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Fig. 1. A comparison of partial layouts of 366 “German railway stations.” The labeling results are generated on canvases with a resolution of
2850 x 3800. The left side shows particle-based labeling [18]. The right side is the result of our labeling pipeline with clutter control.

Abstract— A high-quality label layout is critical for effective information understanding and consumption. Existing labeling methods
fail to help users quickly gain an overview of visualized data when the number of labels is large. Visual clutter is a major challenge
preventing these methods from being applied to real-world applications. To address this, we propose a context-aware label layout
that can measure and reduce visual clutter during the layout process. Our method formulates the clutter model using four factors:
confusion, visual connection, distance, and intersection. Based on this clutter model, an effective clutter-aware labeling method has
been developed that can generate clear and legible label layouts in different visualizations. We have applied our method to several
types of visualizations and the results show promise, especially in support of an uncluttered and informative label layout.

Index Terms—Visual clutter, clutter measure, label placement.
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1 INTRODUCTION

A high-quality label placement method without clutter is essential for
effective information consumption and decision making. First, it can
help illustrate and convey the visualized content by leveraging the
descriptive nature of labels. Second, labels in illustrations allow users
to better understand the association between graphical objects, thereby
supporting their comprehension and analysis.

Over the past two decades, a great deal of effort has gone into au-
tomatic label layouts [18]. Most of these labeling approaches aim
to create a label that is both readable and close to its element. Typ-
ically, a label is readable if it does not overlap with other graphical
elements. Existing methods for offering an automatic label layout
have achieved some success at addressing the non-overlapping issue.
However, these label layout methods are inadequate in helping users
to quickly understand the visualized data when the number of labels is
large. This performance degradation is due to the difficulty in recogniz-
ing or searching for a label that is interfering with other surrounding
labels or point-features, especially when the item spacing is small due
to visual clutter caused by excess and/or disorganized visual elements.
This issue can be solved simply by laying out only the important labels.
However, this solution may lead to varying local density. Some regions
in the generated layouts are sparse or even empty, while others are
very dense due to the fact there are too many important point-features.
To bridge the gap, the fundamental issue of decreased recognition
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performance due to a cluttered label layout needs to be addressed.

There are two technical challenges that we believe are critical to gen-
erating an uncluttered label layout. The first challenge is how to define
and estimate visual clutter in a visualization. Clutter is an important
consideration in the design and development of information visualiza-
tions. Too many and/or disorganized graphical elements typically cause
decreased recognition performance due to occlusion, the difficulty of
recognizing elements and performing visual search [22].

Recently, researchers have proposed several metrics and models to
measure visual clutter in an image. A question then naturally arises:
can we view a visualization as an image and directly apply an image
clutter measure method to the visualization? After careful study, we
realized that the image clutter measure is not optimal for visualization
measurement since visualizations have special layouts with interactive
visual elements rather than static pixels. It is therefore important to
understand what features, attributes, and factors are relevant to visual
clutter in a visualization and how to measure it. The second challenge
is how to generate an uncluttered label layout by considering a compu-
tational measure of clutter. When examining a visualization, the user
will be overwhelmed if it provides too much content with clutter. On
the other hand, if too little information is provided, the visualization
is not cluttered. However, the user may have little to go on. As a
result, it is also preferable to make a good tradeoff between informative
visualization and uncluttered visualization.

To address these challenges, we propose a new label layout pipeline,
in which we incorporate a computational measure of clutter into the
existing label layout process. Instead of developing a new label layout
algorithm, we propose a method that can improve a given label layout
to produce clutter-free labeling for illustration. In particular, we adopt a
state-of-the-art method, particle-based labelling [18], to place the labels
in a visualization. Our method first preprocesses the input visualization
to roughly estimate the clutter degree of each point-feature and then
rank the related point-features according to the clutter degree and
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domain knowledge. In many visualizations, it is important to lay
out as many labels as possible for the important point-features. This
step will make sure that the important nodes have higher priorities.
The proposed method formulates the clutter model according to four
factors: confusion, visual connection, distance, and intersection. The
uncluttered label layout is iteratively generated based on the point-
feature ranking list and the clutter degree of the considered region.

By incorporating a computational measure of visual clutter into the

label layout, our method offers two major technical contributions:

o An effective clutter estimation model that can measure the clut-
ter degree of each label by leveraging four clutter factors: confu-
sion, visual connection, distance, and intersection.

e An improved clutter-aware label layout pipeline that can gen-
erate an uncluttered label layout by considering the clutter degree
in a visualization.

