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ABSTRACT

This paper proposes a vector field visualization, which mimics a
sketch-like representation. The visualization combines two major
perspectives: Large scale trends based on a strongly simplified field
as background visualization and a local visualization highlighting
strongly expressed features at their exact position. Each compo-
nent considers the vector field itself and its spatial derivatives. The
derivate is an asymmetric tensor field, which allows the deduc-
tion of scalar quantities reflecting distinctive field properties like
strength of rotation or shear. The basis of the background visual-
ization is a vector and scalar clustering approach. The local features
are defined as the extrema of the respective scalar fields. Applying
scalar field topology provides a profound mathematical basis for
the feature extraction. All design decisions are guided by the goal
of generating a simple to read visualization. To demonstrate the ef-
fectiveness of our approach, we show results for three different data
sets with different complexity and characteristics.

Index Terms: Computer Graphics [I.3.3]: Picture/Image
Generation—Vector field visualization, illustrative visualization,
asymmetric tensor fields, scalar field topology, homological per-
sistence

1 INTRODUCTION

Visualization tries to embody much information of a data set within
a single image. This often results in complex depictions that cannot
be understood by domain experts without further knowledge of the
visualization methods. As a remedy, illustrative visualization tries
to mimic hand-drawn sketches [6, 34] of schematic illustrations as
used by the domain experts themselves. In this paper, we present an
automatic visualization tool similar to these hand drawn sketches.
Our major motivation is a sketch drawn by domain experts on
the basis of a complex visualization [4] derived from an earthquake
simulation [38]. Abstracting the complex original visualization re-
sults in a simple, easy-to-read image containing the most important
information (Fig. 1). The goal of this work is to use computers to
automatically generate similar abstracted, highly simplified repre-
sentations of vector data and its prevalent features, pursuing the idea
that showing less can be more. This can serve as a bridge towards
other elaborate and more complete visualization methods and also
eases the comparison of data sets, e.g., for different time steps.
Displaying less certainly requires a careful choice of what to
show. This also implies that the abstraction process should only
depend on a few intuitive parameters. Therefore, the design of our
visualization is guided by the following ideas: generate a visualiza-
tion that is simple in its concepts, intuitive in its single elements,
conveys trends and strongly expressed features in the data.
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Figure 1: Visualization of a vector field from a simulation of coseis-
mic displacements [38] (Sec. 5.2). The image (a) shows the result
of our automatically generated visualization including a rough rep-
resentation of the context as background and the strongly expressed
features on top. Those occur mostly along the fault moving from
top to down. The image (c) shows the detailed hybrid visualiza-
tion technique developed by Chen et al. [4] consisting of hyper-
streamlines and elliptical glyphs. Image (b) is the sketch drawn by
domain experts on basis of (c) and motivated our work.

Visualization concept — The visualization consists of two ma-
jor components: (a) a background visualization that displays large
scale trends, and (b) a feature visualization that highlights locations
of strongly expressed field characteristics. Both components are
built from multiple layers considering the vector field itself and
the gradient tensor field, an asymmetric tensor field. The deriva-
tive supplies valuable additional information about the vector field.
The derivative, an asymmetric tensor, is decomposed according to
Zhang et al. [40] into three components expressing the strengths of
isotropic scaling, the rotation and the shear. In contrast to the work
by Chen et al. [4], we do not display the entire tensor information
but restrict ourselves to the magnitude of the components, which
are scalar fields describing the respective feature strength.

The idea of the background visualization is to cluster regions of
similar behavior. Thereby, only large scale clusters are considered
for the visualization. The clustering method depends on the respec-
tive field. For vector fields, we introduce an efficient clustering
approach, which is almost parameter free. For the clustering, we
adopted the similarity measure proposed by Telea et al.[35] adding
a component that considers the strength of the derived tensor field.
As result, we obtain large clusters in mostly homogeneous regions
while clusters are small in regions with high variations. For the
scalar fields, we propose two approaches: the first delivers a clear
partition of the domain into the dominant components of the scalar
fields. However for its clarity it might loose important details. The
second approach conveys more details and builds on scalar field
topology exploiting basins of the maxima. To complement this
trend visualization, we add a detailed feature visualization in the



foreground. Local features are defined as maxima of the respective
scalar field and offer the possibility to steer the level of detail for
this representation via homological persistence. Features as well
as background trends are represented by icons. The combination
of these elements involves few plausible parameters which can be
used to move the focus from global to detail or to specific features
of interest.

