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ABSTRACT

Multidimensional projection techniques provide an appealing ap-
proach for multivariate data analysis, for their ability to translate
high-dimensional data into a low-dimensional representation that
preserves neighborhood information. In recent years, pushed by
the ever increasing data complexity in many areas, numerous ad-
vances in such techniques have been observed, primarily in terms
of computational efficiency and support for interactive applications.
Both these achievements were made possible due to the introduc-
tion of the concept of control points, which are used in many differ-
ent multidimensional projection techniques. However, little atten-
tion has been drawn towards the process of control points selection.
In this work we propose a novel multidimensional projection tech-
nique based on radial basis functions (RBF). Our method uses RBF
to create a function that maps the data into a low-dimensional space
by interpolating the previously calculated position of control points.
We also present a built-in method for the control points selection
based on “forward-selection” and “Orthogonal Least Squares” tech-
niques. We demonstrate that the proposed selection process allows
our technique to work with only a few control points while retaining
the projection quality and avoiding redundant control points.

Keywords: High-Dimensional Data, Dimensionality Reduction,
Multidimensional Projection, Interpolation with Radial Basis Func-
tion.

1 INTRODUCTION

Understanding the underlying structure of multidimensional data
sets is a fundamental requirement in many scientific and real-world
applications. Consequently, visualization tools have long become
indispensable for multidimensional data analysis, as they present
significant aspects of the data in a comprehensible manner to the
end user [15]. In particular, multidimensional projection (MP) tech-
niques have gained popularity for their ability to convey dissimilar-
ity information in a straightforward manner.

The goal of multidimensional projection techniques is to find a
low-dimensional representation (usually 2D) for the data, where
original dissimilarities between pairs of instances are reflected as
their Euclidean distance in the low-dimensional space. The resulted
2-dimensional projection can be interpreted by the user, who is able
to visually infer classifications and recognize possible patterns in
the data set. MP has been successfully used as a visual analy-
sis tool in applications such as feature exploration in multivariate
scalar fields [17], vector field visualization [9], text mining [7, 20],
finances [12] and psychology [3], to name just a few.

Ever increasing data complexity has driven the development of
more robust MP methods and algorithms that are capable of dealing
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with massive data sets efficiently. Consequently, MP has experi-
enced various improvements, both in terms of mapping quality [16]
and computational efficiency [14, 22, 18]. An important contribu-
tion to these advancements was the work of Pekalska et al. [24],
who proposed the use of a subset of samples to speed up the projec-
tion process. Since Pekalska’s work, several other techniques have
used this concept. More recently, such a subset of samples, called
control points, has had its functionality expanded to work as an in-
terface between user input and projection results. The manipulation
of such control points in the projection space has been suggested as
a means for incorporating user-knowledge into the projection pro-
cess, as can be seen in Joia et al. [18].

Even though the control points paradigm is gaining strength and
being incorporated in most of the new techniques, the selection of
instances that should be used as control points has not been thor-
oughly investigated. The set of control points has a direct impact in
the quality of the final results. However, most techniques suggest
arandom or clustering-based approach for control points selection.
The former alternative is naive and the latter, besides being com-
putationally expensive, requires the user to specify the number of
clusters used to divide the data set, which may not be an obvious
choice. Ideally, one should have a technique that finds a good set
of points that represents the original data set in such a way that im-
proves the projection approximation without requiring many user-
defined parameters.

In this paper we propose a novel multidimensional projection
technique, built upon the radial basis function (RBF) theory. RBF
presents a well-established mathematical formulation, which has
been used in diverse approximation applications [4]. In general
terms, RBF constructs a function that interpolates given sample
points and their outputs. The interpolation function is formed by a
linear combination of radial basis functions, which are real-valued
functions whose value depend only on the distance from a point to
the RBF center. In this work, we apply RBF to find an interpolation
function that respects the low-dimensional position of previously
projected control points, and use this function to approximate the
projection of the remaining instances. This method provides an
explicit mapping from high to low dimension, and allows one to in-
corporate new data in real time with little computational effort. The
technique introduced by Pekalska et al. [24] is a particular case of
RBF. With the proposed framework, we generalize this traditional
method and improve it by reducing the number of required control
points.