2 RELATED WORK

In the last two decades, a large number of clutter reduction techniques
for information visualization have been developed [7]. For example,
Bertini and Santucci [5] suggest a method of sampling and pixel dis-
placement to reduce the clutter in 2D scatter plots. Frishman and Tal
[8] present a physically-inspired method to reduce the clutter in graph
layouts. However, the above methods do not explicitly define a formal
model of visual clutter or exactly measure visual clutter in a visualiza-
tion. Thus, the approaches are not clear enough as to what extent they
reduce visual clutter and how they are able to do so.

To solve this problem, there are some initial efforts to define metrics
to measure visual clutter. Each metric is usually specific to one
particular visualization [14]. For instance, [4, 3] measure the clutter
in scatter plots. [13, 14] measure the clutter in Euler diagrams. [20]
measures the clutter in parallel coordinates, scatter plots, star glyphs,
and dimensional stacking using different metrics. To the best of our
knowledge, there is not yet a clutter model for label layouts. Since
labels are generally used in a variety of visualizations, the model and
corresponding metrics for measuring visual clutter in label layouts are
very critical for understanding the content in a visualization.

On the other hand, in computer vision, a great deal of effort has
gone into estimating the visual clutter of an image. Rosenholtz et al.
present a feature congestion method to measure visual clutter [22].
They claim that feature congestion is one of the major causes of clutter,
and therefore the level of feature congestion can be used to estimate the
degree of clutter. In [23], Rosenholtz et al. introduce another clutter
measure method called Subband Entropy measure. This method is
based on the notion that the more “organized” an image is, the less
cluttered it is. If an image is “well-organized,” the number of bits
required for coding it will be small. Thus the bit number is a reasonable
measure of visual clutter. More recently, Bravo et al. [6] use the
proportionality constant of a power law to measure visual clutter. They
claimed that when an image is segmented, the relationship between
the number of regions and the scales of segmentation follows a power
law. Generally, the more cluttered an image, the larger constant of
proportionality the power law has. Berg et al. [25] propose a crowding
model to measure visual clutter. They suggest that “crowding appears
to be the result of feature pooling, carried out by (weighted) integration
fields with sizes proportional to retinal eccentricity” [19]. Therefore,
they simulate the process of feature pooling and use the amount of lost
information as an indicator of visual clutter.

Although the above methods achieve some success in measuring
the visual clutter of an image, they cannot be applied to a visualiza-
tion effectively or efficiently. The major reason is that a visualization
contains a lot of interactive visual elements rather than static pixels,
and treating the display as an image fails to consider the relationships
between visual elements.

Some other methods related to human cognition, perception, and
understanding, have a close relationship with visual clutter. The visual
clutter will lead to a degradation of performance at some task [22],
which means the visual clutter is an obstacle to cognizing, perceiving, or
understanding the visualizations. If we were able to understand how the
human brain cognizes and processes the information displayed by the
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Table 1. Frequently used notations and their corresponding explanations.

Notations| Explanations

t Reasoning time, which is measured by the number of
reasoning steps.

bm Memory burden, which is measured by the maximum

number of visual elements that must be kept in the
STM at the same time.

Cym The degree of confusion, which is equal to the
weighted sum of 7, and by,.

Cye The times that visual connection happens.

d, Visual distance.

D, Visual difficulty caused by visual connection.

Dy Visual difficulty caused by visual distance.

D, Visual difficulty caused by intersection.

Dyp The degree of visual difficulty in the perceptual pro-

cess, equal to the sum of D., D;, and D,;.

visualizations and determine what may hinder human brains from doing
this, we could detect and measure visual clutter and avoid it based on a
clear theoretical foundation. Fortunately, researchers have made many
achievements in understanding human cognition, perception, or com-
prehension in biology [2], psychology [15, 21, 19, 1], human computer
interaction [17], and information visualization [9, 11, 26, 10, 16].
Motivated by the above research, we simulate the brain’s reasoning
process when it tries to interpret a visualization full of labels and
evaluate how difficult this process is. Then we combine this evaluation
with traditional criteria to model an effective measure of visual clutter.

3 CLUTTER MODEL

Visual clutter makes it difficult to search for and understand information
in a visualization. As a result, it is important to study what factors influ-
ence the clutter in a visualization. The classic models of perception and
cognition contain three major components: the perceptual process (or
sensory memory), short-term memory (STM) and long-term memory
(LTM) [17, 10]. When a user views a visualization, the perceptual
process encodes the visual information, such as position, shape, size,
and color, and passes it to the STM. Then the STM decodes the infor-
mation and understands it. If the user is trying to explore more implicit
information behind the data, the process for forming the LTM will be
triggered. Otherwise the cognitive process is finished. Forming the
LTM is a complex mental process depending on many other factors
such as one’s experience, basic knowledge, intelligence development,
and so on, and it is beyond the reach of a visualization. A visualization
mostly benefits the perceptual process and the STM. Therefore, the
visual clutter of a visualization mostly affects the perceptual process
and STM.