In summary, the algorithm consists of the following components:
e  Tensor decomposition
e  Vector field clustering
e Scalar field topology extraction and persistence computation
e  Cluster center computation for background glyph placement

e Rendering

The method is relevant for a multitude of application areas. We
demonstrate its effectiveness using three data sets: A two dimen-
sional flow behind a cylinder, a wind vector field from a multi-
parameter weather simulation and the displacement fields of an
earthquake simulation.

2 RELATED WORK

The analysis and visualization of vector fields has already a long
tradition in the area of visualization. Accordingly, there has been
done a large amount of interesting work in this field which is far
beyond this paper. Considering different views on the topic, there
are some good review articles: Texture and Feature-Based Flow Vi-
sualization [9], Topology-Based Flow Visualization [21], Partition-
based Techniques [32], and Illustrative Flow Visualization [2]. In
relation to our work, especially, methods for vector field simplifica-
tion and feature analysis are of interest.

Simplification via vector clustering — One approach to simplify
complex data sets is to group regions of similar behaviors and rep-
resent them using on icon, e.g. one representative vector or a curved
arrow icon. For all methods, the choice of an appropriate similar-
ity measure on which the clustering is based is essential. Mostly,
they are a combination of a position and vector (orientation and
magnitude) error. Being able to display several levels of details the
construction of vector field hierarchies has been the goal of several
clustering algorithms. The methods can be mainly distinguished
by choosing a top-down or bottom-up approach. An early work by
Heckel et al. [12] recursively uses planes to split clusters based on
streamline discrepancy as error measure. The result is a hierarchy
of convex clusters. Another top-down approach using a generalized
normalized-cut algorithm has been proposed by Chen et al. [S]. The
goal of their method is to cluster vectors that are associated with the
same critical point. Du et al. [7] propose a simplification of vector
fields resulting in a predefined number of clusters based on Cen-
troidal Voronoi tessellations (CVTs). Based on the chosen distance
function, the vector fields are then naturally clustered by the CVT.
A generalization of the K-means clustering has been introduced by
Mc Kenzie et al. [23]. Its basic component is a variational cluster-
ing algorithm, that minimizes a global error for a given number of
cluster sets. The algorithm is applicable to 2D and 3D fields and
the error metric is flexibly exchangeable. There are also a couple of
approaches pursuing a clustering based on an anisotropic diffusion
process. In contrast to other clustering approaches, this is a contin-
uous process without explicit split or merge events. Garcke et al.
implemented a phase field model adapting the Cahn Hillard model
to vector fields [10]. Greibel et al. propose to use an algebraic multi
grid method to achieve similar results. While generating impressive
results, theses methods do not provide a direct error control. The
method we build on was developed by Telea et al. [35]. The goal of
their work was to produce simplified but suggestive images with-
out much user interaction. The clustering process works bottom-up
starting with clusters for every data point. Then clusters are succes-

sively merged according to differences in position and orientation
and magnitude. A nice feature of the method is the design of the
similarity measure which allows to control cluster shapes by adapt-
ing to the weights of the various terms in the error measure.

Simplification via streamline selection or clustering — Another
approach is to simplify the vector field representation displaying
only selected streamlines. There are several streamline placement
algorithms with the goal to achieve a uniform coverage of the do-
main that is sparse but still gives a continuous impression of the
field, e.g. for 2D fields [16, 29] and for 3D fields [22, 3]. Tech-
niques that cluster precomputed streamlines are frequently used in
context of fiber tracking for diffusion tensor data. An evaluation of
related methods can be found in [24]. Kuhn et al. [20] have intro-
duced a clustering technique using streamline properties, as curva-
ture, to detect regions of similarity and visualize them by means of
compact cluster boundaries.

A natural segmentation of vector fields in regions of similar
streamline behavior is defined by its topological structure. Meth-
ods to simplify this structure and use it for visualization purposes
have been proposed by Tricoche and Garth et al. [37, 11].

