http://ec.europa.eu/transport
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Figure 10: Cartogram of the length of the main roads in Europe.

easily identify the different countries as the overall shapes are not
very distorted. Even the aspect ratios of most regions remain mostly
unchanged. The length of all borders is at least as big as in the input,
so we obtained an improved readability of adjacencies.

The results in Figure |[10] show an average success rate of 0.69
and an average cartographic error of 0.4, with small and landlocked
countries affected the most. Groups of landlocked countries, such
as Switzerland and Austria, that all need to increase (decrease) their
sizes pose significant difficulties. While being adjacent to the sea
helps, it does not always suffice to reach the target area: autobahn
and motorway giants such as Germany and the UK, need to further
increase their areas but are eventually blocked by other countries.
This example suggests that for cartograms with large area changes it
is necessary to allow additional distortions, e.g., by allowing vertex
movement in order to decrease cartographic error; we have not
considered such an approach yet.

In summary, the examples illustrate the utility of circular-arc car-
tograms. they are readable (countries are where they should be), they
are recognizable (the adjacencies between neighbors are preserved),
they have low complexity, and they yield visually appealing country
shapes that immediately communicate whether regions increase or
decrease. Moreover, as the US presidential election example on
Fig. [I]shows, circular-arc cartograms make it possible to spot pat-
terns in the data when another parameter is encoded with color. On
the other hand, with our current heuristic we cannot guarantee low
cartographic error if drastic area changes that are required by the
data. This is not necessarily a downside of circular-arc cartograms
themselves, but rather due to our heuristic used to compute these
examples. Other more abstract cartogram types, e.g., rectangular
cartograms [25//27] or circle cartograms [[14], typically achieve very
low area errors but come at the cost of lower recognizability as they
often change adjacency relationships between neighboring countries.


http://demo.istat.it/pop2010
http://www3.istat.it/dati/catalogo/20120215_00/Noi_Italia_2012.pdf
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http://en.wikipedia.org/wiki/Ranked_list_of_Dutch_provinces
http://en.wikipedia.org/wiki/Ranked_list_of_Dutch_provinces
http://ec.europa.eu/transport

Finally, all of the examples in this paper are of weak circular-arc
cartograms, and strong circular-arcs might be preferable. In the next
section we briefly discuss several possible approaches to decrease
cartographic errors for circular-arc cartograms.

5 CONCLUSIONS AND FUTURE WORK

In this paper we introduced circular-arc cartograms as a new model
for value-by-area diagrams. We showed that the CIRCULAR-ARC
CARTOGRAM problem is NP-hard and presented a heuristic al-
gorithm to produce valid circular-arc cartograms with fairly low
cartographic error. The results from our implementation indicate
that circular-arc cartograms are readable, recognizable, have low
complexity and are generally visually appealing. While for many
countries in our examples the cartographic error is low, this can-
not be guaranteed. There are several natural directions for future
algorithmic and experimental work on circular-arc cartograms.

First, we note that the potential area change for each edge depends
on its input length. Thus the fewer and longer the edges of a face
boundary are, the larger is the range of realizable areas of the face.
While we assumed that a fixed (simplified) subdivision is given as
input, we can also allow further simplification on demand, i.e., the
larger the required area changes the more polygon vertices are dis-
carded in order to create longer and fewer edges. Such an approach
preserves well the shape and complexity of regions with low area
change, whereas at the same time strongly distorted regions with
large area change become more strongly simplified. We could also
allow introducing gaps with the shape of biconvex lenses between
two neighboring countries that both need to decrease their areas; this
idea corresponds to splitting these edges into two, each of which can
then be bent inwards.

Second, while it is generally undesirable to displace regions, it
seems often possible to obtain lower cartographic errors by displac-
ing just a few boundary vertices. It is natural to consider the trade-off
between minimizing the overall cartographic error and minimizing
overall vertex movement.

Third, we need to further study the effect of weak and strong
circular-arc cartograms on error rates and perception. Recall that
in the strong version all edges of a deflated country point inwards,
while in the weak model (used in this paper) we allow some edges
to point out.

