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Abstract. Widely used in news, business, and educational media, in-
fographics are handcrafted to effectively communicate messages about
complex and often abstract topics including ‘ways to conserve the envi-
ronment’ and ‘understanding the financial crisis’. Composed of stylisti-
cally and semantically diverse visual and textual elements, infographics
pose new challenges for computer vision. While automatic text extraction
works well on infographics, computer vision approaches trained on nat-
ural images fail to identify the stand-alone visual elements in infograph-
ics, or ‘icons’. To bridge this representation gap, we propose a synthetic
data generation strategy: we augment background patches in infograph-
ics from our Visually29K dataset with Internet-scraped icons which we
use as training data for an icon proposal mechanism. On a test set of 1K
annotated infographics, icons are located with 38% precision and 34% re-
call (the best model trained with natural images achieves 14% precision
and 7% recall). Combining our icon proposals with icon classification
and text extraction, we present a multi-modal summarization applica-
tion. Our application takes an infographic as input and automatically
produces text tags and visual hashtags that are textually and visually
representative of the infographic’s topics respectively.

Keywords: Synthetic data - graphic designs - object proposals - tagging
- summarization

1 Introduction

A vast amount of semantic and design knowledge is encoded in graphic designs,
which are created to effectively communicate messages about complex and often
abstract topics. Graphic designs include clipart [30/31], comics [14], advertise-
ments [I3I29], diagrams [I5l27], and the infographics that are the focus of this
paper. Expanding the capabilities of computational algorithms to understand
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graphic designs can therefore complement natural image understanding by mo-
tivating a set of novel research questions with unique challenges. In particular,
current techniques trained for natural images do not generalize to the abstract
visual elements and diverse styles in graphic designs [T4[T3]29].
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Fig. 1. We make 3 contributions: a) We present Visually29K, a curated dataset of in-
fographics; b) We generate synthetic data by augmenting Internet-scraped icons onto
patches of infographics to train an icon proposal mechanism; c) We evaluate our auto-
matic icon proposals and present a multi-modal summarization application that takes
an infographic and outputs the text tags and visual hashtags that are most represen-
tative of the infographic’s topics.

In this paper, we tackle the challenge of identifying stand-alone visual ele-
ments, which we call ‘icons’. Instead of (class-specific) icon detection, we instead
wish to locate all icon-like elements in an image - i.e., to generate icon propos-
als. To adapt to the stylistic, semantic, and scale variations of icons in graphic
designs (Fig. , which differentiate them from objects in natural images, we
propose a synthetic data generation approach. We augment background patches
in infographics with a dataset of Internet-scraped icons which we use as train-
ing data for an icon proposal mechanism (Fig. ) Our resulting icon proposals
outperform models trained on natural images, achieving 38% precision and 34%
recall (YOLO9000 [2I], trained on ImageNet [24], reaches 14% precision and
7% recall), showing that a representation gap exists between objects in natural
images and icons in graphic designs.

For training computational models, we curated a novel dataset of 29K info-
graphics from the Visual.ly design website (Fig. ) Infographics are a form of
graphic designs widely used in news, business, and educational media to cover
diverse topics, including ‘ways to conserve the environment’ and ‘understanding
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the financial crisis’. Each infographic in our dataset is annotated with 1-9 tags,
out of a set of 391 tag categories. For 1,400 infographics, we collected a total
of 21,288 human-annotated bounding boxes of icon locations. For another sub-
set of 544 infographics, we collected 7,761 tagged (categorized) icon bounding
boxes. We analyzed human consistency and used the annotations to evaluate our
automatic approaches.