When users read labels, they face two basic tasks: searching for a
given point-feature’s associated label, or searching for a given label’s
associated point-feature. The complex tasks are usually organized by
many basic tasks in different forms. To make the analysis easy and
clear, in the rest of this paper when we talk about the process of human
perception and cognition, we simply mean the process of performing
basic tasks.

Next, we will analyze the causes of the clutter in the perceptual
process and the STM, and introduce how to evaluate each of them. Then
we present a computable clutter model that can effectively measure the
degree of clutter in a visualization. Table 1 describes some notations
that are useful for subsequent discussions.

3.1 Confusion

The first factor, Confusion, describes the degree of difficulty users
experience when processing information in the STM. Before defining
confusion, we use the basic task of “finding the associate point-feature
of the label ‘Chevrolet’ (See Figure 2(a))” to illustrate how the STM
works with a label layout.

We first assume that we have found the label “Chevrolet” in Figure
2(a) and it has been encoded in the STM. There are five point-features
(@, ©, ®, ®, @) around “Chevrolet,” each of which might be its
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Fig. 2. Cognitive process. (a) An example label layout. Each point-feature is represented by a circle with a letter. (b) and (c) The reasoning process
of recognizing a label. The arrows show the reasoning direction. (d) A pair of point-feature and its associated label with different colors.

associate point-feature. As a result, these five point-features are pushed
into the STM and prepared for further checking one-by-one.

For point-feature (d), label “Porsche” is also next to it. To make
it clear whether @) is associated with “Chevrolet” or “Porsche,” we
need to put “Porsche” into the STM and check all the other point-
features around it. However, both (K) and () may be the point-feature
associated with “Porsche,” and there is no other information we can
use for further reasoning. Thus we fail to judge whether @ is the
point-feature associated with “Chevrolet” based on the above analysis.
Now we do not need to keep “Porsche,” &), or () in the STM any more,
but we do need to remember that (@ has been checked and has not been
associated with any label.

Then we check point-feature (©). It is obvious that it has a guiding
line, which connects its label. We can quickly conclude that (C) is not
the point-feature associated with “Chevrolet,” even without following
the guiding line to find “Mercedes Benz.”

Next, point-feature (@) is checked. In addition to “Chevrolet,” “Fer-
rari” is also next to (g). So “Ferrari” is pushed into the STM. We then
find that (g) is the only point-feature around “Ferrari.” Thus we de-
rive that (g) is not the point-feature associated with “Chevrolet” but
with “Ferrari.” Similarly, we can conclude that (®) is not the associated
point-feature of “Chevrolet” but of “Audi.”

Finally, only @ has not been checked. Around @), there is label
“Toyota” in addition to “Chevrolet,” so “Toyota” is pushed into the STM.
“Toyota” can be the label associated with (@) or (@) and as a result, @
is pushed into the STM. Then we find that (@) is the only point-feature
around “Mazda,” so “Mazda” belongs to (@), and consequently “Toyota”
belongs to @). At this moment, “Mazda,” “Toyota,” and (@) no longer
need to be remembered. What we need to remember is that @) is not
the point-feature of “Chevrolet.”

Now, we have checked all five point-features around “Chevrolet.
The result is that @) is the only point-feature that has not been associated
with a label. Thus (@ is the point-feature that “Chevrolet” belongs to.

The above example illustrates how humans reason during a basic
task. The arrows in Figure 2(b) illustrate the trace of the reasoning.
All the labels and point-features that are passed by the arrows were
pushed into the STM. The longer the trace is, the more visual elements
(point-features and labels) need to be kept in the STM, and the longer
performance time is needed. What is worse, because the STM is limited,
remembering too much new information will lead to forgetting previous
information, and force people to repeat reasoning effort.

The label layout in Figure 2(a) is not good because the layout makes
the association relationships very ambiguous. Users have to make an ef-
fort to comprehend and reason. This phenomenon is called Confusion.
To measure it, we count the number of reasoning steps and the number
of visual elements that are pushed into STM. The number of reasoning
steps reflects the time cost 7, and the number of visual elements reflects
the memory burden by,.

As shown in Figure 2(b), the reasoning process can be described
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Fig. 3. Reasoning Cases. The left column shows cases of recognizing a
label. The right column shows cases of recognizing a point-feature. “Y”
means the visual element can be recognized directly, while “N” means it
cannot be recognized. The area enclosed in a red line represents the
neighborhood of a visual element.

as a directed graph, called the reasoning graph. The visual elements
(point-features and labels) are nodes and the arrows are directed edges.
The number of reasoning steps is equal to the number of directed edges.
In this example, #, = 13.

