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Dynamic Graph Map Animation
Seok-Hee Hong* Peter Eades† Marnijati Torkel‡ Weidong Huang§ Cristina Cifuentes¶

ABSTRACT

Recent methods for visualizing graphs have used a map metaphor:
vertices are represented as regions in the plane, and proximity be-
tween regions represents edges between vertices.

In many real world applications, the data changes over time, re-
sulting in a dynamic map. This paper introduces new methods for
representing dynamic graphs with map animation. More specifically,
we present three different animation methods: MDSV (Multidimen-
sional scaling - Voronoi), TV (Tutte - Voronoi) and TD (Tutte - dual).
These methods support operations such as addition and deletion
of vertices and edges. Each of our methods uses a kind of matrix
interpolation.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Graph drawing; Human-centered computing—
Visualization—Visualization design and evaluation methods;

1 INTRODUCTION

Recent methods for visualizing graphs have used a map metaphor:
vertices are represented as simple regions in the plane, and prox-
imity between regions represents similarity between vertices. An
example is in Figure 1: here, files of Linux libraries are represented
as “countries”, and functions within each file are sub-regions. Two
“countries” are close to each other if the corresponding files are
closely coupled in the software [4]. Similar methods have been used
to visualize data from social networks, biological networks [5, 7].

In many real world applications, the graph changes over time, and
is visualized as a dynamic map, as in Algorithm 1 below:

1 A graph G0 is pictured on the screen as a map D0.
2 The graph changes a little, resulting in a new graph G1.
3 The system constructs a map D1 representing G1.
4 The system constructs and shows an “in-betweening”

animation that visually transforms D0 to D1.
Algorithm 1: Dynamic Map Process

This paper focusses on the final step of constructing an anima-
tion from D0 to D1. A more formal description of this step is in
Section 3.1 below. We introduce three methods for representing
dynamic graph data with map animation: MDS-Voronoi map anima-
tion, Tutte-Voronoi Map animation, and Tutte-Dual Map animation.
We consider two aspects of the quality of animations: smoothness,
and topological consistency, which are described in Section 3.

In this paper, we assume that all graphs are edge-weighted.
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Figure 1: A map that represents an abstraction of Linux libraries [4].

2 BACKGROUND

2.1 Preserving the mental map
In a dynamic visualization, the user must not lose the “mental map”
of the screen as it changes [9]. Methods for preserving the mental
map are available, including animation; see [1, 3].

2.2 Map representation of graphs
Map representations have been used to visualize graphs from a va-
riety of applications. Hu et al. [5] introduced the GMap system,
visualizing relational data with geographic-like maps. This represen-
tation shows structural information, clustering, and neighborhoods.

More specifically, they embed a (weighted) graph in two-
dimensional space, analyze clusters and represent clusters as coun-
tries. The effectiveness of their approach has been demonstrated over
a wide variety of domains, such as research collaboration networks,
and maps of music styles and literary works; see [5]. Other methods,
principally following the GMap approach, include ConceptMap [7]
and CodeMap [4].

2.3 Dynamic graph visualization
Popular methods for visualizing dynamic graphs such as small mul-
tiples, animation, and 2.5D visualization have been investigated
extensively; see [1] for a survey. Most such work focuses on the
classical node-link graph representation.

Those that deal with map representations concentrate on changing
“overlays” of the map (the underlying map remains constant while
graphical attributes such as colour change) [7, 8]. In contrast, this
paper concentrates on changes to the underlying map.

2.4 Graph animation and morphing
An extensive literature on the topic of graph morphing has developed
for node-link diagrams. The simplest method is linear interpolation:
a drawing D0 changes into a drawing D1 of the same graph G with



each vertex moving at constant speed along a line segment between
its position in D0 and its position in D1.

Although linear interpolation is smooth and easy to implement, it
is not good for preserving the mental map [3]. Newer methods con-
centrate on poly-linear interpolation, that is, contiguous sequences
of linear interpolations [6].