An advantage of the proposed RBF formulation is the existence
of different works dedicated to center selection. One of these ap-
proaches is based on the solution of Orthogonal Least Squares prob-
lems to select a subset of samples that satisfactorily represents the
data set [6]. We incorporated this technique into our Multidimen-
sional Projection framework as a means to perform control points
selection and to improve the final projection results. This approach
automatically determines a good number of control points; thus,
the user is not required to provide this important parameter. Fur-
thermore, the proposed technique can produce good-quality results
with a reduced number of control points, which improves efficiency
as well as favors user interactivity [18].



Another advantage of the proposed technique is that it does not
require the original data set to be embedded in a Cartesian space.
This restriction was introduced in most of the recent MP methods,
but is not part of traditional techniques, such as MDS and Sam-
mon’s mapping. Moreover, our method does not require the full
dissimilarity matrix between all pairs of instances, only those per-
taining to the control points. This makes the proposed technique
competitive to the most recent MP methods in terms of perfor-
mance.

We can summarize the main contributions of this work as fol-
lows:

e Radial Basis Function MP technique: A novel multidimen-
sional projection technique based on Radial Basis Function
interpolation theory. The proposed technique does not present
the drawback of requiring a Cartesian representation of the
data; it is computationally efficient and works well with a low
number of control points.

e Selection of control points based on the Orthogonal Least
Squares problem methodology: The decision of which con-
trol points to use is not determined randomly, but based on a
deterministic algorithm that selects those instances that better
explain the entire data set.

To the best of our knowledge, the proposed mechanism is the
first to incorporate a quality measure for control points selection.
In fact, measuring the quality of control points is a problem not
properly tackled until now.

This paper is organized as follows: Section 2 presents an
overview of MP techniques and contextualizes the advantages of
our RBF approach; Section 3 details the mathematical formulation
of our technique; Section 4 presents a detailed description of the
use of Orthogonal Least Squares for the selection of control points.
Section 5 contains the evaluation of the RBF technique and a com-
parison with other methods; we conclude and discuss about future
work directions in Section 6.

2 RELATED WORK

Multidimensional projection has long been used for visual analysis
of multidimensional data. In this section we present an overview
of the main MP techniques. We discuss linear and nonlinear ap-
proaches for low-dimensional mapping in Section 2.1; and we out-
line the methods that make use of a subset of samples (control
points) to speed the projection process in Section 2.2.

2.1 Linear and nonlinear techniques

The classification of linear and nonlinear accounts for the kind of
transformation applied to the instances of the original data set. Lin-
ear mappings are designed to operate when the submanifold is em-
bedded linearly, or almost linearly in the observation space [10].
However, they cannot capture nonlinear relationships between data
instances, which are usually accomplished by nonlinear transfor-
mations. Some examples of linear projection methods are principal
component analysis (PCA) [19] and classic multidimensional scal-
ing [8].

Least-squares scaling methods, such as the Sammon’s map-
ping [26], are examples of nonlinear mappings. Generally, non-
linear techniques attempt to minimize a function of the informa-
tion loss caused by the projection. Such a function measures the
error between dissimilarities in the original and projected spaces.
Sammon’s mapping, and many others that derive from it, applies a
steepest-descent procedure to solve the optimization problem. One
of the disadvantages of least-squares techniques is that gradient-
based techniques do not guarantee convergence to the global min-
imum of the function. Consequently, the final projection layout
may not be a good representation of the original data set. Roweis

and Saul [25] proposed a method called Locally Linear Embedding
(LLE) that uses local information to achieve an optimization with-
out local minima. Other examples of nonlinear projection methods
are Curvilinear Component Analysis (CCA) [13], which presents a
variation on the loss function proposed by Sammon; Isomap [28],
proposed by de Silva and Tenenbaum, that uses the geodesic dis-
tance information to compute dissimilarities; and Least Square Pro-
jection (LSP), introduced by Paulovich et al. [21].