One necessary condition of reasoning a label is that there is no cycle
in the directed graph. For example, in Figure 2(a), it is impossible to
determine the point-features of “Lotus” and “Nissan” because there
is a reasoning cycle in the cognitive process. To associate “Lotus” with
®, “Nissan” should be associated with (€) first, and vice versa. In this
case, the number of reasoning steps is infinite.

In the cognitive process, the visual element in the STM changes
from time to time. The memory burden b, is the maximum number
of visual elements that must be kept in STM at the same time. Since
the reasoning graph has no cycle, it can be considered a tree, called a
reasoning tree (See Figure 2(b)). The label to be reasoned is the root.
The value of b,, is equal to the number of vertices incident to the root
plus the height of the tree. In this example, b, =9.

To calculate the values of ¢, and b, of a label, the reasoning tree
needs to be built first. If a cycle exits in the reasoning process, the tree
building fails. Consequently ¢, = 40 and b, is meaningless.

Figure 3 enumerates all the possible cases of associating the label
and the point feature. In this figure, the left column associates the label
with the point feature, while the right one associates the point feature
with the label. In cases (i) and (v), the point-feature or the label has
a guiding line, and thus they can be associated. Since some labels
cannot be placed due to limited space, a label layout may have some
point-features without labels (See point-feature (f) in Figure 2(d)). Case
(vi) reflects this situation. In case (iii), there is only one point-feature
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within the label’s neighborhood, thus they are associated. While in
case (vii), even though there is only one label within the point-feature’s
neighborhood, it is irrational to associate them. This is because in a
label layout, a point-feature is allowed to have no label and the label
may belong to another point-feature. If there are more than one point-
features (case (iv)) or labels (case (viii)) in the neighborhood of the
visual element being checked, it cannot be associated.

However, the reasoning tree cannot guarantee that the label can
always be associated. For example, in Figure 2(c), if we use “Porsche”
as the root, a reasoning tree is built. However, because both &) and
(® have not been recognized, “Porsche” may belong to either of them.
A leaf in a reasoning tree has two states: can or cannot be recognized
directly. We define a leaf that cannot be recognized directly as an
invalid-leaf and a subtree containing invalid-leaves as an invalid-subtree.
Now we can conclude that the sufficient and necessary condition that
the root can be recognized by the reasoning process is that it contains
at most one direct invalid-subtree.

To sum up, the degree of confusion is measured by

if the label can be recognized o

otherwise.

Co — {wrstr + Opupbm,
stm =
o0,

We empirically set w.; = 0.3 and ,,;, = 1 for all our results.

3.2 Visual Difficulty

We use visual difficulty to describe the difficulties caused by visual
distracters in the perceptual process. The perceptual process is fast and
unconscious and a visualization will benefit greatly if it takes advantage
of the perceptual process. Figure 2(d) gives a good example of making
use of the perceptual process to accelerate perception and cognition.
Because color and letter can be comprehended in parallel, if we use
color to distinguish different pairs of point-features and labels, the
association relationship between them will be recognized without any
further reasoning. However, using color is not always an effective way
to accelerate recognition because color is usually used to indicate other
information, such as priority, categorization, etc. Furthermore, if there
are too many label/point-feature pairs, color scalability will become an
issue. As a result, in this paper, without loss of generality, we assume
color cannot be used to help associate point-features with labels.

Here we consider three distracters impeding the perceptual process.
They are visual connection, visual distance, and intersection. As-
suming that D., Dy, and D; indicate the visual difficulties caused by
each distracter, respectively, the degree of visual difficulty in the whole
perceptual process is

Dpp =De+Dy+D;. 2)

Next, we will explain why each distracter impedes the perceptual
process, and introduce how to detect or measure visual difficulties.

3.2.1

Visual connection is used by Eduard Imhof [12] to describe the poor
placement of names on maps. It happens when the names are too close
or one name is split by another. In a label layout, visual connection is
the phenomenon in which the labels are aligned closely. For example,
there are two labels in Figure 4(a). However, they are ambiguous. They
may be “graduate school” and “board,” or they may be “graduate” and
“school board.” The reason for this ambiguity is that people cannot tell
the difference between the gap between words and the gap between
labels. The ambiguity can be removed as long as the labels are further
apart (Figure 4(b)), or have an obviously vertical gap (Figure 4(c)).

