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Figure 1: Linear neighborhoods computed in originally linear fields (source, center, saddle and shear) that have been multiplied with a 2D
Gaussian kernel. The result is non-linear. The shape of the of the linear neighborhoods reflects the circular kernel causing the non-linearity.

ABSTRACT

Linear approximation plays an important role in many areas em-
ploying numerical algorithms. Particularly in the field of vector
field visualization, it is the basis of widely used techniques. In this
paper, we introduce two methods to extract areas in two- and three-
dimensional vector fields that are connected to linear flow behav-
ior. We propose a region-growing algorithm that extracts the linear
neighborhood for a certain position. The region is characterized by
linear flow behavior up to a user-defined approximation threshold.
While this first method computes the size of a region given the men-
tioned threshold, our second method computes the quality of a lin-
ear approximation given a user-defined n-ring neighborhood. The
scalar field resulting from the second method is, therefore, called
affine linear approximation error. Isosurfaces of this field show
regions of close-to-linear and non-linear flow behavior. We demon-
strate the expressiveness and discuss the properties of the extracted
regions using analytical examples and several datasets from the do-
main of computational fluid dynamics (CFD).

Index Terms: Computing Methodologies [I.3.8]: Computer
Graphics—Applications, Computer Applications [J.2]: Physical
Sciences and Engineering—Physics

1 INTRODUCTION

Linear vector fields are well understood since they depict the most
simple class of non-trivial fields. They can be described by a sin-
gle tensor, i.e., the Jacobian matrix. Besides the relevance of linear
vector fields for understanding flows, linear approximations play an
important role in many areas employing numerical methods. Partic-
ularly in the field of vector field visualization, they are the basis of
widely used techniques. These naturally include all methods using
linear interpolation, which are ubiquitous.

The importance of linear approximations is even more evident
when looking at the methods that are based on the Jacobian ma-
trix, i.e., the vector gradient. Many methods for feature detection
are based on this local description of the field – among them vortex
core definitions [8] and vortex core line detection methods [29, 17].
Other methods use it only in parts of their overall approach – these
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include vector field topology [7, 31], Lagrangian flow visualiza-
tion [5, 3, 24], and glyph-based methods [12, 1, 32]. Finally, some
methods can be improved by taking such local linear descriptions
into account as, e.g., the computation of stream surfaces [26] and
flow separation line extraction [9].

All these methods in this incomplete list use the local linear ap-
proximation for distinguished stages in their processing pipeline.
Unfortunately, the local linear approximation is mostly restricted to
a cell, since it is often not clear how to extend the approximation
region without violating the linearity assumption. The goal of this
paper is to address this problem by providing and studying appro-
priate measures. So far, there are only two methods that employ
the linearity of the flow in a certain region [26, 32]. These methods
compute a radius of a sphere for which the flow can be assumed to
behave sufficiently linear.

In this paper, we enhance the basic idea of the two latter methods
by an identification of regions that are mainly linear describeable
and provide deeper insights into the local and overall flow behav-
ior. Therefore, we present a technique that explicitly computes a
region of approximately linear behavior for every position in the
field. To do so, we enhance the underlying linear approximation
used by the above-mentioned methods by an affine transformation.
The boundary of the linear neighborhood of a certain point is effi-
ciently computed by an algorithm similar to the concept of march-
ing cubes used for isosurface extraction. In addition to the extrac-
tion of linear neighborhoods, we introduce an error measure for the
quality of linear approximation at a certain point. Analyzing an
n-ring neighborhood for each point in the field, the error of a lin-
ear approximation is computed. Using isosurfacing on the resulting
field, we can identify regions of close-to-linear and non-linear flow
behavior. In summary, the main contributions of the paper are

• a method that (a) computes regions of approximately linear
flow behavior explicitly (in contrast to only their extent [26,
32]) and that (b) is applicable to any position in the domain
(in contrast to only to singularities [26, 32]),

• a method that quantifies the linearity of n-ring neighborhoods
of every position in a dataset (see Sec. 3.2), and

• an interpretation of how these regions are related to previously
known region-based characteristics of vector fields.

We use analytic examples as well as computational fluid dynamics
(CFD) data from several application areas to illustrate the charac-
teristics and interpretations of the extracted regions (see Sec. 5).