Some recent methods propose the combination of linear and non-
linear transformations. For instance, Part-linear multidimensional
projection (PLMP) [22] and LAMP [18] make use of a subset of
samples initially positioned in the projection space through a non-
linear technique. The remaining instances are subjected to a linear
transformation based on the final position of these samples. The
aforementioned LLE [25] also combines both, linear and nonlinear
approaches, by computing some weights and vectors linearly, but
the overall process is nonlinear. The proposed technique based on
RBF is a non-linear approximation that is able to approximate both
linear and non-linear methods.

2.2 Control Points

In the context of multidimensional projection, control points are
a subset of the original dataset that are positioned in the low-
dimensional space in a preprocessing step with a global technique,
such as MDS, Sammon’s mapping, PCA, etc. The information from
high- to low-dimensions calculated for this subset of points is used
to approximate the final position of the remaining instances of the
data set. The primary motivation behind the use of control points is
to make the projection technique more efficient in terms of compu-
tational time, since global methods can be computationally expen-
sive.

Pekalska et al. [24] were the first to use control points in multi-
dimensional projection. The goal of their work was solely to speed
up the Sammon’s mapping algorithm while still preserving the pro-
jection quality. With this in mind, they proposed the application of
Sammon’s mapping only to a subset of points, followed by the com-
putation of a linear transformation that would respect the high to
low dimensional mapping of this subset. The remaining points are
later projected using this linear transformation. One of the draw-
backs of this technique is that, in order to provide a good approxi-
mation, the number of control points needs to be large. In fact, the
authors recommend that 50% of the total number of instances of
the data set should be used as control points. Using the technique
proposed in this paper, we are able to reduce the number of control
points, and still get good-quality mappings.

Since Pekalska et al.’s work, a variety of control-points-based
techniques have been proposed: L-Isomap [10], L-MDS [11],
LSP [21], PLMP [22], LAMP [18] and PLP [23] are a few exam-
ples of such methods. Even though control points are central to the
aforementioned techniques, most of these works do not approach
the problem of how to effectively select control points. Pekalska, L-
Isomap, L-MDS, PLMP and LAMP suggest to select control points
randomly, while LSP and PLP make use of clustering techniques
to divide the data set into regions, and select one or more represen-
tative instances of each region as control points. The random ap-
proach is far from ideal, as the final set of control points may not be
a good representation of the entire data set and may result in poor-
quality mappings. On the other hand, the selection through cluster-
ing can become an issue in terms of computational time. Moreover,
both approaches present the drawback of requiring the user to de-
termine the number of control points, which may not be an obvious
parameter to choose.

Besides these limitations, with the exception of LAMP, these
techniques may require a large number of control points to maintain
the projection quality. For example, PLP, PLMP and LSP suggest
\/n control points, where n is the number of instances in the origi-



nal data set. A large number of control points create a less efficient
high to low-dimensional mapping, and is not ideal for applications
with user intervention, as pointed out by Joia et al. [18].

The proposed RBF projection also makes use of control points,
however we present a built-in approach to perform control points
selection efficiently. This approach is based on the “Regular-
ized Orthogonal Least Squares” problem and performs a forward-
selection of instances in which, at each iteration, the most suitable
instance is incorporated into the control points’ set. We show that
the proposed control points selection approach is able to improve
the projection quality, using a reduced number of samples. Also,
the proposed technique present a general mathematical formulation
that does not assume the original data to be embedded in a Cartesian
space, an interesting feature not present in recent MP techniques
such as LAMP, PLP, LSP and PLMP.

Section 3 presents a detailed description of the proposed tech-
nique and the control points’ selection approach is detailed in Sec-
tion 4.

3 MULTIDIMENSIONAL PROJECTION WITH RADIAL BASIS
FUNCTION INTERPOLATION

Radial basis function (RBF) is a popular technique to approximate
multivariate functions [4]. In general terms, given data samples x; €
R™ and function values y; = f(x;) € R,i = 1...n, an approximant
s :R™ — R is sought, in such a way that s interpolates the function
f between the data samples. The approximant s(x) is formed by a
linear combination of radial basis functions ¢ (x) with centers in x;.
Figure 1 illustrates a one dimensional RBF interpolation using five
data samples and Gaussian radial basis function.