Feature extraction for vector fields - The second component of
our visualization frame work builds on existing work on feature
extraction and definition for vector fields. Papers in this area are
concerned with the definition, stable extraction, and simplification
of features. One can distinguish features that are directly defined on
the vector vector field, as vector field topology, and features that fa-
cilitate a derived scalar field. Vector field topology thereby focuses
on finding features like source, sinks, and saddle points as well as
separatrices connecting them [21]. Scalar typed features are mostly
defined as iso-contours for a given threshold or the extremal struc-
ture of the field [33]. Prominent examples are vortex like features
defined on basis of vorticity [30, 31], A, [15], the Q quantity pro-
posed by Hunt [14], or the acceleration magnitude [18].

An evolved analysis of multiple scalar and vector-like features
has been presented by Zhang et al. [40, 4]. They consider the gradi-
ent vector field as basic feature carrier, which is composed in three
components: isotropic scaling, rotation, and shear. While the first
two components have only two distinct expressions, i.e., positive re-
spective negative, the shear factor is also equipped with directional
information. Based on this tensor decomposition, the domain is
classified into regions where one feature dominates the others. We
built on this work but facilitate the strength of the respective tensor
components for a layered visualization. A decomposition with sim-
ilar meaning is the Hodge decomposition which decomposes the
field into a a divergence-free, a curl-free part, and a harmonic part.
A topological analysis and multi-scale decompositions based on
this decomposition has been persuaded in [27, 36]. A glyph-based
visualization of time-dependent flows has been proposed in [13].

3 BAsSICS AND NOTATION

In the following let v be a 2D vector field given on the domain
D € R%. v: D — R? maps a vector v(x) to each x; € D. T denotes
an asymmetric tensor field representing the derivatives of v.

3.1 The gradient tensor field

Besides the vector field itself its gradient (Jacobian) plays a fun-
damental role for the analysis of the field. Often it is referred to
as a Galileian invariant entity which expresses shear, rotation and
isotropic scaling of a fluid. In terms of a linear approximation of
the field it appears as coefficient of the first term of the Taylor ex-
pansion. The linear approximation of v in point a is given by

vi(x) = v(a) + Vv(a)(x—a) (1

T = Vv defines an asymmetric tensor field over D. Transferring this
to the task of vector field analysis and visualization leads to the two
guiding ideas of our approach:



1. Adding information given by the derivative helps to fur-
ther/deeper understanding of the field, Section 3.2, 4.2, 4.3.3.

2. In locations where the derivative of v is small, the field is
already well representend by the vectors given by v, Sec-
tion 4.3.2.

3.2 Decompostion of derivative

In the following the tensor derivative of v at a specific point in terms
of an asymmetric tensor T is represented by a 2 x 2 matrix (7;;).
We pursue the decomposition of the tensor proposed by Zhang et
al. [40] into independent components with clear physical meaning.

T=D+S+R 2)

_ 1 1 n cos O sin 0 n 0 -1 3)
T 1) T 5 sine —coso) TP\ 0

Without explicitly specifying the application area of the vector field
v the components can be classified as follows: D is the isotropic
scaling, S the shear, and R the rotational part of 7. 6 gives the
direction of angular deformation. The scalars y; = (111 + T32)/2,
%= V(i1 = T2)? + (Ti2 +T21)?/2, and y = (T — Ti2) /2 are
measurers for the strengths of D, S, and R and allow to classify
the vector field. Whilst the strength of the shear is always positive,
¥ > 0, the sign of ¥, and 7y, distinguishes their quality.

With respect to the sign of these strength values we can specify five
deformation modes:

e  Positive isotropic scaling for y; > 0

e Negative isotropic scaling for y; < 0
e  Pure shear with 3, > 0
e  Counterclockwise rotation for - > 0

e  Clockwise rotation for 7, < 0

The scalars 7y, ¥, and %, and the tensor magnitude m = yj + ysz + }/,2
will be used to guide and extend the vector field visualization as
proposed above (Sec. 3.1.1 + 2). In the following I'y,I',, and I’y
denote the scalar fields to the strength values ¥, ¥, and 7;.

3.3 Scalar Field Topology

For the background as well as the feature visualization we exploit
concepts of scalar field topology. The features are defined as local
extrema of the derived scalar fields I'y, Iy, and I',- and the scalar
field clustering uses basins of the extrema as fundamental struc-
ture (see also Fig. 10b). A basin of such a point is that part of the
domain for which all points are connected with the respective ex-
tremum when integrating gradient lines. For instance, all points of a
valley belong to the basin of its minimum. The basins of all minima
present a segmentation that covers the whole domain. The same is
true for the basins of all maxima.