To detect visual connection between two labels, we check their
horizontal gap wy, and vertical gap A,. In our experiments, assuming the
width of a space character is wy, the height of the label is Ay, if wj, < 3wy,
and at the same time A, < 0.24, the two labels are considered visually
connected. The visual difficulty caused by visual connection can be
estimated by

Visual Connection

Dc = wvccva (3)

where Cy. is the number of times that visual connection happens. We
empirically set @, = 2.
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Fig. 4. Visual Connection. In (a) the two labels are visually connected. In
(b), since the label’s horizontal gap wj, is much larger than wy, the width
of a space character, they are distinguished easily. In (c), although the
labels are close to each other, the visual connection is broken due to the
vertical gap between the two labels.

e graduate

| amb

orgiT Lambgrghini Mini

(a) (b) ©)
(MII’II v
(e)

Fig. 5. Intersections between labels and guiding lines.

3.2.2 Visual Distance

In a visualization, labels are expected to be close to their associated
point-features. The longer the distance between a label and its point-
feature, the more time it takes to associate them, even with the help of
a guiding line.

What we care about is how long the eyes move in the association
process. Thus we define visual distance d,, which is the length by the
eye movement.

Visual distance depends on whether the label has a guiding line. If
there is no guiding line, the eye movement route will be a straight line,
because humans tend to minimize energy cost unconsciously when
finishing a task. In this situation, the visual distance is the minimum
distance from a point-feature to its label boundary. On the other hand, if
the label has a guiding line, the eye’s focus tends to follow the guiding
line. Thus the visual distance is equal to the length of the guiding line.

The visual difficulty caused by the visual distance is estimated by

Dy = wyqdy. (]
, is empirically set as 0.05 in our experiments.

3.2.3 Intersection

In our work, we do not consider label-label intersections or label-point
intersections, because currently almost all layout methods are able
to avoid them. What we focus on are the intersections caused by a
guiding line. A guiding line may intersect with irrelevant point-features,
labels, or other guiding lines. These intersections make the guiding
lines difficult to follow. Intuitively, the number of intersections is
an effective indicator of this difficulty, but it is not enough. We will
consider two more complicated situations.

We first consider a situation where a guiding line intersects with
labels. As shown in Figure 5, the label in (a) is less readable than the one
in (b) because there are more covered letters in (a) than (b). The number
of covered letters in (b) is equal to that in (c), but “Lamborgini” is much
easier to recognize than “Mini” because there are more uncovered
letters in (b) to help people guess the covered part.

A conclusion drawn from the above example is that the higher
percentage of covered letters, the more difficult it is for people to
read. Thus we use ll-2 / lfl to measure the difficulty caused by covering,
where /; is the length of the parts of the guiding line falling in the label
region and /; is the distance between the two furthest points on the
label boundary. For example, if the label shape is a rectangle, /; is the
length of the diagonal.

Next, we study a situation where a guiding line intersects with
point-features. In Figure 5(d), the guiding line passes two irrelevant



point-features, leading to ambiguity as to where it starts. This situation
needs to be avoided. However, if the point-features are overlapping, as
shown in 5(e) and 5(f), such an intersection cannot be avoided unless
the guiding line and its connected label are removed. In this situation,
it is the overlapping of point-features but not the intersection that is
likely the cause of ambiguity. Since the positions of point-features
are given, we ignore this situation when considering the intersection
between guiding lines and point-features.

To sum up, for a label with a guiding line, the visual difficulty caused
by an intersection is measured by

2
D; = wigTig+wilTiz+wipTip+wicZé7 (5)
where Tj,, T;; and T;, are the times the guiding line intersects with other
guiding lines, irrelevant labels, and point-features. The first three terms
in Equation 5 reflect the difficulty of following the guiding line and the
last term reflects the difficulty of reading the label. We empirically set
Wig = 1, w; =1, Wip = 10, and w;. = 10.

3.3 Clutter Metric

Considering both the confusion in the STM and the visual difficulties
in the perceptual process, the 2D clutter vector of a label is defined as

6 = (Dpp7Cszm)~ (6)

This metric is a local one. It describes the difficulty of performing
a basic task: finding the associated point feature of a given label.
Comparing this to the global metric, the advantage of a local one is that
it can guide a label layout method in more detail. We will introduce
how this works in the next section.

4 IMPLEMENTATION

The purpose of measuring visual clutter is to generate better label
layouts, which are much clearer and easier for people to understand. In
this section, we will introduce how to combine our clutter model with
the existing label layout method and how the clutter model controls
the labeling process. Particularly, our approach contains two steps:
preprocessing and labeling.