Fourth, one of the appealing features of circular-arc cartograms
is the easily-interpretable cloud-like shape of countries that have
increased area and snowflake-shape of countries with decreased
area. Generalizing circular arcs to other types of smooth curves, e.g.,
cubic splines, may result in visually similar cartograms which allow
for more flexibility and better accuracy.

Ultimately, there is a need for a formal evaluation of the utilities of
cartograms in general and of circular-arc cartograms in particular. It
would natural to expect that readability, recognizability, faithfulness
and complexity would vary in importance, depending on the given
task. Determining the “best” cartograms would be a difficult but
worthwhile goal.
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A FURTHER EXAMPLES
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Figure 11: Population cartogram for the states of Germany.

Figures [TTHI4] show cartograms of the states of Germany. We
used three different data sets: population data’} number of craft
enterprised’} and railroad kilometer The underlying input map

52011 population data from http://www.statistik-portal.de/
Statistik-Portal/de_Jb0l_jahrtabl.asp.

92009 craft enterprise data from http://www.statistik-portal,
de/Statistik-Portal/de_jbl9_jahrtabl.asp

72010 railroad data from |https://www.destatis.de/DE/
ZahlenFakten/Wirtschaftsbereiche/TransportVerkehr/
UnternehmenInfrastrukturFahrzeugbestand/Tabellen/
Schieneninfrastruktur.html

was simplified by hand in a way that the most characteristic shapes
are preserved and yet only relatively few edges per polygon remain.
Unlike in the previous examples, we did not restrict the edge slopes.

The average success rate in Figure [11]is 0.67 and the average
cartographic error is 0.3. While several states are error-free or
perform fairly well, there are notable examples of densely populated
states like Berlin that need to grow a lot further and states like
Mecklenburg-Vorpommern in Northern Germany that are sparsely
populated and need to shrink a lot more. In both cases low success
rates and high errors are observed; similarly the landlocked states
perform worse than those on the boundary.
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Figure 12: Cartogram for the number of crafts enterprises in the
states of Germany.

Figure [T2]shows interesting statistical data in the sense that there
is a clear difference between the states in the North (except the city
states Bremen, Hamburg and Berlin) with fewer enterprises and the
states in the South with more enterprises. The average success rate in
this example is 0.75 and the average error rate is 0.23. Thus we see
slightly better results than for the population data. As expected, the
problematic states are again those that are very densely populated
and the sparse state of Mecklenburg-Vorpommern. Although the
accuracy is not yet fully satisfying, the overall trend in the data is
nicely conveyed. The southern states as well as the cities are all
cloud-shaped having many craft enterprises and the northern states
are all snowflake-shaped meaning fewer craft enterprises.

Finally, Figures (13| and 14| show two cartograms for the same
data set of railroad kilometers per state. Figure [I3|uses the same
input map as the previous two examples and Figugﬂ uses a more
detailed input map with a lot more and a lot shorter edges defining
the state polygons. In Figure [I13| we see only a single state with
an area error, namely Berlin which has a very extensive railway
network compared to its area. Consequently the average success rate
is more than 0.99 and the average area error is less than 0.01. Even
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Figure 13: Cartogram for the railroad kilometers in the states of
Germany.

all the landlocked states achieve their target areas completely. Since
this example performs so well, it is interesting to study the effects
of increasing the shape complexity of the input map by adding back
in more details. The map in Figure [[4]uses more than four times as
many edges as Figure[T3] While the performance of this cartogram
is still reasonably good with an average success rate of 0.78 and an
average error of 0.11, it gets clear in the direct comparison that the
capacity of bending the shorter edges is not sufficient to reach all
target areas, both for growing and for shrinking states. On the other
hand the similarity to the true geographic shapes is higher in this
cartogram. Nonetheless, the stylized appearance of Figure [[3] with
fewer and longer arcs makes this cartogram more appealing for the
purpose of depicting statistical data on a very abstract map. The
comparison of the two cartograms and their performance shows that
strong simplification of the input shapes is generally advisable, both
for better aesthetics and to achieve lower cartographic errors.
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Figure 14: Cartogram for the railroad kilometers in the states of
Germany using a more detailed input map.
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