2 RELATED WORK

As the applications of the presented techniques mainly come from
the field of fluid dynamics, much work on flow visualization can be



considered to be related. A good overview of the literature in this
area can be found in specific state-of-the-art reports that discuss
feature-based [19, 15, 11] and partition-based [25] techniques. Our
methods consider connected regions of vector fields having overall
similar characteristics. To be able to search for such similarities,
one has to define a similarity measure or, equivalently, a measure
for dissimilarity (distance, error). Such measures are well-known
from clustering techniques. McKenzie et al. [14], for example, use
error measures based on vorticity, divergence, and the vector gra-
dient for a variational clustering approach. Their method tries to
minimize the error of the value at all positions in a region to a cor-
responding average of the whole region (“proxy”) by adapting the
partitioning producing the regions. An important difference of their
gradient error measures to the one we use is that they compare the
vector gradients at each position instead of comparing the vectors in
the field directly to the local linear vector that is approximated. Du
and Wang [2] present a distance measure for vectors that is mainly
based on the direction of the vectors and use the measure to gener-
ate a vector field segmentation by centroidal Voronoi tessellation.
What all these clustering methods have in common is that their re-
gions do not adhere to a certain upper bound of the error but only
try to minimize the error. Telea and van Wijk [30] use a distance
function having ellipsoidal isocontours to determine the similarity
of vectors for their clustering. The clustering technique introduced
by Heckel et al. [6] is the only technique we know of that uses
the distance of streamlines starting from a point as local error mea-
sure to compare a simplified vector field to the original vector field.
Kuhn et al. [10] use a derived scalar field representing the bending
energy of the vector field as input for the flow field clustering.

Very recently, Peng et al. [18] introduced an image-based vec-
tor field clustering approach. Their error measure includes cluster
distance, velocity magnitude, direction, a local error, and the mesh
resolution. Their clustering approach is designed for surfaces only,
whereas we are also interested in three-dimensional vector fields.
There are only few more vector field clustering methods in litera-
ture. However, describing them is beyond the scope of this paper
because their methods of clustering are less related to our methods
of linear neighborhood extraction. An overview discussing these
methods has been given by Salzbrunn et al. [25].

3 LINEAR NEIGHBORHOODS

In the context of vector field visualization, the term linear neighbor-
hood (LN) has been coined by Schneider et al. [26]. They introduce
a linear neighborhood UL to be the largest connected region around
a vector field singularity xc ∈UL(xc)⊆ R

3 that is described by

UL(xc) =

{

y ∈ R
3

∣

∣

∣

∣

‖v(y)− J(xc) · (y−xc)‖
‖v(y)‖ <CL

}

, (1)

where J denotes the Jacobian or vector gradient, v the vector field,
and CL ∈ R, CL > 0 a certain bound. This equation is connected to
the Taylor series. Effectively, it states that we are searching for ar-
eas with vanishing second and higher order derivatives. Therefore,
the accepted error threshold CL stands for the sum of all higher or-
der terms of the vector field and should be as small as possible to
describe a region that is dominated by a linear flow behavior.

In the following, we extend the notion of Schneider et al. to
be applicable to any position in the domain and not only to sin-
gularities of the vector field. We call the extended concept affine
linear neighborhood (ALN). Furthermore, we introduce a concept
describing “how linear” the vector field is in a given region. We
call it the affine linear approximation error (ALAE) with the corre-
sponding affine linear approximation (ALA) of the region. The first
method extracts linearly well approximable regions that are defined
by a certain error threshold. The second method we introduce deter-
mines a certain error measure for any given region. In the end, both
approaches provide a linearization of the field given by a system

of equations and the error of the approximation. The ideas behind
these concepts will become clearer in the detailed descriptions fol-
lowing.

3.1 Affine Linear Neighborhood

Definition – We are using an extended definition of the linear neigh-
borhood, which we call the affine linear neighborhood (ALN). The
main difference, in contrast to the definition in Eq. (1), is that we
define the ALN around an arbitrary seed position xs in the domain
instead of only around singularities. To do so, we have to consider
the actual flow vector at xs, i.e., through-flow, by using an affine
linear vector field. Thus, the affine linear neighborhood UAL for a
seed position xs is defined as

UAL(xs) =

{

y ∈ R
3

∣

∣

∣

∣

‖v(y)− Ja(xs) · (y−xs)a‖
‖v(y)‖ <CL

}

, (2)

where, again, all positions y, which by definition include xs, are
simply connected. We use homogeneous coordinates for the cal-
culations. Therefore, Ja denotes the Jacobian matrix augmented
by v(xs) as its third or fourth column (depending on the dimen-
sion of the considered domain), (y−xs)a indicates that the position
(y− xs) is augmented by a 1, and the y are chosen in a way that
they form a connected region that includes xs. Similar to the linear
neighborhood (1), ALN uses (y− xs) to transfer all positions into
the frame of reference with origin xs but additionally incorporates
the influence of v(xs) by using Ja instead of J, and the augmen-
tation of the vector. Obviously, for vector field singularities at xs,
i.e., v(xs) = 0, this new neighborhood is the same as the traditional
linear neighborhood around singularities as defined in Eq. (1).

Implementation – In the following, we introduce an algorithm to
extract affine linear neighborhoods. This algorithm is designed for
discrete datasets that are piecewise linear, respectively bilinear or
trilinear, approximations of non-linear vector fields.