To extract the scalar field topology we employ the combinatorial
framework by Reininghaus et al. [28] which is robust and avoids
the computation of further derivatives. Within this framework, we
can use homological persistence as introduced by Edelsbrunner [8].
Homological persistence measures the stability of an extremal point
against perturbation of the data values. It can be used to remove
noise induced extremal points, but it also serves as a natural impor-
tance measure for critical points. An example is shown in Fig. 2,
where the importance of the extremal points is determined by ho-
mological persistence. In this image, there are obviously outstand-
ing extremal points, which are marked by high persistence values
— homological persistence therefore provides a natural and sensi-
ble hierarchy of the extremal points. Selecting these exponents by
mere thresholding could not provide such a well defined hierarchy
and clarity in the image.

Figure 2: Critical points of a scalar function. The size of the spheres
is determined by homological persistence. There are 38000 critical
points contained in the dataset, but homological persistence classi-
fies most of them as unimportant.
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Figure 3: Simplified schematic illustration of the persistence con-
cept. In both images M|, M, are the maxima of a 1-D scalar func-
tion. In (a) M, has a relatively low, whereas in (b) M, has a high
persistence value. Filtering by homological persistence would in-
duce that for the function in (a) only at M| an icon would be drawn
and the final depiction naturally cleaned up. In contrast, in (b) at
both extrema, M and M; an icon would be placed. However, we
are convinced that although this might induce clutter both extrema
are of such high importance that each of them has to be displayed.

For our application, we use homological persistence to control
the level of detail for the represented feature points. We split the
scalar fields I's, I' which can also have negative values into two
positive fields, respectively. Let I';, i € {d,r} be the original scalar
field. Then the two fields I';;, I';_ are defined as follows:

- { 1 50°

r ( ) . 0, Fi(x) >=0
== —Ti(x), else

Like this only maxima are extracted by the topology and persistence
values unambiguously reflect their importance (see also Fig. 3).

4 VISUALIZATION CONCEPTS

The essence of the visualization approach is to provide a compos-
ited image, where the most prominent features are presented in the
foreground and in the background a context visualization is given.

The most prominent features are identified as the persistence
filtered extrema of the scalar fields I,i € {r+,r—,s,d+,d—},
(see Sec. 4.2). The background visualization comprises vector
representation (see Fig. 4.3.2) and a rough simplified visualization
of the quantities in the scalar fields I';. To serve the different needs
for understanding vector fields, we provide multiple strategies (see
Sec. 4.3). Essentially they differ in the focus on either clarity of
presentation or completeness of information.



4.1 Icons

\4 v
iy

<
<
Figure 4: Top: Background icons for different deformation modes:

positive, and negative isotropic scale, shear, counterclockwise rota-
tion, and clockwise rotation. Bottom: Respective extrema icons.

Both extrema and background information deduced by the scalar
fields are depicted by icons. The following goals were guiding their
choice (Fig. 4): the icons should be simple to obtain a clear, harmo-
nious image. Also the colors of the icons should be well discrim-
inable, whilst avoiding too many colors in the image which might
distract the spectator from the actual content. All icons are bounded
by a circle, the base size of all icon is equal. The icons themselves
only encode qualitative properties, the type of deformation mode.
The isotropic scaling and rotation icons are rather self-explanatory.
The shear icon qualitatively illustrates the deformation of a unit
square under shear. The major arrow inside is oriented according to
direction of the major eigenvector at the current location (the rhomb
itself remains constant). The icons used for extrema are bounded
by a bold circle to differentiate them from the background icons.
Please note that the icons were designed that they could also work
for color blind people.

4.2 Extrema and foreground visualization

As described in Sec. 3.3 features defined by the scalar fields I';,i €
{r+,r—,s,d+,d—} are extracted as maxima of the scalar field
topology. Filtering them by homological persistence allows to ex-
tract the most prominent features on a sound mathematical basis
without corrupting the data (see also Fig. 5). Maxima due to topo-
logical noise are removed in a pre-processing step. The persistence
value of the remaining extrema can be used to interactively deter-
mine the granularity of the representation. Note that the feature
strength itself cannot be deduced from the persistence value.