Finally, to showcase an example application that makes use of icons, we use
our automatic icon proposals in combination with icon classification and text
extraction to present a novel multi-modal summarization application on our
infographics dataset (Fig. ) Given an infographic as input, our application
automatically outputs text tags and visual hashtags that are textually and visu-
ally representative of the infographic’s topics, respectively. This presents a first
step towards combining the textual and visual information in an infographic for
computational understanding. Together with existing methods for text extrac-
tion, our automatic icon proposals can facilitate future applications including
knowledge retrieval, visual search, captioning, and visual question answering.
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Contributions: In this paper, we introduce: (a) Visually29K, a novel dataset
of infographics that we will make publicly available; (b) a synthetic data gener-
ation strategy to train an icon proposal mechanism; (c¢) a proposed multi-modal
summarization application, using detected icons and text to automatically out-
put representative text tags and visual hashtags for infographics.

2 Related Work

Computer vision for graphic designs: Computer vision has traditionally fo-
cused on understanding natural images and scenes. However, there is a growing
interest in graphic designs, which motivates a new set of research questions and
technical challenges. Zitnick et al. [30/31] introduced abstract scenes to study
higher-level image semantics (relationships between objects, storylines, etc.).
Wilber et al. [29] presented an ‘Artistic Media Dataset’ to explore the repre-
sentation gap between objects in photographs versus in artistic media. Iyyer et
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al. [14] built a ‘COMICS’ dataset and made predictions about actions and char-
acters using extracted visual and textual elements from comic panels. Hussain
et al. [I3] presented a dataset of advertisements and described the challenges of
parsing symbolism, memes, humor, and physical properties from images. Com-
puter vision tools have also been used to transcribe textbook diagrams into
structured tables for question answering [15127], and to parse graphs and charts
for retargeting applications [4I2026]. To the best of our knowledge, there is
no work on automated understanding of infographics or using computer vision
techniques to identify icons in graphic designs.

Synthetic training data: The use of synthetically generated data to train
large CNN models has been gaining popularity, e.g., for learning optical flow [3],
action recognition [5], overcoming scattering [25], and object tracking [§]. Sim-
ulated environments like video games have been used to collect realistic scene
images for semantic segmentation [23]. Our work was inspired by a text recogni-
tion system which was trained on a synthetic dataset of images augmented with
text [I1I]. Related to our approach, Dwibedi et al. [6] insert segmented objects
into real images to learn to detect natural objects in the wild. We leverage the
fact that infographics are digitally-born, so augmenting them with more Internet-
scraped design elements is a natural step. Tsutsui and Crandall [28] synthesize
compound figures by randomly arranging them on white backgrounds to learn
to re-detect them. However, the icons we aim to detect occur on top of complex
backgrounds, so we need our synthetic data to capture the visual statistics of
in-the-wild infographics (Sec. [4)).

3 Visually29K: an infographics dataset

To facilitate computer vision research on infographics, we assembled the Visu-
ally29K dataset. We scraped 63K static infographic images from the Visual.ly
website, a community platform for human-designed visual content. Each info-
graphic is hand categorized, tagged, and described by a designer, making it a
rich source of annotated data. We curated this dataset to obtain a represen-
tative subset of 28,973 images, ensuring sufficient instances per tag (Table .
The tags associated with images are free-form text, so many of the original tags
were either semantically redundant or had too few instances. We cut the original
heavy-tailed distribution of 19K tags down to 391 tags with at least 50 exem-
plars, and by merging redundant tags manually using WordNet [18]. Tags range
from concepts which have concrete visual depictions (e.g., car, cat, baby) to
abstract concepts (e.g., search engine optimization, foreclosure, revenue). Meta-
data for this dataset also includes labels for 26 categories (available for 90%
of the infographics), titles (99%) and descriptions (94%), available for future
applications.

The infographics in Visually29K are very large: up to 5000 pixels per side.
Over a third of the infographics are larger than 1000 x 1500 pixels. Aspect ra-
tios vary between 5:1 and 1:5. Visual and textual elements occur at a variety of
scales, and resizing the images for visual tasks may not be appropriate, given
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that smaller design elements may be lost. Recognizing this, we process the info-
graphics by sampling windows from them at a range of scales (Sec. E[)

3.1 Human annotations of icons

For a subset of infographics from Visually29K, we designed two tasks to collect
icon annotations to be used as ground-truth for evaluating computational models
(Fig. . In the first task, we asked participants to annotate all the icons on
infographics. In the second task, we asked participants to annotate only the
icons corresponding to a particular tag. We used the annotations from the first
task for evaluating icon proposals (Sec. @, and the second task for evaluating
visual hashtags (Sec. [7.2).