A straight-forward implementation of ALN would only be based
on given data points. Nevertheless, the error function yields more
complex results that we want to take into account. Before we are
able to present an algorithm to compute the ALN in a piecewise
trilinear vector field, we have to make some preliminary considera-
tions.

We determine the boundary of the region UAL by evaluating the
equation

‖v(y)− Ja(xs) · (y−xs)a‖
‖v(y)‖ =CL. (3)

Considering the three-dimensional case, the solution is a two-
dimensional manifold representing the ALN boundary. Due to
the equation’s complexity, an analytic computation is not feasible.
Nevertheless, Eq. (3) allows us to easily determine all y on linearly
interpolated edges. This enables us to propose a construction of the
manifold similar to the marching cubes algorithm [13]. Let y1 and
y2 be the vertices of an edge y(β ). Then, let β ∈ [0,1] the inter-
polation coefficient and v(y) = βv(y1)+ (1−β )v(y2) the linearly
interpolated vector field on this edge. When inserting this expres-
sion into Eq. (3) and solving for β , we obtain the quadratic equation

0 =
[

((v(y1)− j(y1))− (v(y2)− j(y2)))
2 (4)

−C2
L(v(y1)−v(y2))

2
]

·β 2

+
[

(v(y1)− j(y1))(v(y2)− j(y2))

−(v(y2)− j(y2))
2−C2

L(v(y1)v(y2)−v(y2)
2)
]

·2β

+
[

(v(y2)− j(y2))
2−C2

Lv(y2)
2
]

,



Figure 2: Linear approximation of a quadratic function in quadrilateral
cells, where the light gray area represents the ALN. Red lines show
the actually extracted boundary, by using the marching-cubes-based
approach. Small structures arising from the quadratic function will be
discarded and approximated by these borders.

where j(y) = Ja ·(y−xs)a – see Appendix A in the additional mate-
rial for the detailed derivation. This equation shows that the surface
can be more complex than an isocontour in a linearly interpolated
vector field because the scalar field defined here is quadratic. Un-
like the marching cubes scheme, we can have zero, one, or two in-
tersections on each line segment. However, we are only interested
in edges with one intersection, because these edges provide the ba-
sis for the extraction of the linear approximation of the ALN bound-
ary we will introduce below. Thus, we are consequently missing
small structures resulting from the quadratic function that actually
describes this boundary as shown in Fig. 2.

Our algorithm consists of two parts: In the first step, all inner
cells of the linear neighborhood are extracted using a region grow-
ing approach. A pseudo code implementation is given in Algo-
rithm 1. In the second step, a triangulated surface, representing the
boundary of the affine linear neighborhood, is constructed.

The cell in which xs is located serves as starting point. If the cell
is a simplex, the vertices of this cell can be described accurately by
Ja and they are part of the ALN. Otherwise, only vertices that lie in-
side the ALN are of interest. By traversing all outgoing edges from
each of these vertices and solving Eq. (4), it can be easily decided
whether the edge intersects the affine linear neighborhood bound-
ary or not. If the interpolation coefficient β has one unique solution
in [0,1], one position on the boundary of the linear neighborhood
was found. In this case, the endpoint of the currently tested edge
will be marked as lying outside the linear neighborhood and the
intersection point is stored together with the edge in a map. If no
intersection was found, the endpoint of the outgoing edge belongs
to the affine linear neighborhood and will be marked accordingly
and all outgoing edges of this position will be marked for being
checked next. If there are no more edges to be checked, the algo-
rithm terminates and all positions lying inside the ALN have been
found. We evaluate the approximated field at each position in the
ALN using Ja(xs)(y−xs)a and store the field to further investigate
the approximated flow.

Due to the discrete nature of the input fields, we use a mod-
ified marching cells-based [16] isosurface construction algorithm
to build a triangulated boundary surface. From the ALN region
computation, we already know all cells that lie on the boundary of
the volume. These are the cells we need for the triangulation. The
marked cell vertices allow us to use the standard lookup tables from
the marching cells algorithms to build a triangulated surface. Un-
like marching cell-based algorithms, due to the quadratic equation,
we can not determine the position of the intersection between the
surface and the edge by using linear interpolation of the sampled
error function. Therefore, we replace this linear interpolation by a
look-up in the map of edge intersections, which we generated dur-
ing the linear neighborhood volume extraction before. This allows
us to obtain all intersections between the surface and the cell edges
in constant time. We are aware of the fact that we may be missing a
few smaller structures as depicted in Fig. 2, since a piecewise-linear
approximation of the field is used. The diameter of these structures
is always smaller than the length of an edge of a cell in the dataset.