To display the extracted features extremal-icons as introduced in
Sec. 4.1 are placed at the location of the extrema. They are scaled
according to their magnitude to encode the feature strength. Icons
that fall below a predefined size (in our implementation one twen-
tieth of the domain size) are depicted as colored dots.

4.3 Background visualization

For the background visualization of the vector data and the scalar
data a clustering is performed. The resulting clusters are given as
a region bonded by a polyline and are visualized using representa-
tive icons. The respective clustering algorithms, the definition and
placement of the representatives are described in the following.

4.3.1 Segment Voronoi diagram

For the placement of the icons (arrows and background icons for
the scalar fields) the segment Voronoi diagram by CGAL [1, 17] is
employed which extracts the medial axis of the clusters. It takes
line segments as input and supports non convex polygons and poly-
gons with holes. Further it provides the minimum distance to the
bounding polylines for each point on the medial axis. The use of
the medial axis for the placement of the representatives is described
in the respective sections.

Ve
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Figure 5: Earthquake data set (Sec. 5.2) a) Height field of shear
scalar field. b) All extrema of scalar field displayed as spheres
scaled by their persistence value. c) Persistence filtered extrema.
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Figure 6: (a) Isocontour errors as defined by [35].

4.3.2 Vector field clustering and visualization

For the purpose of generating a vector field clustering we decided
to follow an approach similar to Telea et al. [35]. But in contrast to
[35] we do not perform a hierarchical clustering of the complete
field. Instead can we employ an efficient region growing method
which starts in minimal values of the tensor magnitude. The
method detailed below.

Choice of cluster region The aim of the vector clusters is to convey
trends in the background. Therefore we restrict the clustering
to regions where the tensor magnitude falls below a predefined
threshold 7 and the field is sufficiently represented by its vector
value, Sec. 3.1.2. To respect the data set specific variations we set T
to a multiple of the maximal value mmax that the tensor magnitude
reaches. In our implementation it is set to 7 = 0.01 - mmax.-

Similarity measure We adopt the anisotropic similarity measure
for vectors of Telea et al. [35], which offers the option to trade-off
between exact parallelism of vectors in the final clusters or cluster-
ing that follows streamlines.

We will shortly summarize the essential properties of the similar-
ity measurement. For more detail please refer to the original pa-
per [35]. In this paper an error space is introduced which combines
feature and spatial space. Elliptically shaped iso-contours define
similarity functions for vector directions and vector positions, see
Fig. 6a, 6b. The eccentricity of a reference ellipse and its total size
define the “strictness” of the similarity measure. The direction sim-
ilarity compares the directions of two vectors which for extreme
values of the reference ellipse eccentricity would return clusters
of parallel vectors. The position similarity reflects how much the
positions of the vectors is aligned with the vector field. For ex-
treme ellipse eccentricity this would return clusters that are inte-
grated streamlines. The final similarity function e allows to trade-



off between directional or position clustering the two error values
eq and ep:
e=(l—a)-eg+a-e, acl0,l] “)

All results in Sec. 5 where generated with an aspect ratio of the
ellipses of 1:2 and a = 0.9. A further variation compared to the
method by Telea is that the size s of the reference ellipse for the
position error is set in relation to the mean magnitude of the tensor
mmean (Eq. 5) inside the cluster, see Fig. 9 (c). This generically
allows that large homogeneous regions are clustered even though
the actual position distance becomes large.

Region growing As vectors are close to constant in the considered
regions the clustering can be performed by a simple cell-based re-
gion growing algorithm. The clusters are stored as a list of cells and
a bounding polyline. For the region growing a maximum error for
the similarity measure (Eq. 4). is set to 0.01. On demand this value
can be changed by the user but was not necessary for all results in
Sec. 5. The region growing starts in the cell with minimum tensor
magnitude mg, which is the location with the most homogeneous
neighborhood. For the evaluation of the similarity function each
cluster holds its mean vector, its center and the mean tensor mag-
nitude mmean. The size s of the reference ellipse in the similarity
function is set in relation to the mean magnitude of the cluster:

s =max(1,l0g(1/mmean + 1)) ®)

The clustering continues until adding a new cell would exceed the
maximum error. In this case the clustering process recursively
starts for a new cluster again in the (unclustered) cell with the
minimum value of m. Cells with vectors close to zero are left out
to avoid the clustering of singularities.