Tag-independent icon annotations: For 1,400 infographics, we asked par-
ticipants to “put boxes around any elements that look like icons or pictographs”.
No further definitions of “icon” were provided. This was a time-consuming task,
requiring an average of 15 bounding boxes to be annotated per infographic. A to-
tal of 45 participants were recruited, producing a total of 21,288 bounding boxes
across all 1,400 infographics. We split these annotated infographics into 400 for
validation (training experiments in Sec. and 1,000 for testing (reporting final
performance in Sec. @

Infereshng Facts About
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Fig. 3. User interface for collecting hu-
man ground truth to evaluate icon detec-
tion and classification. Participants were ei-
ther asked to annotate all icons on an in-
fographic, or to only annotate icons corre-
sponding to a particular tag (e.g., fish).
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Annotation consistency: Because the interpretation of “icon” may differ
across participants, we wanted to measure how consistently humans annotate
icons on infographics. For each of 55 infographics, we recruited an additional
5 annotators. Annotations of these participants were compared to the original
collected annotations (above). We use human consistency as an upper bound on
computational models. The scores were averaged across participants and images
and are reported in Table 2] Human precision and recall are not perfect be-
cause different people might disagree about whether a particular visual element
(e.g., map, embedded graph, photograph) is an icon. They may also disagree
when annotating the boundaries of the icon (Fig. [4)).

Tag-conditional icon annotations: As ground truth for icon classifica-
tion, we collected finer-grained annotations by giving participants the same task
as before, but asking them to mark bounding boxes around all icons that corre-
spond to a specific text tag (Fig. . We used 544 infographics along with their
associated Visually29K text tags, to produce a total of 1,110 separate annotation
tasks (each task corresponding to a single image-tag pair). From all these tasks,
participants indicated that for 275 (25%) there were no icons on the infographic
that corresponded to the text tag. For the remaining 835 image-tag pairs, we
collected a total of 7,761 bounding boxes from 45 undergraduate students, aver-
aging 9 bounding boxes per image-tag pair. To compute human consistency for
this task as well, for 55 infographics (a total of 172 image-tag pairs) we got an
additional 5 annotators. This human upper bound is reported in Table

Fig. 4. Human agreement in annotating
icons is not perfect because different peo-
ple have different interpretations of “icon”.
Here we include 3 crops from annotated in-
fographics. In the world map crop we no-
tice three strategies: (i) labeling the entire
map as an icon, (ii) labeling individual con-
tinents, (iii) labeling the circle graphics su-
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4 A synthetic data approach for training icon proposals

We use the term icon to refer to any visual element that has a well-defined
closed boundary in space and different appearance from the background (i.e.,
can be segmented as a stand-alone element). This is inspired by how an object
is defined by Alexe et al. [I]. Our approach is more related to objectness than
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to object detection in that we are after class-agnostic object proposals: regions
in the image containing icons of any class. While finding icons can be useful for
graphic designs more generally, here we train and test icon proposals on our own
dataset of infographics.

Training an object detector often requires a large dataset of annotated in-
stances, which is a costly manual effort. We took a different approach, leveraging
the fact that infographics are digitally-born to generate synthetic training data:
we augmented existing infographics from the Visually29K dataset with Internet-
scraped icons. The advantage of this approach is that we can synthesize any
amount of training data by repeatedly sampling new windows from infographics
and selecting appropriate patches within the windows to paste new icons into.