Interpretation – In the previous section, We introduced an ap-

Algorithm 1: Compute affine linear neighborhood.

input: Seed position: seedPosition;
Linearity threshold: CL

output: Positions inside ALN points: linearNeighborhood;
ALN boundary points: boundary

1: cell← SearchCell(seedPosition)
2: startPositions← GetCellVertices(cell)
3: for all pos ∈ startPositions do
4: if ComputeLinearity(pos) ≤CL then
5: positions← {pos} ∪ positions;
6: while HasNextElement(positions) do
7: pos← NextElement(positions)
8: linearNeighborhood← {pos} ∪ linearNeighborhood
9: neighbors← GetNeighboringPositions(pos)

10: for all neigh ∈ neighbors do
11: if EdgeNotChecked(pos, neigh) then
12: inter← SearchIntersection(pos, neigh)
13: if inter then
14: boundary← {inter} ∪ boundary
15: else
16: positions← {neigh} ∪ positions

proach to find regions that can be safely described by a linear field
approximation. Although, we will mainly refer to vortex core re-
gions later on in the result section, of course our method is able to
extract and depict all linearly describable flow phenomena.

In order to be able to choose an appropriate threshold CL for the
computation of the affine linear neighborhood, we now discuss how
CL influences the range of allowed magnitude difference and the an-
gle α between the original and the linearly approximated vector in
UAL. To give an idea of the maximal possible variation of magni-
tude and angle, we rewrite Eq. 3 to

0 = R2−2cos(α)R−C2
L +1,

where α denotes the angle between the vectors Ja(xs) ·(y−xs)a and

v(y), and R =
‖Ja(xs)·(y−xs)‖
‖v(y)‖ is the length ratio of the approximated

and the actual vector in the field – see Appendix B in the additional
material for the detailed derivation.

To obtain a better impression on how the parameter CL influences
the deviations of vectors, we analyze the cases of angular variation
at the same magnitude and the magnitude variation at the same vec-
tor direction independently. First, we set α = 0 and solve for the
ratio of vector magnitudes

R1,2 = 1±
√

1+C2
L−1 = 1±CL, (5)

which defines the relation between the vector magnitudes as

(1−CL)‖v(y)‖ < ‖Ja(xs) · (y−xs)a‖ < (1+CL)‖v(y)‖.

Therefore, CL defines the relative change of magnitude from the
original vector. The second special case describes the maximal pos-
sible angle between v(y) and Ja(xs)(y−xs)a in the case where they
have the same magnitude. Setting R = 1, the maximum angle αmax

can be estimated.

0 = 1−2cos(αmax)−C2
L +1 (6)

αmax = arccos(1−0.5 C2
L)

We illustrate the possible magnitude and angle differences, de-
scribed by the two equations above, in Fig. 3. The vectors accepted
by our error measure, see Eq. (3), lie between the two extreme cases
and no greater angle or magnitude differences are possible. To get a



better impression of this maximal possible angle between two vec-
tors from UAL we plotted α for an increasing relative error CL in
Fig. 4.

(a) (b)

Figure 3: Black arrows represent vectors at the seed positions of
ALNs and red arrows the vectors still accepted according to Eq. (3).
Image (a) illustrates the possible magnitude differences between two
parallel vectors as given by Eq. (5). Image (b) illustrates the possible
angle differences between two vectors of the same length as given
by Eq. (6).

3.2 Affine Linear Approximation

Affine-linear neighborhoods abstract from singularities by adding a
through-flow component but still rely on dedicated points that act as
seed point for the neighborhood and that dictate the linear behavior.
The concept of affine linear approximations avoids the selection of
these seed points by taking into account a sub-area or sub-volume
of the field. Using this, we are determining the maximal or average
error introduced by a possible linear approximation of the flow in
a given region instead of extracting the region implied by a seed
position and an error threshold.

Definition – An affine linear approximation of a field defined on
a domain D′ ⊆ D ∈ R

d in the field is the affine-linear map that
approximates this field best. There are multiple ways of defining a
“best fit”. For now, we derive the map by defining the three rows of
the augmented Jacobian Ja using the system of j equations

PJi
a =Vi, i ∈ {1,2,3}, (7)

where Pji is the matrix that contains the j points (x
j
1,x

j
2,x

j
3,1) =

x j ∈ D′ in each row, Vi the column vector with the i-th component
of the flow vector v(x j) at position x j , and Ji

a = (Jix,Jiy,Jiz,Jit) the
i-th row of the augmented Jacobian matrix. As in the general case,
this system is over-determined, we find an approximate solution by
using the least-squares method [20]. As we are interested in an
error per area or volume, in unstructured grids, we have to take the
volumetric contribution of a value v into account by determining
the covered volume. In linearly approximated data, the influence
of a value defined at a vertex on the volume is determined by the
volume of the neighboring cells, which we are using as weights to
the equation. This leads to the modified equation for unstructured
grids

Figure 4: Plot of Eq. (6) illustrating the possible angular deviation
α for a given CL. Original and approximated vector have the same
constant length.