Figure 1: Radial Basis Function interpolation with five data samples
X ={0,1,3,4,5} and function values Y = {0,2,5,3,1}. The data sam-
ples are represented as colored points. The blue curve is the function
obtained with RBF interpolating between the data samples. Below
the graph, the Gaussian radial basis functions ¢ (r) = e are rep-
resented, where r is the distance between a point and the data sam-
ple, with €2 =0.5. The colors of the curves make the correspondence
to the data samples.

The proposed MP method uses RBF to create a function s that
maps high-dimensional data into a low-dimensional space. Given a
subset of samples (control points) and their low-dimensional posi-
tions, RBF is used to create a function to map the remaining sam-
ples into the projection space. In the next Section we present a de-
tailed description of the technique, and a discussion about different
radial basis functions is found in Section 3.2.

3.1 Mathematical Formulation

Consider a data set X C R”™ with n elements. Let Xg =
{x1,%2,...,x,} C X, k < n, be a set of control points, for which
the corresponding low-dimensional position Ys = {y1,y2,...,y} C
R4, d < m is calculated a priori using a force-based multidimen-
sional projection technique [27] (from now on we will consider
d =2). The goal of the proposed RBF projection is to find a func-
tion s : R” — R? of the form

sy =Y Aio(lx—xi), (1

X €Xg

in such a way that s interpolates the position of each control point,
i.e., s(x;) =y;,i =1,...k. Function ¢ : Ry — R is called kernel of
the RBF, and its definition, together with the set of control points,
dictate the final approximant s. There are numerous functions that
can be used as a kernel, and we discuss this topic in Section 3.2.

The real-value coefficients A; need to be calculated as to satisfy
the interpolation condition, giving rise to a linear system with k
equations s(x;) = y;,i = 1...k. The system can be written in matrix
form as

PA =, (2)

where @ is the interpolation matrix with dimensions k x k, with
D;; = ¢(||x; —xj||); the right-hand side of the system y and the
unknowns A are 2-columned vectors, each column accounting for
one of the final dimension of the output. Let ¢; ; = ¢ (|lx; —x;]|),

i = (A}, A2), yi = (v},y?) and Equation 2 can be written as

o P2 ... ik A Vi
01 P A 2

: : : : S I B G)
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Once the coefficients A’s are calculated, the function s is fully de-
termined and can be used to approximate the remaining instances of
the data set. The proposed multidimensional projection technique
is summarized in Figure 2.

unction s used to
position remaining
instances

Ve A\
Control points

U =»-| control points ith chosen kernel
selection

/ \_ positions J \(Equation 2) )

/

( Calculation of\- Calculation of A
—- }N —-

Figure 2: Summary of the flow of RBF projection technique. Con-
trol points selection and calculation of positions are the first steps,
followed by determination of A’s and application of function s(x) to
position the remaining instances.

Note that function ¢ takes as argument the distance between a
point in the domain and a control point. Even though the most com-
monly used distance metric is the Euclidean, in practice one could
use different dissimilarity measurements not necessarily defined in
a Cartesian space. This renders the proposed techniques more flexi-
ble than recent multidimensional projection methods, which require
the original data set to be embedded in a Cartesian space. In the next
Section we present more details about the radial basis functions ¢.

3.2 RBF Kernels

We observed from the previous section that the solution of the ra-
dial basis function interpolation problem reduces to the solution of
a linear system @A = y. Thus, it is important that matrix & is non-
singular, in order to produce a uniquely determined system. There-
fore, the kernel function ¢ needs to be chosen carefully, since it



determines the entries @;; of the interpolation matrix &. There are
kernels that guarantee that & will be invertible, with a minor as-
sumption over the set of control points, which is that it can only
contain unique samples.

In this work we experimented with three classic RBF kernels that
guarantee matrix ® to be non-singular: Gaussian, Multiquadrics
and Inverse Multiquadrics. The definition of these kernels are given
in Table 1, and Figure 3 presents the graph of these three functions
in one-dimension with £ = 1.