3 THE IN-BETWEENING FUNCTION, SMOOTHNESS, AND
TOPOLOGICAL CONSISTENCY

3.1 The in-betweening function
Taking a formal mathematical viewpoint of Step 4 of the Dynamic
Map Process in Algorithm 1, in-betweening consists of a function
D : [0,1]→D , where D is the space of map representations, D(0) =
D0 and D(1) = D1. Here D(t) denotes the drawing at time t and is
denoted by Dt .

The space D depends on the precise visualization metaphor that
is used. For the map metaphor, each region of the map is a poly-
gon, and we can take D to be the vector of polygons indexed by
vertices. Note that map representation space D is a metric space
(with a metric defined componentwise on the polygons). Thus math-
ematical notions of continuity and differentiability can be applied to
in-betweening functions.

Note that in practice the mathematical in-betweening function D
is discretised in Algorithm 2 as below. As S→∞, the discrete version
approaches the abstract function D. In practice, the parameter S
needs to be chosen just large enough to obtain a reasonable frame
rate.

1 ∆t = 1/S, where S = number of steps for the animation;
2 t = 0;
3 while t ≤ 1 do
4 Compute and render Dt on the screen;
5 t = t +∆t;

end
Algorithm 2: Discretised in-betweening function D

3.2 Smoothness
Intuitively, an animation is “smooth” when objects on the screen
move without discontinuities. This can be precisely measured as
the (mathematical) smoothness of the function D. If k ≥ 0 then D
has (differentiability) class Ck (or is Ck-smooth) if the derivatives
D′,D′′, ...,D(k) with respect to t exist and are continuous. The higher
the value of k, the more smooth the animation. At the limit, f is of
class C∞ (or just smooth) if it has derivatives of all orders.

3.3 Topological consistency
As noted in [9], one aspect of preserving the mental map is preserv-
ing “topology”. Intuitively, this means that the adjacencies between
objects on the screen should not change in the course of the anima-
tion. For a given map representation in D , two regions are adjacent
if they share a common boundary. Note that adjacency is a stronger
notion than proximity. The set of regions and adjacency relationships
between regions form a graph G. Note that G is a planar topological
graph.

Two map representations D and D′ are topologically equivalent to
the extent that topological graphs G and G′ so formed are the same.
The in-betweening function D is topologically consistent in so far as
Dt is topologically equivalent to D0 for all 0≤ t ≤ 1.

Note that 100% topological consistency is impossible in many
cases; for example, if a new region is added to the map. For such
cases, one could define a metric for topological consistency by
measuring the approximate equivalence of the graphs G and G′; in
this paper we do not give a formal definition of such a metric but
leave it as an informal notion.

4 DYNAMIC GRAPH MAP ANIMATION

In Sections 4.1, 4.2, and 4.3 below, we define three methods for con-
structing a map from a graph, and, for each of these map construction
methods, we define an animation method. We consider three atomic
kinds of change for the graph, that is, three basic ways in which the
graph G0 changes to the graph G1 in Step 2 of Algorithm 1.

1. Edge-weight change: G0 and G1 have the same vertices and
edges but the edge weights differ.

2. Vertex insertion/deletion: G1 is obtained from G0 by insertion
or deletion of a vertex (together with incident edges).

3. Edge flips: G1 has the same vertices as G0, but their edge sets
differ by an edge flip, i.e., G1 is formed by deleting an edge
(u0,v0) and adding an edge (u1,v1), where u0,v0,u1 and v1 are
distinct. This is mostly applied when the graph has a 4-cycle
(u0,u1,v0,v1), and the edge flip essentially swaps chords on
this 4-cycle. An edge flip operation is illustrated in Figure 2.
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Figure 2: The edge flip operation for a map representation of the
graph: adjacency between u0 and v0 is deleted, and u1 becomes
adjacent to v1.

In practice, changes from G0 to G1 consist of a (fairly small)
sequence of these atomic changes. In particular, note that the edge
flip is commonly used to transform one graph into another; see [2].

Each method consists of (1) a map creation algorithm (step 3 of
Algorithm1), and (2) animation algorithms (step 4 of Algorithm1);
different algorithms for different changes at step 2 of Algorithm 1.