Visualization The extracted clusters are represented by a curved
arrow icon. The arrow’s tail is constituted by a streamline integrated
within the cluster, and the head represents the direction of the vector
field in that location. The start point for the streamline integration is
located in the center of the medial axis (Sec. 4.3.1) of the clusters.
It is defined as the center point on the longest path of the medial
axis. From the start point an exact streamline integration [19] is
performed in both directions (on v and —v). For the display the
arrows are shortened by 80%.

4.3.3 Scalar Quantities

The background visualization of the scalar quantities is also based
on clustering of regions of similar behavior. Thereby we offer two
different approaches. The first is a fully automatic classification of
the field characteristics with the advantage of a clear distribution
of the representative icons in the image. However some small scale
but strongly expressed components might be missing, therefore the
second approach supports the depiction of the full information by
offering an explorative understanding of the data.

Classification — visualizing the dominant component
To provide a first overview on the overall behavior in the field the
classification into dominant components is performed according
to see Chen et al. [4]. Here the relative ratios among the strengths
Y, Y4, and 7. are compared. By normalizing the strengths
7/3 + 'y{% + yrz =1 all possible configurations can be modeled as a
unit hemisphere. A Voronoi diagram on this hemisphere allows to
classify the possible configurations to

e Isotropic scaling dominant DT (positive), D~ (negative),

e  Shear dominant S,

e Rotation dominant R™ (positive), R~ (negative).

In our approach we exclude tensor magnitude values m close
to zero from the derivative visualization, to avoid the undefined

Figure 7: Placement of icons along medial axis of a cluster. The
light gray polyline indicates the boundary of the cluster, the dark
gray lines depict information by the segment Voronoi diagram (me-
dial axis and distances to the boundary).

case, where the unit tensor is zero. Cells are labeled according to
the dominant strength type and depicted according to the back-
ground visualization described below. The strongest advantage
of this method is that the final image has a clean arrangement.
However the drawback is that this classification does not consider
the absolute feature strength. Further it is not possible to display
regions where two characteristics play an important role.

Basin visualization

To offer a visualization that overcomes the limitations of an
absolute classification this approach treats each scalar field
separately. It uses the concept of topological basins as described
in Sec. 3.3 which can be directly used as clusters for the icon
placement. All icons are assigned the scalar value of their position
which determines its transparency value in the final visualization.
By changing a slider for a magnitude threshold the user can
interactively blend in and out the icons of the regarded scalar field.
The shear icons are additionally oriented in the direction of the
major eigenvector. Please note that with the basin visualization
background icons of different scalar fields may overlap, which is
not the case for the classification approach.

Icon placement

All approaches for the background visualization (vectors and scalar
fields) are technically treated equal. In a preprocessing step the
boundaries of the extracted clusters are strongly simplified accord-
ing to an angle criterion. For the simplified boundaries the medial
axis is computed (Sec. 4.3.1). and the points on the medial axis are
processed recursively. For the background icons of the scalar fields
the placement starts in the point with the maximal distance to the
boundary. Recursively we place the icons along the medial axis, by
interpolating their optimal size by the distance values given at each
point of the medial axis, see Figure 7.

5 RESULTS

To verify the automatic generation of the sketch based we use three
data sets with very different characteristics. All three data sets are
inherently two-dimensional. For the two time-dependent data sets
the analysis is performed on single time slices. For all data sets the
same parameters are used.

Performance — our code basis has not been optimized towards per-
formance yet. The most costly step is the persistence computation
that is done for each scalar field (for details please refer to Reining-
haus et al. [28]). For the data sets used in the results we denote the
resolution and the processing time required for the topology com-
putation for a single scalar field on a QuadCore i7 processor with
2,6 GHz. The computation time for the scalar fields is similar.

5.1 Cylinder data set

Data set — Time-dependent (32 time steps) two-dimensional CFD
simulation of the von-Karman vortex street [25, 39], the flow be-
hind a cylinder with Reynolds number = 100. The flow is incom-



Figure 8: Cylinder data set — Information about shear and vortic-
ity made visible in the sketch-like representation (in combination
with the vector field visualization method LIC as context informa-
tion). The extrema of the scalar fields show the locations of highest
strengths. If the size of extrema is below the fixed threshold they
are rendered as colored dots. The background visualization depicts
the dominant components according to the classification: regions
of dominant rotation are distinguished against those of dominant
shear. Regions with low tensor magnitude are illustrated by arrows.