Name || Definition of ¢(r)
Gaussian o (er)?
Multiquadrics V2 +(er)?
1

Inverse Multiquadrics —_—
q 2+(er)?

Table 1: Commonly used functions in the Radial Basis Function in-
terpolation problem.

28 T T .

— Gaussian
Multiquadric

— Inverse Multiquadric

o(r)

Figure 3: Gaussian, multiquadrics and inverse multiquadrics func-
tions in one dimension. In this example all of the functions have
e=1.

It is interesting to note that Pekalska’s technique is a special case
of RBF that uses multiquadrics kernel with ¢ = 0 and € = 1 (thus,
@(r) = r), which we will call kernel Norm. However, generally
this kernel does not give good projection approximations when used
with a relatively small number of control points. This fact can be
observed in Figure 4, where we present a comparison between the
projection quality using the Norm, Multiquadrics with ¢ = 1 and
€ = 1 and Gaussian kernels. The projection quality is measured by
a popular quality metric called stress function. The stress function
indicates how well the original dissimilarities are preserved in the
low dimensional space. It is given by

(5ij — dij)z

< 2
2.5
j=i

M=
™=

1

0 j=i
Stress =

) )

0

i ORb

where §;; is the original dissimilarity between instances i and j and
d;; are the distance of these same instances in the low dimensional
representation. The smaller the stress, the better the projection’s
results.

Figures 4(a) and 4(b) present the behavior of the kernels for three
data sets (Pima-indians, WDBC and Wine Quality), with 10 and 100
randomly selected control points, respectively. In our experiments,
100 runs were executed, each with a different set of control points,

Pima indians WDBC Wine Quality

1~ — S

0.8 |-

0.6 |-

Stress

Haa ;s

(a) 10 CPs

0.8 - [

06 |-

Stress

0.4

T
= zull =
(b)

100 CPs

DMuItiquadrics

[ Inorm [ ]Gaussian

Figure 4: Boxplots with a comparison of projection quality (stress) us-
ing Norm (Pekalska), Multiqguadrics and Gaussian kernels, for three
data sets (Pima, WDBC and Wine Quality); (a) 10 and (b) 100 ran-
domly selected control points. Each experiment was executed 100
times, with a different set of control points for each execution.

for each experiment. These examples indicate that the Norm kernel
gives better results when a larger number of control points is used,
while the Gaussian and Multiquadrics kernels work well with fewer
control points, but give poor results when the number of control
points is increased.

These experiments also suggest that, increasing the number of
control points does not necessarily improves the projection quality,
as one could expect. What happens is that, when a random control
points’ selection strategy is employed, chances are that similar, or
even identical instances are used as control points, what causes ma-
trix ill-conditioning or singularity. This is one of the motivations
for performing a conscious selection of control points.

In the next Section we present an automatic technique for con-
trol points selection that can be easily built-in with our proposed
multidimensional projection workflow and automatically avoid ill-
conditioning. Besides, we also show that applying the proposed
selection we are able to considerably improve the projection results
by reducing the stress (Equation (4)) using just a few control points.



4 CONTROL POINTS SELECTION THROUGH REGULARIZED
ORTHOGONAL LEAST SQUARES

As shown in the previous section, the set of control points is an
essential part of the RBF technique and it sure can have a great
impact on the quality of the final projection. Ideally, the set of
control points should represent well the entire data set domain and
still be reasonably sized, creating an RBF with low redundancy. In
this work, we propose to employ a method based on Orthogonal
Least Squares (OLS), introduced by Chen et al. in [6] for center
selection in RBF. To understand how OLS works for control points
selection, it is important to view RBF as a linear regression model.
Assume we have N control points candidates {x,-.,y,'}fv: |» Where y;
is the output corresponding to control point x;. If all x; are used as
control points, Equation (1) can be rewritten as:

=

s(xe) =Y ALi¢(|lxr —xi|]), 1 <z <N. 5)

1

Let (Z),‘(t) = (])(th — X

), we can express the desired output y; as
N

ye=Y Xigi(t) +er, 1 <t <N, (6)
i=1

where e(?) is the error between the desired output y; and the approx-
imated output s(x;), i.e., e(t) = yr —s(x;). (Of course e(¢) will be
zero when all candidates are used as control points, but the goal of
the method is to reduce this set). Finally, we can write Equation (6)
in matrix form as

y=PA+e, @)

where y = [y1...yn]", @ = [¢1...ow], ¢ = [$i(1) ... ¢:(N)]", A =
[A;...Ay] and e =[e; ...en].