4.1 Preprocessing

The preprocessing step ranks the point-features according to their im-
portance and the density of the regions where the labels will be placed.
We assume that the importance is predefined in this step. Here we
focus on how to estimate the density. Before all the point-features are
labeled, it is extremely difficult to evaluate the real density precisely.
The density is defined as the number of labels covering the unit area.
Fortunately, we do not need to know the real density; what we need is
a rough but reasonable estimate that can be used to determine a better
order for the labeling. Thus, a probability model is employed to roughly
predict the density.

To simplify the computation, we make the following assumptions.
First, all the point-features are particles and do not occupy any space.
Second, all the labels will be placed next to their associated point-
features. Third, no conflict will be managed, which means labels can
overlap with each other or with point-features.

Fig. 6. An example of placing a label. The area bounded by the dash
lines contains the possible position to place the label.

As shown in Figure 6, given a position (x,y) and a point-feature
pr(xk, yi), the probability that this position will be covered by label py

is

(Wi — | —x]) (e —[yx—[) :

wyihy if ‘xk _'x| < wy and |yk _y‘ < Iy

Pk(xay) = {

0, otherwise.
@)
Then the density at this position can be estimated as
n
D(x,y) =) Ri(xy), ®)
k=1

where n is the number of point-features.

The density at the position of each point-feature can be estimated by
Equation 8. However, such local density cannot be directly used to rank
the point-features because it ignores the label conflicts. For example,
the point-features in Figures 7(a) and (b) have the same local density
according to Equation 8. However, the label layout in (a) has a higher
density because the labels probably overlap. To overcome this problem,
the conception of mean density is introduced. The mean density of a
point-feature py, is defined as:

5 1 X+wi y+th dnd 9
(Pe) = Z T /x . /y _, Dly)dxdy. ©

For the point-features with the same importance, they are ranked in the
order of decreasing mean density values.

Fig. 7. Possible labels conflict. The labels in (a) may overlap, but the
labels in (b) will not.

4.2 Labeling

In this step, the label placement and clutter measure operate alter-
nately to derive a high-quality label layout without clutter. In our
implementation, we employ a state-of-the-art label layout method, the
particle-based method [18], to place labels. The particle-based labeling
method labels point-features one-by-one. Given a feature-point, the
particle-based method first tries to place the label at its closest neighbor.
If the label overlaps with other visual elements, the labeling result is
rejected and a farther position is checked. This process repeats until
a non-overlapping position is found. If all the available positions re-
sult in overlaps, the feature-point is declared to be unlabeled. After a
label is placed, clutter may be introduced by the label itself, the labels
around it, or the labels intersecting with the newly added guiding line.
The clutter metric proposed in Section 3.3 is employed to measure the
clutter degree. If the result shows that the temporary labeling is more
cluttered than the expectation, the label placement module will check
another available position. Otherwise the temporary layout is accepted.

In the clutter measure module, we use a set of thresholds to measure
whether the clutter degree is acceptable. However, the acceptability
may differ for different users. Even for the same user, it may change for
different tasks. For example, an expert may tend to use a label layout
with more detailed information in spite of some clutter, but a novice
may prefer to use a much clearer label layout with less information.
Thus we provide an interactive controller to allow users to tune these
thresholds, and consequently control the degree of clutter. Specifically,
we use a variable V. € [0, 1] to control clutter. As V, increases, the labels
become more cluttered. The threshold of Cy,, is 60V,; the threshold
of D; is 4V,; the threshold of D, is 10V,h;, where h; is the height of
the label; and the threshold of D, is 0, which means visual connection
must be avoided.
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(a) The labeling result of “108 queries searched in Bing”, using particle-based method [18].
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Fig. 8. Clutter measure with different metrics.
5 EXPERIMENTS

We implemented the clutter-aware labeling using C# and Silverlight.
All the experiments were performed on a PC with a 2.00GHz
Pentium(R) Dual-Core CPU and 3GB of RAM.

Figure 8 shows an example measured by our clutter metrics, in-
cluding reasoning time ¢, memory burden b,,, the number of visual
connection Cy, visual distance d,, the visual difficulty caused by in-
tersection D;, and the 2D visual clutter values. The data used in this
experiment are a collection of queries searched for in Bing. The point-
features are placed based on their importance (y-axis) and the time
of the search (x-axis). The labels were placed by the particle-based
method [18]. This example shows the effectiveness of our clutter met-
rics. For example, in Figure 8(a), the labels “msnbc” and “fantage”
cannot be associated with their point-features due to the reasoning cir-
cle, so their reasoning steps shown in Figure 8(b) are both “100,” which
means infinity in the implementation of our clutter model. Another
example is that “applebees” is visually connected with “youtube video”
(Figure 8(a)), thus the number of visual connections are both “1” (8(c)).
Figure 8(f) shows the 2D visual clutter value of each label. The higher
the clutter value of a label, the more difficult it is to associate it with its
point-feature.