4.1 The MDS-Voronoi approach
For the first method, map creation is done using two steps:

1. A Multi Dimensional Scaling (MDS) method computes a loca-
tion Λ(v) for each vertex v of G. The MDS layout uses a matrix
M of “dissimilarities” between the vertices; for example, the
entry Muv of M is the (weighted) graph-theoretic distance be-
tween vertices u and v. MDS methods aim to ensure that the
Euclidean distance |Λ(u)−Λ(v)| between vertices u and v is
approximately the same as the dissimilarity Muv between the
vertices u and v.

2. The map is then the Voronoi diagram of {Λ(v) : v ∈ G}.

For a given dissimilarity matrix M, we denote the map obtained
by this MDS-Voronoi approach by MDSV (M). Figure 3 shows an
example of an MDS-Voronoi map of a graph.

Note that a Voronoi diagram has some unbounded regions; there
are two ways to avoid these in the map: (1) by “rounding” the
outside boundary of the Voronoi regions on the convex hull, or
(2) by creating a number of dummy vertices to make an outside
boundary, but rendering the corresponding regions as invisible. The
example in Figures 3 uses the first approach.

The animation algorithm for a weight-change operation uses ma-
trix interpolation on the dissimilarity matrices, as follows. Suppose
that M0 and M1 are the dissimilarity matrices used to compute maps
D0 and D1 of graph G0 and G1. For a timestamp t with 0≤ t ≤ 1,
denote (1− t)M0 + tM1 by Mt . Then the map Dt at time t is the
MDS-Voronoi map MDSV (Mt).



(a) MDS layout Λ0 (b) Voronoi map D0 of Λ0 (c) MDS layout Λ1 (d) Voronoi map D1 of Λ1

Figure 3: MDS-Voronoi maps.
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Figure 4: Screenshots of an MDS-Voronoi map animation for a weight-change operation. Although the animation is smooth, the topological
changes are considerable.

This in-betweening function is discretised as in Algorithm 2.
Figure 4 shows five screenshots from an animation using the MDS-
Voronoi method.

MDSV smoothness: The smoothness of the MDSV in-
betweening depends on two things: (a) the smoothness of the MDS
function that computes Λ; and (b) the smoothness of the function
that creates a Voronoi diagram from Λ.

A number of methods may be used to implement MDS; the sim-
plest of these methods is a kind of linear projection of the high-
dimensional dissimilarities into 2D; the function that computes the
vertex locations at time t is a smooth (C∞) function of t.

The smoothness of the creation of the Voronoi diagram is more
complex, since vertices of the Voronoi diagram can appear and
disappear at discrete timestamps. However, each Voronoi polygon
changes smoothly with t; that is, for each vertex v of G, the function
t→ P(t,v) that gives the Voronoi polygon P(t,v) of v at timestamp
t is smooth in the following sense.

Suppose that ∆(p, p′)∈R+ is a measure of the difference between
two polygons p and p′ (for example, ∆(p, p′) is the area of the
symmetric difference of p and p′). Let Vt be the Voronoi diagram
at time t, and let pv

t be a polygon corresponding to vertex v in Vt .
Then for every δ > 0 there is an ε > 0 such that each polygon
pv

t ∈ Vt , ∆(pv
t , pv

t ′) < ε whenever |t ′ − t| < δ . In this sense, the
MDSV method is smooth.

MDSV topological consistency: The MDS layout method does
not directly address topological properties. In practice, a small
change in the graph often leads to a large change in the adjacencies
between the Voronoi regions as in Fig. 4; topological consistency
does not hold in practice.

4.2 The Tutte-Voronoi approach

For the second method, map creation is done using two steps:

1. We use the Tutte algorithm (a.k.a. the barycentre algo-
rithm) [11] to construct a layout Λ of a graph G, as follows. A
set A of fixed vertices is chosen and placed in convex position.
Then each other vertex is placed at the weighted barycenter of
its neighbour vertices.

We can express this placement as a system of linear equations

Lx = b (1)

where x is the 2× |V −A| vector of locations of vertices in
V −A, b is a 2×|V −A| constant vector, and L is the subma-
trix of the weighted Laplacian of G whose rows and columns
correspond to vertices in V −A. The matrix L, called the Tutte
matrix, is invertible, and the layout Λ is defined by the solution
x of equation 1.