Equation (7) has the form of a linear regression model and the
vectors ¢; can be referred to as regressors. Thus, the question of
how to select control points can be translated into the problem of
selecting significant regressors. The adopted technique is based on
a “forward selection”, i.e., the process starts with an empty set of
regressors and one regressor from the set of candidates is selected at
atime. Each selection is made in such a way to maximally decrease
the squared error e’'e.

Since the regressors are generally correlated, it is not clear how
to measure their individual contributions to the error decrement.
Applying the concept of the OLS method, which transforms the set
of ¢; into a set of orthogonal basis vectors, it is possible to “isolate”
the regressors and calculated their individual contributions. The
regression matrix ¢ can be decomposed as

@ =WA, (®)

where A is an upper-triangular matrix with diagonal 1 and W =
[wi ...wy] with orthogonal columns that satisfy wl-TWj =0, ifi# .
The model (7) can be rewritten as

y=Wg+e )

with AA = g.

However, as discussed in [5], the minimization of only the
squared error e’ e is prone to overfitting, i.e., even though the pro-
duced approximant may interpolate the control points candidates,
it may not be good to describe the overall behavior of the target
function. To prevent this problem, a regularization term penalizing
large A values is added to the error. Observe that, since AA = g, pe-
nalizing A is equivalent to penalizing g; thus, the final formulation
for the error we aim to minimize is:

ee+Bg’s, (10)

where § > 0 is the regularization parameter. This error formula-
tion renames the technique to regularized Orthogonal Least Squares
(ROLS). Equation (10) can be rewritten as

N
eletrBele=y'y— Y (whwi+B)g?. an
i=1
Dividing (11) by y”y we have

("e+Bs"s) | EN (vl witB)ef
yTy ¥y

; 12)

and the regularized error reduction ration due to w; is defined as

_ XN wlwi+B)g;

i = 13
[rerr] ¥Ty (13)

At each step of the selection, the control point x; associated with
vector w; and maximum rerr is included in the control points’ set.
We also calculate the stress, given by Equation (4), of the remaind-
ing candidates. It is clear that using all candidates as control points
reduces the error rerr (13) at most, but not necessarily the stress.
The goal is to select a limited amount of points that better explains
the data set and potentially reduces the stress. This is achieved by
introducing stop criterion in the selection process: (1) Akaike-type
criteria reaches a minimum, as suggested in [6] and (2) a maximum
number of control points is reached. At the end of the selection pro-
cess, the iteration with minimum stress is identified. As a final step,
we seek a trade off between the minimum stress and the reduced
number of control points, by finding an iteration with less control
points than the one with minimum stress, but with stress slightly
higher (in our experiments, between 0 and 5% higher proved to be
a good range).

To prevent ill-conditioning, a simple check can be built into the
procedure. The relation wiTWf = 0 implies that ¢; is a linear com-
bination of the previously selected control points. Thus, if wl-Twi is
less than a preset threshold 7y, ¢; will not be selected as a control
point.

The ROLS technique for control points selection is summarized
in Algorithm 1. Note that the orthogonalization of matrix & is done
step by step until a stop criterion is met and the selection process is
terminated. The orthogonalization process is acquired through the
Modified Gram-Schmidt algorithm and a detailed description of the
algorithm can be found in [5].

The first step in the proposed process is to randomly select N
candidates for control points and use a force-based technique to
calculate their low-dimensional positioning. Of course this creates
an extra overhead in computational time, however, as soon as the
number of control points is reduced, the RBF becomes extremely
simple. Also, the projection quality measured by the stress (Equa-
tion (4)) presents significant improvements using this careful selec-
tion process. In fact, Figure 5 experiments with three data sets, Page
Blocks, Ionosphere and Yeast, with RBF using a Multiquadrics ker-
nel (¢ =1 and € = 30). The green boxplots present the stress for
random selection of control points, while the pink boxplots present
the results for ROLS selection. Each experiment was executed 100
times.