4.1 Synthetic dataset creation

Collecting icons: Starting with the 391 tags in the Visually29K dataset, we
queried Google with the search terms ‘dog icon’, ‘health icon’, etc. for each tag.
The search returned a wide range of stylistically and semantically varied icon im-
ages (Fig. . We scraped 250K icons with both transparent and non-transparent
backgrounds. Only transparent-background icons were used to augment info-
graphics and train our final icon proposal mechanism, while all 250K icons were
used for training an icon classifier (Sec. . We also present results of training an
icon proposal mechanism with icons without transparent backgrounds (Sec. @

Augmenting infographics: To create our synthetic data, we randomly
sampled 600 x 600px windows from the Visually29K infographics. Each window
was analyzed for patches of low entropy: measuring the amount of texture in a
patch to determine if it is sufficiently empty for icon augmentation. Specifically,
from a window, a random patch (with varying location and size) was selected,
and Canny edge detection was applied to the patch. The resulting edge values
were weighted by a Gaussian window centered on the patch, to give more weight
to edges in the center of the patch, and summed to quantify the local entropy,
with value ranging from 0 to 1. If the entropy value was below a predefined
threshold, the patch was kept, otherwise it was discarded and a new patch was
sampled from the window (Fig.[5b). A randomly selected icon from our scraped
icon collection was augmented onto each valid patch in a window, for a fixed
number of patches per window (Fig. ) An additional constraint required the
icon to meet a set contrast threshold with the patch to ensure it would be visually
detectable, or else a new icon would be selected.

4.2 Effect of synthetic data parameters on model performance

We analyzed how different data augmentation strategies affect the icon propos-
als on a set of 400 validation infographics containing ground truth annotations
of 7,020 bounding boxes. We performed a grid search on 4 augmentation param-
eters, varying them one at a time: (a) number of icons augmented per window,
(b) variation in the size of augmented icons, (c) contrast threshold between the
icon and the patch: calculated as difference in color variance between the patch
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Fig.5. Synthetic data generation pipeline. a) Icons with transparent backgrounds
scraped from Google. b) Patches selected for augmenting icons, using different ap-
proaches. The approach on the left allows more overlap of icons with background ele-
ments. The approach on the right is more conservative, selecting appropriate patches
to add icons to. ¢) Infographic windows augmented with the scraped icons.

and the icon, and (d) entropy threshold for a patch to be considered valid for
augmentation.

We tried 5 settings for the number of icons augmented, from 1 to 16, doubling
the number of icons for each experiment. We found no statistically significant
differences in the mAP scores of the models trained with these settings. However,
increasing the number of icons augmented per patch increases the time required
to generate the synthetic data, since we need to find enough valid image patches
to paste icons into. We found that higher scale variation during training helps
the model detect icons in infographics, which often occur at different scales. By
allowing icons to be augmented at sizes ranging from 30 to 480 pixels per side,
we achieved the highest mAP scores. Other settings we tried included capping
the maximum icon size at 30, 60, 120, and 240 pixels per side. Icons larger than
480 pixels per side were not practical with our 600 x 600px windows.

We found no significant effects of varying the contrast and entropy thresholds
independently, while keeping the other augmentation parameters fixed. However,
when we disregard both thresholds and place icons entirely at random in the
image windows, the performance of the trained model degrades significantly
(Sec. @ For generating icon proposals on test images, we chose the model with
the highest mAP score on the 400 validation images, with 4 icons per window
and icon sizes varying from 30 to 240 pixels per side.

5 Learning to propose icons

We can now use our synthetic data to learn to detect icons. We use the Faster
R-CNN network architecture [22], although it is worth noting our training pro-
cedure with synthetic icon data can be applied with any architecture. Similar to
Dwibedi et al. [6], we are motivated by the fact that Faster R-CNN puts more
emphasis on the local visual appearance of an object rather than the global
scene layout. As a result, the fact that icons can occur at any location on an
infographic is not a problem for the approach.

We adapted Faster R-CNN by making three changes: (i) to handle the large
size of infographic images, each image was fed as a cascade of crops, and the
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detections were aggregated; (ii) we changed the last layer to classify only two
categories: any type of icon versus background; (iii) early termination was used
during training because the network was found to converge in significantly fewer
epochs than the original paper. This could be because detecting generic “iconic”
regions depends more on low-level information while category-specific details
don’t need to be learned.