pressible, so by definition there is no isotropic scaling in the field.
We use two versions of this data set: the original data and a version
with changed reference frame with subtracted the average velocity.
(Resolution: 242 x 242, Timing for scalar field topology: 0.47 sec)

Analysis — Figure 8 and 9a, show all locations of strongest shear
and rotation forces defined by the scalar field extrema. This is com-
bined with the result of the classification into dominant components
in the background. The image is further composited with the results
of the vector clustering and a LIC visualization as context infor-
mation. Traditional continuous vector visualization (i.e. LIC, or
streamlines) does not encode direction nor velocity of the vectors.
Thus important qualities like shear or vorticity might not be per-
ceivable. Further a change of frame of reference might give a very
different impression of the same vector field. This is demonstrated
by Fig. 9a which could imitate the change of an observer’s position.
The LIC visualization in the background of Fig. 9a clearly differs
from the one in Fig. 8. In contrast, the schematic illustrations de-
duced by the tensor decomposition remain independent of the frame
of reference. In Fig. 9a the LIC might suggest strong vortical be-
havior throughout the flow from left to right. However the size of
the extremal icons (or dots) clarifies that the magnitude of rotation
at the right end is rather low. We consider it as an extension for
the vector clustering methods described in Sec. 2 that the level of
abstraction for the extrema has a clear mathematical reference and
interpretation. This also supports the reproducibility of simplified
and abstracted view on different data sets.

Figure 9b illustrates the results of the vector clustering, clustered re-
gions are represented by arrows. This image demonstrates how the
clustering approach supports the generation of large clusters in ho-
mogeneous regions while still providing the necessary granularity
in regions with higher variation. This sensitivity is a consequence
of the adaptation of the position error of the similarity function to
the underlying tensor magnitudes (Section 4.3.2) (see Fig. 9c). This
would not be possible with a uniform measure as proposed in [35].
In context with flow analysis the mixing of flow is an interesting
quality. For this purpose flow data sets are also inspected towards
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Figure 9: Cylinder data set — (a) Same data set as in Fig. 8 but with
change of reference frame. Result shows the independence of the
information given by the scalar fields from the chosen frame of ref-
erence. (b) Schematic depiction of the vector field clustering pro-
cess with respect to magnitude of derivative (resulting clusters ran-
domly color coded). White denotes regions with magnitude m > 7,
which are excluded from the clustering. (c) Close-up: schematic il-
lustration of size adaption of the reference ellipse for position error.

its shear properties. After giving a first overview by the classified
background visualization in Fig. 8 switching in the background to
the basin visualization the overall behavior of the shear properties
can be inspected. Fig. 10b exemplarily shows the extrema (dots
with size scaled by persistence value) of the shear field and their
respective basin regions.
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Figure 10: Cylinder data set — (a) Close-up: background visu-
alization of shear basins (transparency of shear icons adjusted to
strength, orientation to major eigenvector) for a more detailed in-
spection. The background visualization reveals properties of the
shear which could not be deduced from the LIC visualization only.
(b) Extrema (spheres with size adjusted to persistence value) and
basins of shear scalar field. The gray rectangle denotes the close-up
area in (a).

5.2 Earthquake data set

Data set — Displacement field encoding the ground deformation
associated with a simulation of the June, 1992 Mw=7.3 Landers,
CA earthquake [38].

(Resolution: 450 x 450, Timing for scalar field topology: 1.19 sec)

Analysis - Figure 1a shows all extrema filtered by persistence (0.3)
and scaled by magnitude. Among the extrema the location of the
strongest forces can be distinguished by their size. The most promi-
nent extrema align with the fault, where extrema of clockwise rota-
tion and shear are dominant. The extrema of the isotropic scale only
appear as colored dots. For the background visualization, the clas-
sification into dominant components according to Sec. 4.3 is done.
This gives a very clear non overlapping image of the overall behav-
ior in the field. The vector clustering captures the main directional
features in the data set, additionally sparsely seeded streamlines are



displayed in the background.