The ROLS parameters used are: 30 maximum number of final
control points and ¥ = 1.e — 5, selected heuristically. The aver-
age number of control points selected is shown in the row #FCP.
Observe that the stress achieved with ROLS selection with a few
control points (less than 30) is lower than the ones achieved with a
larger number of randomly selected control points. Another inter-
esting fact to observe is that, increasing the number of candidates
N, the chances of selecting more meaningful control points are in-
creased and the stress is improved, but there is a tradeoff between



Algorithm 1 Control points selection with ROLS

1: Given X, = xy,...xy (set of control points candidates);
2: Given Y. =yj,...yy (candidates’ position in the projection space);
3: Construct matrix ®

4: W=

5 Xo=02

6: it=1

7: while Stop-criteria not met do

8: for each candidate i where w[T w; > ydo

9: Calculate [rerr];(w;) (Equation (13))

10: end for

11: wy = argmax([rerr];)

12: Xir = Xiy—1 U{xx} (Select k as control point)

13: Remove wy from W

14: Calculate stress for instances in W

15: for each w; € W do

16: w; = Orthogonalization of w; with respect to wy
17: end for

18: it=ir+1

19: end while

20: Find iteration it with minimum stress (8y,,)

21: X = X;, with i the iteration with less CPs and stress < 1.05 * S,
22: Return X

projection quality and computational time. In the next Section we
present an evaluation of the proposed RBF projection and compar-
ison with other techniques.

5 EVALUATION OF TECHNIQUE

The experiments presented in this section were executed in a 2.80
GHz Intel Core i7 CPU 860 with 12 GB of RAM. We compare
our technique to four other methods, namely LAMP [18], PLMP
[22], Pekalska [24] and Fastmap [14]. The first three techniques
are control-points-based, LAMP being the only one able to handle
a reduced amount of control points. All of these techniques pro-
pose a random strategy for control points selection. The Fastmap
technique, in turn, is known for its computational efficiency.

For the RBF setup in these experiments we adopted the Multi-
quadrics kernel, with ¢ = € = 1. For the control points selection
process we used the following parameters: number of candidates
N = 150, maximum number of control points 30 and y= 1l.e —5 to
avoid matrix ill-conditioning. The data sets used in the experiments
are described in Table 2.

Data set # Instances | # Di

Tonosphere 350 35
Pima indians diabetes 768 8
Yeast 1152 8
WDBC 569 30
Segmentation 2085 16
Wine Quality 3961 11
Page blocks 5405 10
Letter Recognition 18667 16
Shuttle 42365 8

Table 2: Data sets used in the experiments, downloaded from the
UCI Machine Learning Repository [2].

For each data set 100 experiments were executed, to account for
the variance introduced in the results due to the random factors of
the techniques (except for Fastmap, which is a deterministic ap-
proach). We compared the methods in terms of mapping quality
(stress - Equation (4)) and execution time. The results are shown in
Figure 6 and we discuss the experiments in Section 5.1.

5.1 Discussion

Figure 6(a) presents the comparison of projection quality between
the RBF approach and the other four techniques. The y-axis was
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Figure 5: Impact of control points’ selection with ROLS in projection
stress, for three data sets. In ROLS results, #FCP indicates the av-
erage number of control points selected in the experiment.

truncated for stress = 0.6. We can see that the stress achieved by
our method is very low and outperforms all the other methods, with
the exception of Pekalska, which present stress slightly smaller.
Pekalska, however, needs to use a large number of control points to
produce good-quality results, while our method used a maximum
of 30 control points in every test case.