P′Ji
a =V ′i , i ∈ {1,2,3}, P′ =WP,V ′i =WV ′i , (8)

where W is a diagonal matrix with Wii =
√

Ai and Ai is the sum of
the areas or volumes of all cells neighboring vertex vi.

To study the behavior, we compute the approximation on an n-
ring neighborhood and call it local level-n approximation of the
field. The quality of this approximation can be interpreted as a
measure of local linearity of the field at approximation level n. Two
values are of interest: The average error ALAEavg, which is the
weighted sum of all error values divided by the size of the region of
interest, and the maximum error ALAEmax within that region. The
latter directly relates to the ALN as it provides the smallest error CL

that has to be used to extract at least this area using the ALN.

Implementation – To solve for Ja in Eq. (7), our implementation
uses the singular value decomposition of the matrix P or P′ to com-
pute a pseudo-inverse in a memory- and time-efficient way. There
are two ways of measuring the quality of fit. One is by using the
null space of the Moore-Penrose inverse, which accounts for the
distance metric used in the approximation. Instead, for an easier
comparison with results from the previous sections, we employ the
same error metric as used there as well.

Interpretation – The affine linear approximation provides a scale-
based description of the dataset according to the local affine-linear
behavior of the data. Thus, the affine linear approximation error
(ALAE) can be seen as a measure of the local simplicity of the data
at that approximation level and, combined with the ALA, locally
provides an intuitive description of the data. Just as low ALAEs
serve as an indicator of predominant affine-linear behavior in the
region, higher ALAE values result where higher order vector fields
occur. We would like to emphasize that the latter does not per
se coincide with chaotic or turbulent flow. In addition, whereas
ALAEmax can only increase with increasing size of the approxi-
mated region, no such assumption can be made for the average er-
ror ALAEavg. Implications thereof and examples are discussed in
Section 5.

Figure 5: Direct volume rendering of the ALAE field at level two of
the delta wing dataset. Its triangular shape is well perceptible. The
areas with the largest ALAE, lie exactly behind the tail of the wing,
can be clearly identified as the vortex breakdown bubbles.

3.3 Quality of Approximations

Both approaches presented here provide linear approximations of
the given vector field in a certain region by approximating a suitable
Jacobian matrix. We can deduce a specific equation that describes
the entire flow in the corresponding region, which then allows ana-
lytical solutions of different quantities and visualization methods,
such as the computation of streamlines, for instance. A crucial
question is how far the approximated vector fields and the possibly
contained flow features are corresponding to the flow features in



Figure 6: Front view of the ICE train with comparison of streamlines
in an ALN next to the ICE. The ALN is shown in light gray. Red
streamlines represent the linearly approximated vector field for CL =
0.2 and blue streamlines the original vector field. The low error is
achieved in the ALN, only. The swirling behavior of the approximated
streamlines are well perceivable.

the original vector field. This question is partially answered by the
particular user defined maximal error CL or the computed ALAE.
Additionally, one could determine an error measure as proposed by
Heckel et al. [6], which is based on the deviation of streamlines
that were started at the same position, but one in the approximated
and one in the original vector field. We assume, that a study to
validate detected flow features in the approximated vector field is
reasonable but goes beyond the scope of this discussion, because
we already inherently supply an error measure.

4 VISUALIZATION USING LINEAR NEIGHBORHOODS

The two different techniques that we introduced yield different
types of data. The computation of the ALN results in a surface
or line representing the boundary of the neighborhood, and a linear
vector field in the ALN. A scalar field representing the ALAE for all
positions in a dataset is the result of the affine linear approximation.

As the ALN represents a simplified vector field, rendering it us-
ing streamlines is a straightforward choice. A depiction of stream-
lines can for example be found in Fig. 6 where we compare stream-
lines in the approximated and in the original field. The streamlines
in the approximated field are restricted to the ALN they represent
and are drawn in red. Streamlines in the original field are blue and
not restricted to the ALN. Fig. 6 shows that the affine-linear vector
field matches the original field inside the ALN quite well.

The surface representing the boundary of the ALN can be ren-
dered as a semi-transparent surface to allow looking into the ALN
to be able to see the aforementioned streamlines in the ALN.

For the 3D scalar field representing ALAE, we employ isosurfac-
ing to show the regions of particularly high ALAE (e.g., Fig. 11).
For a complete overview of the different amounts of ALAE in the
field, a direct volume rendering is better suited. See Fig. 5 for an
example.

5 APPLICATION EXAMPLES AND DISCUSSION

In this section, we present and discuss the results of applying the
ALN and ALAE computation to a number of analytic and CFD
datasets.