2. The map is the Voronoi diagram of the vertex locations defined
by Λ.

Note that for the set A in step (1) above, we can use the same
methods as with MDSV to deal with the outer face; dummy vertices
that are rendered invisible in the final drawing. We denote the map
created from a graph G by this Tutte-Voronoi method as TV (G).

The animation algorithm for a weight-change operation may
be implemented using matrix interpolation, this time on the Tutte
matrices. This method follows ideas from the isotopy literature [10].

Suppose that L0 and L1 are the Tutte matrices used to compute
maps TV (G0) = D0 and TV (G1) = D1 of graphs G0 and G1. We
assume that the fixed vertex set A is the same for both G0 and G1; if
not, we can use a dummy fixed vertex set for each of G0 and G1.

For a timestamp t with 0 ≤ t ≤ 1, denote (1− t)L0 + tL1 by
Lt . Then the map Dt at time t is the Tutte-Voronoi map TV (Lt).
Again, this in-betweening function is discretised as in Algorithm 2.



(a) Tutte layout Λ0 (b) Voronoi map D0 of Λ0 (c) Tutte layout Λ1 (d) Voronoi map D1 of Λ1

Figure 5: Tutte-Voronoi map; edge weights of a small number of edges are increased significantly, causing region T to almost disappear.
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Figure 6: Screenshots for insertion on Tutte-Voronoi map animation. Vertex D is inserted.

Figure 5 shows examples of Tutte-Voronoi maps of graphs, with a
weight-change operation.

(a)
(b)

𝒇𝟏
𝒇𝟏

𝒇𝟑

𝒇𝟓

𝒇𝟐

𝒇𝟒

𝒇𝟕

𝒇𝟔

𝒇𝟕

𝒇𝟔
𝒇𝟒

𝒇𝟓

𝒇𝟑

𝒇𝟐

Figure 7: (a) A planar graph G and (b) its weak planar dual G′. Note
that (a) is a map representation of (b).

The Tutte-Voronoi approach can be used for vertex inser-
tion/deletion, with the following animation algorithm. Suppose
that we insert a new vertex u into a graph G0 to form a new graph
G1; u is adjacent to vertices v1,v2, . . . ,vk (the vi are common to G0
and G1). We want the region of the map D0 of G0 corresponding to
u to grow from a single point to be a convex polygon in the map D1
of G1.

Consider the graph G′0 formed from G0 by inserting u; define
G0.5 to be same graph as G′0 but with very large weights on the
all edges (u,vi), i = 1,2, . . . ,k. In the Tutte drawing D0.5 of G0.5,
vertices v1,v2, . . . ,vk are very close together; in the corresponding
Voronoi diagram, the region corresponding to u is very small.

Thus the animation from D0 to D1 proceeds as follows. Let L′0,
L0.5, and L1 be the Tutte matrices corresponding to G′0, G0.5, and
G1, and let

Lt =

{
(1−2t)L′0 +2tL0.5 : 0 < t < 0.5

(1−2(t−0.5))L0.5 +2(t−0.5)L1 : 0.5 < t < 1

Figure 6 shows screenshots of the Tutte-Voronoi map insertion ani-
mations.

Deletion of a vertex essentially follows the reverse of the insertion
process.

TV smoothness Note that the layout function x = L−1
t b is a non-

linear but smooth (C∞) function of t (because each entry in L−1
t

is a rational function in t, and the denominators are never zero).
Furthermore, the Voronoi diagram is smooth, following the same
reasoning as with MDSV above.

TV topological consistency From the Tutte Theorem [11], if G
is planar, then the layout gives a planar topological graph. However,
the Voronoi diagram step may result in topological inconsistency. In
practice, the topological consistency of the Tutte-Voronoi method is
better than that of the MDS-Voronoi method.

4.3 The Tutte-Dual approach
The third method also uses a Tutte drawing to compute layouts.
However, instead of using Voronoi diagram map, this method uses a
weak planar dual map.

Suppose that G is a planar graph embedded in the plane. The
edges of G divide the plane into regions called faces. The weak
planar dual of G is a graph G′ with a vertex for every bounded face
of G, and an edge between two bounded faces that share an edge of
G.