As one can see in the shear height field in Fig. 5a, the shear forces
are very high in the vicinity of the fault, whereas they are compar-
atively small in the remainder of the data set. With the foreground
visualization of the extrema icons, the attention is clearly drawn
to the fault. The background visualization displays the trends in
the surroundings which corresponds to a rather homogeneous but
still relevant shear respectively rotational movement. This highly
simplified depiction of strongest forces gives a clear first orienta-
tion, which can then be used in combination with a highly detailed
visualization as in Fig. 1c. This visualization by Chen et al. fo-
cuses more on the directional information of the tensor components
based on a classification. and does not offer such a clear and sim-
ple distinction of strong and weekly expressed features. Our re-
sulting visualization nicely resembles the hand drawn sketch by
domain experts [4], which felt the urge to deduce a strongly sim-
plified schematic depiction of the most relevant features from the
detailed visualization in Fig. 1c. Please note, in contrast to the hand
drawn sketch, we also encode shear in the final visualization. Also
the color coding of the icons differs.

5.3 Climate data set

Data set — Time dependent simulation of wind in a multi-model
ensemble forecast system [26]. This simulation is freely available
by the DEMETER project and aggregates different climate models
with varying parameters. In our results, we inspect two consecutive
time steps; images are computed separately. The data set is of low
resolution with high variance and feature density.

(Resolution: 144 x 73, Timing for scalar field topology: 0.15 sec)

Analysis — Here, we chose to compare the evolution of the wind
data field and its associated characteristics by only inspecting the
persistence filtered extrema (filtering factor: 0.3) and the vector
clustering. As further context information sparsely seeded stream-
lines and the contours of the continents are provided. In the two
time steps, related extrema can be visually well correlated due to
the high level of abstraction by filtering and the simplicity of the
icons (see shear icon in Fig. 11 gray square). Filtering by homo-
logical persistence does not avoid overlaps, but within a region of
neighboring extrema the most persistent extremum serves as well
defined representative. It provides a sound basis for stable and re-
producible exponents in form of extrema to compare data over time,
or according to varying models or parameters.

A detailed inspection of the climate data sets in combination with
simple vector depiction demonstrates that the analysis of the ex-
trema adds new information that cannot directly be deduced from
the vector field. Figure 12 shows some close-ups of strong features,
which revealed interesting patterns in the climate data set.

6 CONCLUSION

We proposed an illustrative visualization of two-dimensional vec-
tor fields consisting of two components: a background visualization
that serves as an overview of large scale trends and a depiction of
details in the foreground. The approach is based on the vector field
and its first derivative, i.e., the vector gradient. We decomposed
the gradient into shear, isotropic scaling and rotation and analyzed
these individual fields. Our visualization pipeline therefore com-
bines scalar field topology with tensor analysis. The highly ab-
stracted view locates the foreground icons at positions with clear
mathematical interpretation, the extrema of the scalar fields filtered
by homological persistence. Homological persistence defines a hi-
erarchy of importance for the extrema. This could not be accom-
plished by filtering the extrema by their magnitude only. The vi-
sualization is automatic. Only a few easy-to-handle parameters are
used. In most cases, they can be set quite similar to default val-
ues as shown in the results. The final visualization incorporates

Figure 11: Climate data set — Time dependent simulation of wind.
Top and bottom image display two consecutive time steps. Due to
the high feature density the visualization is extremely simplified —
only the most persistent extrema are displayed. Additionally the
arrow icons of the vector clustering, contours of the continents, and
sparsely seeded streamlines can be seen.

(© (d)

Figure 12: Climate data set — Close-ups of Fig. 11 (top row) com-
bined with vector visualization. (a) Isotropic scaling extremum at
location where the stream fronts converge from two sides which
might indicate an up- or down-stream. (b) Shear extremum where
the flow follows to opposing directions. (c+d) The depicted scalar
quantities are independent of the chosen frame of reference. In con-
trast to the extremum in (d) the rotation extremum in (c) is not in a
location which the vector visualization would suggest.

quantities that might be hidden in pure vector visualization meth-
ods. In addition, it represents information that is independent of the
chosen frame of reference. Therefore, it overcomes possible mis-
interpretations by only analyzing visualizations based on vectors.
The icons are easy to interpret. The aim of this sketch-based visu-
alization is not to provide all possible information in the vector field



but rather to give an overview depiction. The resulting sketches are
rather sparse and can be composited with more specific visualiza-
tion methods for in-depth analysis. As future work, we plan to an-
alyze time-dependent fields. The present approach directly allows
the application of tracking methods for scalar field topology. This
should result in smooth illustrative visualizations of these fields.
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