Figure 6(b), in turn, presents the boxplots with the time variance
for each technique. The results indicate that the overhead created
by the procedure for control points’ selection gives a small disad-
vantage to RBF compared with LAMP, PLMP and Fastmap. How-
ever, we note that the execution time was around 1 second, which
is small in practical terms. Moreover, the created overhead is only
caused by the control points’ selection process, which depends on
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Figure 6: Stress and time comparison for RBF, LAMP, PLMP,
Pekalska and Fastmap.

the number of candidates N chosen by the user. Our experiments
indicate that a fixed number of 150, independent of the size of the
data set, gives satisfactory results. Accordingly, this only creates
a lower bound in terms of computational time, since the final RBF
process with only a few control points is extremely fast.

Regarding ROLS for control points selection, we want to point
out that the results achieved with this technique were very satisfac-
tory. We applied this process to all 9 data sets presented in Table 2
(a reduced number of results was presented in Figure 5) and the
stress produced by less than 30 control points was always equal
or better than the ones produced by 50 randomly selected control
points. Figure 7 presents an illustration of how the ROLS-based
control points selection work in the Mammals dataset, which con-
tains data that characterizes dogs, cats, horses and giraffes, form-
ing four well-separated clusters [1]. Figures 7(a) and 7(b) present
150 randomly selected and 15 ROLS-selected control points, re-
spectively. We can observe that the method automatically selects
representatives of each cluster, maintaining the general behavior of
the projection (results in the top row).

We intend to fully explore the usability of a reduced number of
control points in an interactive application. As a preliminary result,
we created a simple application where the user manipulates control
points in order to better visualize samples that are similar to a se-
lected pivot sample. Figure 8 and 9 illustrate such an application.
Figure 8-(a) presents the initial projection configuration, achieved
automatically. Figure 8-(b) presents the final configuration after

u Control Points

= Instances

(a)

(b)

Figure 8: Example of control points manipulation with the lonosphere
data set, with the goal of unveiling samples close to a pivot. Through
the manipulation of control points the user is able to examine a sub-
set of the data (b) observed to be cluttered in the original projection
(a). The color represents the distance value of the sample to a pivot,
black being the most similar and light green the most dissimilar.

user intervention through the manipulation of control points. The
black-to-green scale indicates how similar the sample is to a pivot,
black being the most similar and light green the most dissimilar,
and is used as a visual cue to aid the user to perform the separation
task. We observe that after control point manipulation the data be-
comes more accessible to the user and the dark samples turn out to
be easier to visualize. Figure 9 also contains an example of control
points manipulation with the Segmentation data set divided into 7
clusters (represented by different colors). Starting from an auto-
matic configuration of control points, a projection layout is gener-
ated (Fig. 9-(a)). The user is then able to interfere in the projection
layout by changing the control points positions (Fig. 9-(b)). We can
observe that the resulted projection allows the user to better explore
instances that were originally hidden, for example the ones that be-
long to the red cluster.

6 CONCLUSION AND FUTURE WORK

In this work we proposed a novel multidimensional projection tech-
nique, based on radial basis functions. The main advantage of the
presented method is its ability to perform control points selection, a
step generally not present in most projection techniques. Results
indicate that the presented ROLS-selection procedure presents a
good trade-off between time and stress, while reducing the num-
ber of control points, an important result if user interaction through
control points is desired.

There are a few things we consider interesting to explore in this
method, which are: how to create local projections, using the shape
parameter € of the Gaussian kernel to determine the radial of influ-
ence of each control point; understand how the projection behaves
when different techniques, such as Sammon’s mapping, PCA and
MDS, are used to position control points; investigate how to au-
tomatically select a good RBF kernel and automatically tune their
shape parameters for different data sets. Besides, we intend fully
explore the usability of a reduced number of control points.

Finally, we intend to experiment the ROLS-based control
points’s selection procedure in other projection techniques. In fact,
some tests were already performed using this approach and the re-
sults are encouraging.
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(a) 150 randomly selected control points

(b) 15 control points with ROLS

Figure 7: Example of control points selection through ROLS in the Mammals data set (20,000 instances and 47 dimensions). This data set
contains four well-defined clusters, indicated by the different colors in the projection. Figures on the bottom present only the control points used

to produce the projection, depicted on the top.
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Figure 9: Example of control points manipulation with the segmenta-
tion data set. (a) Control points automatically positioned and (b) final
projection after user manipulation.
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