Multi-scale detection at test-time: Infographics in the Visually29K data-
set are large and contain features at different scales. At test-time, we sampled
windows from infographics at 3 different scales to be fed into the network. The
first scale spans the entire image. For the two subsequent scales, we sampled 4
and 9 windows, respectively, such that (i) windows at each scale jointly cover the
entire image, and (ii) neighboring windows overlap by 10%. Before being fed into
the network, every window was rescaled to 600 x 600px. The predicted detec-
tions from each window were thresholded. Detections across multiple scales were
aggregated using non-maximal suppression (NMS) with a value of 0.3. Finally,
NMS was applied again to combine smaller detections (often parts of icons) to
obtain the final predictions.

Training details: We used a total of 10K training instances (windows),
where each window was provided with bounding boxes corresponding to the
synthetically augmented icons. Faster R-CNN was trained for 30K iterations
with a learning rate of 1073. Each iteration used a single augmented window to
generate a mini-batch of 300 region proposals.

6 Evaluation of icon proposals

To evaluate our icon proposals, we compare to human annotations of icons on
1,000 test infographics. We report performances using standard detection met-
rics: precision (Prec), recall (Rec), F-measure, and mAP. To compute precision
and recall, we threshold IOU at 0.5 (as in the VOC challenge [7]). F-measure is
defined as:

(1+ %) Prec x Rec

B%2Prec + Rec

We set 8 = 0.3 to weight precision more than recall (a common setting [2]).
Our icon proposal task is related to objectness, general object detection, and
object segmentation. We evaluated 5 methods spanning these different tasks,
originally trained on natural images, to evaluate the representation gap when
applied to infographics. We used objectness [I], state-of-the-art object detectors
YOLO9000 [2I], SSD [16], and Faster R-CNN [22], and class-agnostic object
masks [I9]. To treat the outputs of the object detectors as object proposals (class-
agnostic detections), we report any detection above threshold for any object class
that these detectors predict. Default parameters were used for Faster R-CNN
and YOLO9000. We report SSD detections with the best setting (thresholded
at 0.01). Re-training Faster R-CNN with our synthetic data (our full model)
significantly outperformed networks trained on natural images (Table .

Fg =
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Evaluation of synthetic data design choices: To evaluate the contribu-
tions of the main design choices in generating our synthetic data, we ran three
additional baselines: (a) augmenting icons in random locations on infograph-
ics (instead of finding background patches with low entropy and high contrast
with icons), (b) augmenting icons without transparent backgrounds, so that
when pasted on an infographic, the augmented icons have clearly-visible bound-
aries, (¢) augmenting icons onto white backgrounds, rather than infographic
backgrounds. The last baseline is most similar to the approach in Tsutsui and
Crandall [28]. From Table [2[ we see that all three baselines perform significantly
worse than our full model, demonstrating the importance of all three of our de-
sign choices: pasting icons with (i) transparent backgrounds onto (ii) appropriate
background patches of (iii) in-the-wild infographics. We note that the worst per-
formance among the baselines was when icon proposals were not trained with
appropriate backgrounds.

Training data Model Prec. Rec. Fy.3 mAP

Full model (ours)  38.8 34.3 43.2 44.2

Synthetic with icons Random locations  29.1 15.1 29.6 32.5
Non transparent icons 24.6 17.1 25 26.1

Blank background 7.9 24.3 10.1 10.3

YOLO9000 [21] 13.6 7.1 12.6 13.7
Faster R-CNN [22] 11.0 6.0 10.2 114

Natural images SSD [16] 9.3 34.2 10.0 114
Objectness [I] 29 56 3.1 3.0
Sharpmask [19] 1.1 14 1.2 1.1

Human upper bound 63.1 64.7 61.8 66.3

Table 2. Model performance at localizing icons in infographics. The first 4 models
were trained with synthetic data containing icons. The next 5 models were trained
to detect objects in natural images. The human upper bound is a measure of human
consistency on this task. All values are listed as percentages.