5.1 Simple Analytic 2D Vector Fields

To provide first results for a better understanding of the ALN and
to demonstrate the influence of the error threshold CL on the set
of positions of the linear neighborhood defined in Eq. (2), we cre-
ated four synthetic two-dimensional datasets. They are analytic
vector fields with different types of singularities centered at the
origin of their domain. To add a non-linear component to the
fields, they are multiplied with a Gaussian distribution given by

g(x,y) = 1
2π·0.1 e−

1
2
·0.1·(x2+y2). We therefore get fields with an in-

creasing non-linear flow behavior with increasing distance from the

Figure 7: A synthetic two-dimensional vector field created by the mul-
tiplication of a Gauss kernel with a linear vector field, which contains
a center point in its origin. There is a non-linear change in the flow
behavior caused by the Gaussian kernel. This can be found by Algo-
rithm (1). Its size depends on the chosen error threshold CL. These
images show the ALNs for CL = 0.2,0.4, and 0.8, respectively.

origin. Every field was discretized, on a rectilinear grid with a res-
olution of 62×62 and a bounding box lying between (−5.0,−5.0)
and (5.0,5.0).

ALN – Because the vector fields are exhibiting a more and more
non-linear behavior with increasing distance from the origin, there
has to be a boundary of the linear neighborhood associated with the
respective singularity. These boundaries are shown in Fig. 1. The
size of these linear neighborhoods depends on the threshold CL and
on the Gaussian distribution. Exemplary computed neighborhoods
for different thresholds applied to the center data set can be found
in Fig. 7. The extracted affine linear neighborhood is growing with
an increasing error threshold CL, because larger thresholds allow a
greater deviation from a perfect linear vector field.

5.2 Oseen Vortices

Figure 8: Left: Three ALNs seeded at the singularities of a data
set containing two co-rotating Oseen vortices (resolution 500× 500).
Center and right: Color coding according to ALAE fields at approx-
imation levels of four and eight, respectively. The relation of four, re-
spectively eight, edge lengths to the grid size is indicated by the small
red scales in the lower left corner of the ALAE fields. Red colored re-
gions indicate non-linear flow behavior. The color map indicates that
the ALAE values range from 0 (white) to 0.05 (dark red).

We discussed very simple cases in the previous section. To study
the behavior of our new techniques in more detail, we are now
looking at a more complex 2D vector field containing Oseen vor-
tices. The Oseen vortex models a free vortex, i.e., the tangential
velocity behaves inverse to the distance from the center. It decays
due to viscosity. Given two co-rotational Oseen vortices, the flow
field shows the interaction of a saddle and two center points. For
a more detailed description of the model, we refer to a paper by
Rom-Kedar et al. [21].

ALN – Because the flow is dominated by the interaction of the three
singular points, we used them as seed points and determined the
linear neighborhoods. The result is shown in Fig. 8 (left). The
underlying line integral convolution (LIC) [28] shows the flow be-
havior. At the saddle point we can observe long “arms” extending
to the center points. Here, the the flow can be described better by
a linear vector field with respect to the error threshold. The linear
neighborhoods of the center points are – in contrast to our synthetic
example in 5.1 – clearly distorted. The flow induced by the saddle
is influencing these two regions.



Figure 9: Depiction of the right primary vortex on the delta wing
dataset as a composition of ALNs (CL = 0.1) seeded equidistantly
along the vortex core line. At this low error threshold, a composi-
tion of similar areas can be used to describe the shape of the vortex.
Furthermore, one can very nicely perceive that the ALNs towards the
vortex breakdown bubble shrink and twist because the flow behavior
becomes more and more nonlinear (compare Fig. 11).

Figure 10: Affine linear neighborhoods at the singularities of the right
vortex bubble formed behind the delta wing. Streamlines show the
helical structure of the flow along the vortex core. This behavior re-
mains stable until the flow enters the vortex bubble which is bounded
by the vector field singularities (red spheres). The two gray surfaces
depict the affine linear neighborhoods rooted at the singularities for
CL = 0.1.

Similar to [32], we are able to depict how different singularities
influence each other. This means that, besides the possibility to
use the extracted regions as basis for further investigations, they
also allow us to get a deeper insight into the flow characteristics by
directly looking at their structure.

ALAE – In Fig. (8) (center and right), we show a LIC image of
the dataset with a coloring determined by two ALAE fields. The
center image is computed with an n-ring neighborhood that has half
the size of the neighborhood used for the right image. The size of
regions with a high ALAE value are clearly increasing by doubling
the used approximation level. This especially holds for the two
strongest maxima that are located at the center points. It can also
be seen that the high ALAE values coincide with the points where
the saddle and the center ALN boundaries meet. Here, the flow
cannot be described by a linear approximation. Besides, the area
outside the vortices is nearly laminar and can be be approximated
linearly. Hence, the error decreases towards the image border.