To verify and evaluate the effectiveness of our clutter control mecha-
nism, we compared the results produced by the particle-based labeling
method [18] with and without clutter control. The particle-based la-
beling method can place labels both adjacently and distantly, thus
choosing this labeling method as a base can reflect the effectiveness of
our clutter control mechanism in these two aspects. Here we used the
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particle-based labeling method with the parameters mentioned in [18].

The comparisons were performed on both a random data set and
several benchmark data sets. The random data was generated as follows:
the positions of point-features were generated randomly within the
display area and the labels were sequences of random Latin letters in
lower case. Each sequence can be a random length from 1 to 16. The
Latin letters were in “Lucida Sans Unicode” font of size “13.” The
benchmark data sets employed here were “Tourist Shops in Berlin,’
“1041 American Cities,” and “German Railway Stations.”

As shown in Table 2, we compared the results in the following
aspects: the number of placed labels, the number of labels that can
be recognized, the number of labels with confusion degrees larger than
6.5, the number of labels with visual difficulty values larger than 10,
the mean value of the confusion degree, and the mean value of visual
difficulty. Based on our experience, if the confusion degree of a label
is larger than 6.5, it is hard to associate it with its point-feature; if the
visual difficulty value of a label is larger than 10, the readability of the
layout is much lower. Thus, in these comparisons, the number of labels
that can be recognized is actually the number of labels whose confusion
degrees are no more than 6.5. The statistics in Table 2 show that with
a fixed resolution (2652 x 1440) the quality of labeling results without
clutter control becomes obviously worse as the number of point-
features increase. Specifically, more seriously cluttered (Cg, > 6.5
or D, > 10) labels appear and both Cyim and bpp increase. On the
other hand, the labeling results with clutter control almost prevent the
production of seriously cluttered labels and Cy, is kept around 0.3.
Although with the clutter control, the labeling method may place fewer
point-features, the number of labels that can be recognized is larger.
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Table 2. Verification and evaluation of the effectiveness of the clutter control mechanism. N, represents the number of point-features. »; is the
ﬂumber of point-features that were labeled. N, is the number of labels that can be recognized. Cy;,, is the mean value of the confusion degree and
D,, is the mean value of visual difficulty. “W” and “WO” encode the particle-based labeling with and without clutter control, respectively.

Data Set Resolution Npy Ni Nr Ni(Cstm > 6.3) Ni(Dpp > 10) Citm Dypp
WO W WO W WO W WO W WO W WO W

Random 2652 x 1440 200 200 200 200 200 0 0 0 0 0.45 0.30 0.02 0.00
Random 2652 x 1440 400 400 400 387 400 13 0 0 0 1.49 0.30 0.16 0.05
Random 2652 x 1440 600 600 600 572 600 28 0 1 0 1.60 0.30 0.20 0.17
Random 2652 x 1440 800 800 793 756 793 44 0 4 0 2.06 0.30 0.33 0.28
Random 2652 x 1440 1000 1000 972 936 972 64 0 12 0 2.10 0.30 0.58 0.53
Shops 12160 x 6240 357 357 346 333 346 24 0 4 0 245 0.30 0.63 0.43
Stations 7216 x 3744 366 366 366 347 366 19 0 0 0 1.89 0.30 0.14 0.18
Cities 7216 x 3744 1041 1041 1041 1001 1041 40 0 0 0 1.46 0.30 0.09 0.07
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(a) Labeling without clutter control

Fig. 9. Tourist Shops in Berlin. This data set contains 357 point-features
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(a) Labeling without the clutter control

Hamburg-Neugraben  Hamburg-Bergedorf

HamburgrHarbur -
Buxtehude. . 9 g Buchen.

Aumiahle

Hamburg-AItona. 'Hamburg .

(b) Labeling with the clutter control

Fig. 10. German Railway Stations. Part of the layout results is shown.

Figure 9 compares the partial layout results on the benchmark data
set “Tourist Shops in Berlin.” Without clutter control, the labels
“Berliner Musikantiquariat” and “Antiquitdten Rexhausen” have terrible
visual connection, while with clutter control, this situation is avoided.
Additionally, with clutter control, it is much easier to associate the label
“Antiquititen An-und Verkauf” with its point-feature.

Figure 1 partially shows the comparison with data set “German Rail-
way Stations.” The result with the clutter control mechanism is more
readable. Figure 10 shows a part of the comparison. Without clutter
control, it is hard to distinguish which point features the labels “Buxte-
hude” and “Hamburg-Neugraben” label because there is a reasoning
circle. The clutter control mechanism can remove such a reasoning
circle.