7 Application: multi-modal summarization

Detecting the textual and visual elements in graphic designs like infographics
can facilitate knowledge retrieval, captioning, and summarization applications.
As a first step towards infographic understanding, we propose a multi-modal
summarization application built upon automatically-detected visual and textual
elements (Fig. |§[) Just as video thumbnails facilitate the sharing, retrieval, and
organization of complex media files, our multi-modal summaries can be used
for effectively capturing a visual digest of complex infographics. Given an info-
graphic as input, our multi-modal summary consists of textual and visual hash-
tags representative of an infographic’s topics. We define visual hashtags as icons
that are most representative of a particular text tag. We evaluate the quality of
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our multi-modal summary by separately testing each component of the pipeline
against a set of human annotations.
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Fig. 6. Our computational pipeline for parsing an infographic and computing a multi-
modal summary. a) The output of our fully-automatic annotation system, running
text detection and OCR, using Google’s Cloud Vision API [9] (semi-transparent green
boxes), and our icon detection and classification (red outlines). We trained an icon
proposal mechanism with synthetic data to make this system possible. The underlying
infographic has been faded to facilitate visualization. b) Our multi-modal summariza-
tion application uses the detected text and icons on an infographic to produce the text
tags and visual hashtags most representative of the infographic’s topics.

7.1 Approach

Predicting text tags: We used Google’s Cloud Vision optical character recog-
nition [9] to detect and parse the text from infographics. On average, we ex-
tracted 236 words per infographic, of which 170 had word2vec representations
[I0/T7]. The 300-dimensional mean word2vec of the bag of extracted words was
used as the global feature vector of the text for the infographic. This feature
vector was fed into a single-hidden-layer neural network for tag prediction. Since
each infographic could have multiple tags, we set this up as a multi-label prob-
lem with 391 tags.

Classifying icon proposals: We used the ResNet18 architecture [12] pre-
trained on ImageNet, and fine-tuned on icons scraped from Google along with
their associated tags (Sec. E[) Training was set up as a multi-class problem with
391 tag classes. In addition to the icons with transparent backgrounds, icons
with non-transparent backgrounds facilitated the generalization of icon classifi-
cation to automatically-detected icons.

Predicting visual hashtags: For an input infographic, we predict text tags
and generate icon proposals. All the proposals are then fed to the icon classifier
to produce a 391-dimensional feature vector of tag probabilities. Then, for each
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predicted text tag, we return the icon with the highest probability of belong-
ing to that tag class. Fig. [7] contains examples of some visual hashtags: the most
confident detections for different tag classes. We demonstrate the automatic out-
put of our system in Fig. |8} given an infographic, we predict the text tag and
corresponding visual hashtag.
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mAP: 77% = AP: 22% > 1 Ly,
4! : 2y
Prec: 53% - [ prec: 177 o= 7
(N=88) L Zen Cups of coffee. N ?72) ) -
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MAP: 36% B @ MAP: 16%
10U: 37% § 10U: 7% |
Prec: 52% ! prec: 7% L) II I
(N=42) (N=27) ]

Fig. 7. Visual hashtags for different concepts. We include 6 different tag classes, sorted
by mAP. For each tag class, depicted are the top 4 instances with highest classifier
confidence for each tag, constrained to come from different images. Also indicated is
the total number (N) of icon proposals per tag class.

7.2 Evaluation

Given an infographic, to evaluate the quality of our predicted text tags, we
compared them to the ground truth tags in the Visually29K dataset. To evaluate
the ability of our computational system to output a relevant visual hashtag for
a given infographic and tag, we compare against the human annotations for 544
Visually29K infographics (Sec. . Similar to the task that our computational
system receives, participants were asked to annotate all icons corresponding to
a particular text tag on an infographic.

Evaluation of text tag prediction: Each infographic in Visually29K comes
with 1-9 tags (2 on average). We achieved 42.6% top-1 average precision and
24.6% top-1 average recall at predicting at least one of an infographic’s tags.