5.3 Delta Wing

In the following, we examine a dataset resulting from a simula-
tion of air flow around a single delta-type wing configuration. The
dataset was computed in the context of numerical research into vor-
tex breakdown [23]. The simulation was carried out for flight at
subsonic speed. The initially already high angle of attack increases
over time. The simulation shows the evolution of the primary, sec-
ondary, and tertiary vortex structures over time and the breakdown
of the main vortices above the wing. The dataset is relatively large
and contains about 12M cells. Although it contains multiple time
steps, we limit our analysis to a single time step in this paper.

ALN – As the two primary vortices are the most important features
in the dataset, we computed vortex core lines using the cell-based

Figure 11: This image shows an ALAEmax isosurface at level two and
CL =

√
0.1 located above the tail of the wing, which is depicted by the

grid. The vortex breakdown bubble is almost entirely enclosed by an
area of high approximation error and, therefore, represents a region
of non-linear behavior.

Figure 12: Top view of an ICE train for comparison between vortex
core regions [8] illustrated by a λ2 = −10−9 isosurface in blue and a
region with high non-linearity ALAE shown in red. The ALAE field
was computed with parameters CL =

√
0.0075 and n = 2. A region

of high ALAE lies exactly between the two main vortices that are
present on the lee side of the ICE train. High ALAE can also be
observed where the flow separates from the top border of the train.
The small structures in the middle of the train result from a small
turbulence caused by the connector between the train and its first
docked wagon.

vortex core line extraction method by Sujudi and Haimes [29].
Along the vortex core line of the right primary vortex, we equidis-
tantly seed ALNs to visualize their local area of influence. We find
areas around the vortex core line that are part of the linearly rotat-
ing motion. These ALNs are shown in Fig. 9. Speaking in terms
of popular vortex models (e.g., the Rankine vortex [22]), we are
hereby extracting the areas of solid body rotation along the vortex
core line. Even though these areas align well around the vortex core
line and define the expected tubular structure, an interesting irregu-
larity can be seen in the “noses” and hollow tubes forming around
the core line.

ALAE – The prevalent swirling flow pattern changes tremendously
around the vortex breakdown bubbles forming behind the delta
wing. Figures 10 and 11 show closeups of this behavior. We use
streamlines and the two singularities that have been studied in de-
tail by Rütten [23] and Garth et al. [4] before. The whole bubble,
including the singularities, corresponds to a region of high ALAE,
whereas the turbulent flow behind the bubble can be described well
according to ALA, and larger ALNs can be extracted along the vor-
tex core line (cf. Fig. 10). It is worth to note that the areas around
both saddle points behave differently. Whereas the upstream sad-
dle point is embedded in highly non-linear flow, the linear structure
around the downstream saddle point serves well to describe parts
of the downstream behavior, but the linear nature does not reach far
into the vortex bubble.

5.4 ICE

A study of the track holding of the German high-speed train ICE
led to this dataset. It is the result of a steady simulation of the train
traveling at a velocity of about 250 km/h with wind blowing from
the side at an angle of 30 degrees. The wind causes vortices to form
and shed on the lee side of the train.



ALN – Fig. 6 shows an ALN seeded in the largest vortex based on
low ALAE. At an approximation level of two, we are able to ex-
tract major parts of the main vortex and display the area of the helix
structure that can be regarded approximately as a solid-body rota-
tion around the vortex core line and rigid-body movement along the
vortex core line. The figure also provides a comparison of stream-
lines in the linear field restricted to the cells containing the ALN
and streamlines in the original field, which are not constrained to
any area. Even though CL is set to 0.2, which allows a greater
variance between the approximated and original vectors, the com-
parison demonstrates the expected correspondence of the flow and
nicely illustrates the helical structure.

This result shows that our method is able to extract similar re-
gions as vortex extraction methods, that are based on the Rankine-
vortex model for instance. That is namely, because the vortex core
in such models is characterized by a linear behavior and we are
exactly extracting these regions.

ALAE – Fig. 12 shows the dataset visualized using an isosurface
of the popular vortex extraction criterion λ2 [8] in comparison to an

isosurface of CL =
√

0.0075 in an ALAEavg field at level 2. The ar-
eas of high ALAE lie between the two main vortices and where the
flow separates at the lee side from the top of the train. The extracted
ALN in Fig. 6 shows a linearly rotating flow that corresponds with
a part of the main vortices in Fig. 12. The region of high ALAE
indicates a change in the flow, from linear to non-linear behavior
and separates them from each other.

5.5 Tube

This dataset results from a simulation of the flow in a Francis tur-
bine. The simulation was carried out by VA Tech Hydro. We are
investigating a part of the simulation representing the unsteady flow
in the draft tube (see Fig. 13) of the turbine. The flow is dominated
by one moving main vortex. A detailed description and a picture of
the turbine can be found in Appendix C in the additional material.