An example of a planar graph and its weak planar dual is in
Figure 7. Note that the primal graph in Figure 7(a) can be considered
to be a map representation of the dual graph in Figure 7(b).

Suppose that G is a planar graph and G′ is its (weak) planar dual.
As long as G′ is 3-connected, we can apply Tutte’s algorithm to G′
to get a map representation of G. If G′ is not 3-connected, then we
can augment by adding dummy edges.

Each edge in G′ is dual to an edge in G; the weight of the dual
edge is the same as the weight of the primal edge. Note that for
the Tutte-Dual method, the Tutte algorithm is applied to the weak
planar dual G′ of G, not to G as in the Tutte-Voronoi method.

A weight-change operation can be implemented as follows. If
D0 and D1 are Tutte-Dual representations of graphs G0 and G1 with
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Figure 8: Screenshots for Tutte-Dual map animation for an edge-flip.

planar duals G′0 and G′1, then we can animate between D0 and D1
by matrix interpolation on the Tutte matrices L′0 and L′1 of G′0 and
G′1, in the same way as for the Tutte-Voronoi method.

Vertex insertion and deletion are easily supported in this method.
For deletion, the weights of the edges incident with a vertex u to
be deleted are increased until they are very large. Thus the weights
of the dual edges that bound the region corresponding to u become
very large, and the region becomes very small. Eventually the region
disappears. Insertion is the reverse of deletion.

Importantly, the Tutte-Dual method supports edge flipping oper-
ations. An edge flip transforms a graph G0 to a graph G1 with the
same vertex set, as illustrated in Figure 2.

To perform the edge flip operation, we use merge/split operation
on vertices, as follows. Suppose that the dual edge corresponding
to (u0,v0) in G0 is (a0,b0). First, the weight of the edge (a0,b0) is
gradually increased to be very large; effectively this means that, in
the primal, a0 and b0 become very close together.

Next, we merge vertices a0 and b0 to form a single vertex c; then
c is split into two vertices a1 and b1, with an edge (a1,b1); this is the
dual edge for the edge (u1,v1) in G1. The edge (a1,b1) begins with
very large weight so that a1 and b1 are very close together. Then we
gradually decrease the weight of (a1,b1) to become the weight of
(u1,v1). Figure 8 shows a number of steps of the Tutte Dual map
edge flip animation.

TD smoothness The Tutte-Dual method is C∞ smooth, following
the same reasoning as for Tutte-Voronoi method.

TD topological consistency If the input graphs G0 and G1 are
planar and have a common outer face, the Tutte-Dual method is topo-
logically consistent. This follows from the Tutte’s Theorem [11].

4.4 Summary and Discussion

This paper describes three dynamic graph map animation algorithms:
MDS-Voronoi, the Tutte-Voronoi, and Tutte-dual. These methods
support weight-changes,insertion and deletion of vertices, and edge
flip operations in a dynamic graph.

From our (subjective) experience, we can summarize the pros
and cons of each method are as follows. The take-away message
of this paper is that the Tutte based animation methods produce
better animations: they are smoother, and have superior topological
consistency, and support more operations.

The MDS-Voronoi method smoothly supports weight-changes,
and is suitable for multi-attribute graphs. However, in practice, it is
far from topological consistent. The Tutte-Voronoi method smoothly
supports weight changes and vertex insertion/deletion, and has better
topological consistency than MDS-Voronoi. The Tutte-Dual method
is better, on both smoothness and topological consistency, and it also
supports edge-flip operations.

Our implementations use D3, Igraph, R and JavaScript; we
used off-the-shelf routines for the underlying algorithms for MDS,

Voronoi diagrams, and solving the Tutte equations. All three meth-
ods run in real time (less than 0.01 second per frame) for graphs of
up to 100 vertices.

The theoretical worst-case time complexity depends on the under-
lying algorithms. It is clear that more sophisticated implementations
are needed for large graphs; this is future work.

Other future work also includes a more systematic the evalua-
tion. Human perception of the animations can be measured using
HCI-style experiments. The quality metrics for smoothness and
topological consistency can be refined.
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