We also measured the performance of labeling methods with and
without clutter control. The measurement results are given in Table
3. It can be seen that the time of the labeling with the clutter control
is always about 15 times as long as that of particle-based labeling
method. Two main factors contribute to the increased time consump-
tion. First, in order to measure the clutter degree, two time-consuming
operations, range-queries and collision-detections, are performed. We
employ R*Tree to accelerate these processes, but maintaining such a

(b) Labeling with clutter control

. Here we only show a portion of the layout results.

data structure still needs a large amount of computation. R*Trees are
tree data structures used for spatial access methods, i.e., for indexing
multi-dimensional information. The key idea of the R*Tree is to group
nearby objects and represent them with a minimum bounding rectan-
gle in the next level of the tree. The bounding rectangles are used to
decide whether or not to search inside a subtree. The R*Tree supports
quickly inserting and removing elements, and the search complexity is
at worst O(Mlogy, N), where M (=4, in our experiments) is the maxi-
mum number of elements in each node. Second, with the clutter control
mechanism, many more point-features are labeled distantly in order
to avoid confusion, and the distant labels decrease the performance of
particle-based labeling to some extent.

We conducted a user study to evaluate the effectiveness of our clut-
ter model. Specifically, we applied a particle-based algorithm with
and without clutter control to generate 10 label layouts. Five layouts
were generated using the algorithm with clutter control and five were
generated using the algorithm without clutter control. Two tasks were
designed to evaluate the effectiveness of the developed visual clutter
model: 1) associate a label with a given point-feature; 2) associate a
point-feature with a given label.

We set up a website to run the user study. The participants’ answers
and the completion time were recorded. In the user study, we recruited
33 participants and rejected participants whose answer accuracy was
less than 50%. Answers from 30 participants were finally accepted.

Table 4 shows the final results, including the mean value and stan-
dard deviation of the answer accuracy and the completion time. The
participants did better with the layout results generated by the algorithm
with clutter control. The results also indicate that the participants’ per-
formance was consistent with our clutter model. We performed a t-test
on the users performance data and the results further demonstrated
that the method with clutter control outperformed the method without
clutter control significantly, with p-value 0.0043 (< <0.05) for accuracy
and p-value 0.03 (<0.05) for the completion time.

6 CONCLUSION

We have proposed an effective clutter model for label layouts. The
metrics consist of the confusion in the STM and the visual difficulty
in the perceptual process. For confusion in the STM, the number of
reasoning steps (time) and the memory burden are measured based
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Table 3. Performance Measurements. N, is the number of point-features that were labeled. N, is the number of labels that can be recognized. Cym I8
the mean value of the confusion degree and D, is the mean value of visual difficulty. “W” and “WO” encode the particle-based labeling with and

without clutter control, respectively.

Npy Resolution N Nr Catm Dypp time(s)
WO w WO w WO w WO w WO w

1000 3000 x 3000 1000 1000 976 1000 1.08 0.30 0.09 0.07 0.02 0.11
3000 6000 x 6000 3000 3000 2943 3000 1.00 0.30 0.05 0.03 0.02 0.37
6000 6000 x 6000 6000 5998 5729 5998 1.70 0.30 0.20 0.15 0.10 1.44
6000 9000 x 9000 6000 6000 5877 6000 0.96 0.30 0.04 0.02 0.06 0.94
7000 9000 x 9000 7000 7000 6870 6000 0.97 0.30 0.06 0.03 0.08 1.26
8000 9000 x 9000 8000 8000 7803 8000 1.14 0.30 0.08 0.05 0.16 1.57
9000 9000 x 9000 9000 9000 8766 9000 1.67 0.30 0.10 0.06 0.23 2.19

Table 4. The accuracy of answers and the completion time using the
labeling methods with and without clutter control.

Method Without clutter control ~ With clutter control
Accuracy (%) 60.7£29.6 94.74+8.4
Time (s) 17.7+£27.6 11.0+14.4

on a reasoning tree that simulates how the human brain operates. For
the visual difficulty in the perceptual process, the visual connection,
the visual distance, and the intersection are considered. We have also
proposed an approach to enhance existing labeling methods with our
clutter control mechanism. Experiments on real-world data sets show
that our clutter-aware labeling pipeline is able to produce clear and
legible label layouts.

Our current clutter-aware labeling pipeline needs to be improved in
some respects in the future. First, the performance should be improved.
We aim at designing a faster way to detect collisions and perform range-
query, which can greatly accelerate the process of clutter estimation.
Second, some special visual elements or criteria should be considered
for adding into the clutter model for special visualizations. For example,
when we place labels on subway maps, the label position consistency
[24] should be estimated.
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