Figure 13: Comparison of ALAE in the turbine data set. The gray
surface depicts the boundary of the draft tube. ALAE is shown using
CL =

√
0.1 isosurfaces at approximation levels two, four and six. The

high ALAE values near the tube surface are probably caused by the
shear in the boundary layer. With increasing level of approximation,
more and more regions, which are only coarsely approximable by
linear fields, arise at locations corresponding to vortices.

ALAE – Most isostructures indicating areas of high ALAE
(Fig. 13), can be found close to the boundary of the dataset and
in the highlighted regions in the inner part. The high error values at
the boundary presumably occur due to increased shear forces that
can be found in the outermost cell layer, only and are the same

across all approximation levels. As the isosurface at CL =
√

0.1
(Fig. 13) shows, the dataset can be approximated well locally (up
to approximation level two), but at approximation level four, the
first structures appear that cannot be approximated that well. At
approximation level six, it can be clearly seen that the structures
correspond to the main vortex and the secondary vortex that are ro-
tating around a common center, see [27], and smaller regions close
to the outlet that are known to have rotating flow. In comparison,
Fig. 14 shows level four for different isovalues where the main vor-
tex can be seen as an area that cannot be approximated at an error

Level Tube ICE Delta Wing

2 1m 15s 1m 56s 7m 47s

4 5m 23s 11m 32s 56m 46s

6 14m 35s 42m 16s 3h 21m

Table 1: Computation times for the ALAE fields on different datasets
at different neighborhood levels.

level below CL =
√

0.05.

This is a good example to recall that the we want to extract and
investigate regions which are characterized by a linear flow and do
not want to directly extract features like vortices. Especially in the
case of vortices, we will only extract them, if the particular vortex
model exhibits a linear behavior within the vortex core.

5.6 Computation Times

We implemented and executed our methods on one core of a work-
station with 32 GB main memory and two Intel Xeon processors
with four 2.4 GHz cores each. Both of our methods are perfectly
suited for parallel execution. This will definitely be part of our fu-
ture work.

ALN Fields – It is impracticable to state representative execution
times of our ALN algorithm described in Section 3.1, because the
results depend on the size of the region, which itself depends on the
seed point xs, the threshold CL, and the data. In order to give an
impression, we can state that the computation and visualization of
the ALNs around the eight singularities of the delta wing dataset for
CL = 0.1 took about 4 seconds. Two of the computed surfaces are
shown in Fig. 10. In comparison, the computation of 935 ALNs at
CL = 0.1 seeded along the vortex core lines of the delta wing took
8 min 33 sec (approximately 550 ms per seed point), which includes
building unstructured meshes for the surface and the datasets for the
volume representation.

ALA and ALAE Fields – The computation times for the ALA
fields can be found in Tab. 1. These times include the calculation
of the ALAE fields with the averaged and maximum error and two
fields representing the approximated Jacobian and augmented ap-
proximated Jacobian matrices for each position, depending on the
chosen neighborhood level.

Figure 14: The same dataset as Fig. 13 compared at level four. Here,
the isosurface is shown for CL values of

√
0.025,

√
0.05, and

√
0.1. In

agreement with the observations made in Fig. (13), structures indi-
cating regions that are only coarsely approximable by linear fields are
vanishing with increasing error bound.

6 CONCLUSION AND FUTURE WORK

We presented two approaches to investigate linearly describable
parts of vector fields. One method to extract linear regions and a
local measure to quantify the linearity in a n-ring neighborhood.
We have shown that, by looking at linear parts of complex vec-
tor fields, regions containing different flow phenomena can be ex-
tracted and described by their linear approximation. As described
in Section 5.2, this allows a deeper insight into the flow character-
istics. Analyzing the introduced measure for the quality of local
linear approximations (ALAE), enabled us to reveal new aspects of



the datasets as a whole and of certain features of the data in partic-
ular.

The presented measures and methods pave the way for many fu-
ture research directions. An obvious next step surely is to provide a
more efficient implementation of the presented methods. As men-
tioned, parallelization of the methods is easy and will be done first.
After an advanced discussion about the choice of appropriate seed
points of the affine linear neighborhood computation, the next step
will be to quantify the flow behavior in these regions. This could
be done by integrating characteristic quantities such as vorticity or
velocity magnitude over the extracted regions and by providing a
comprehensive depiction of the results. Furthermore, it is conceiv-
able, that the extracted affine linear neighborhoods could serve as
starting point not only for analytic solutions of flow quantities or
streamlines but also for more complex calculations. In addition, it
should be checked in how far our methods are complementary to
each other, and to take ALAE fields into account in the course of
the discussion of the choice of meaningful seed positions for the
extraction of ALNs.
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