Evaluation of icon classification: Before evaluating visual hashtags on a
per-infographic basis, we evaluate the ability of the icon classifier to retrieve rel-
evant icons across infographics. For each of 391 tags, we used the icon classifier’s
confidence to re-rank all the icon proposals extracted from 544 infographics.
Fig. [7] contains the highest confidence icon proposals for a few different tags. For
each icon proposal, we measure overlap with human annotations: if an icon pro-
posal sufficiently overlaps with a ground truth bounding box (IOU> 0.5), that
proposal is considered successful. We obtained a mAP of 25.1% by averaging the
precision of all the retrieved icon proposals (across all tags).

Evaluation of visual hashtags: Next we evaluate the ability of the classifier
to retrieve visual hashtags: icons representative of a particular tag, on a per-
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Fig. 8. Examples of our automated multi-modal summarization pipeline, which given
an infographic as input, predicts text tags and corresponding visual hashtags. In both
(a) and (b), the predicted text tags for the infographics are correct, and the predicted
visual hashtags (solid blue boxes) overlap with human annotations (red boxes). Because
a single tag might not be sufficient to summarize an infographic, we also provide an
additional predicted text tag (second most likely) and corresponding visual hashtag
for (a) and (b). In (c)-(e) the text model predicts the wrong tag. In (c), the semantic
meaning of the predicted tag is preserved, so the visual hashtag is still correct. In (d)
and (e), the wrong visual hashtags are returned as a result of the text predictions.
However, we show that if the correct text tag would have been used (bottom, red),
correct visual hashtags would have been returned. In dashed blue are all our icon
proposals for each infographic. The underlying infographics have been faded to facilitate
visualization.
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infographic basis. For the following evaluation, we assume that the input is an
infographic and a text tag (or multiple tags, if they exist). In a fully automatic
setting, the text tags would be predicted by the text model. Fig. |§| contains
sample results from the fully automatic pipeline. Here we evaluate the quality
of our proposed visual hashtags independently of the text model’s performance.

For the 835 image-tag pairs with human annotations, we computed the IOU
of each of our predicted hashtags with ground truth. We evaluated precision as
the percent of predicted visual hashtags that have an IOU > 0.5 with at least
one of the ground truth annotations. Human participants may annotate multiple
icons for an image-tag pair (Fig. [8| red boxes). Our application is intended to
return a single visual hashtag for a given image-tag pair (Fig. solid blue
boxes), so we report top-1 precision (Table . However, we also include the
mAP score by considering all our proposals per image-tag pair (Fig. |8, dashed
blue boxes). From Table 3| we see that sorting the icon proposals using our icon
classifier produces more relevant results (mAP = 18.0%) for a given tag than just
returning the most confident (class-agnostic) icon proposals (mAP = 14.5%). We
also verify again that the icon proposals generated by training with icons with
transparent backgrounds augmented onto appropriate background regions of in-
the-wild infographics outperform baselines that were also trained with synthetic
data but with one of these aspects missing.

Table 3. Given an ipfographic Model Top-1 Prec. mAP
and text tag as input, we

evaluate the visual hashtags Icon proposals + classification 27.2 18.0
returned. For each image-tag Random locations + class. 16.7 14.2
pair, we compute IOU with the Non transparent icons + class. 15.9 14.5
ground truth bounding box an- Blank background + class. 16.2 14.5
notations. A successful visual Icon proposals 16.2 14.5
hashtag is one that has an Human upper bound 55.4 57.2

IOU > 0.5 with at least one
ground truth bounding box. All
values are listed as percentages.

8 Conclusion

The space of complex visual information beyond natural images has received
limited attention in computer vision, but this is changing with the increasing
popularity of work on graphic designs [BOIBTITAIT3I29JT5]. Within this space, we
presented a novel dataset of infographics, Visually29K, containing a rich mix of
textual and visual elements. We developed a synthetic data generation method-
ology for training an icon proposal mechanism. We showed that key design de-
cisions for our synthetic data included augmenting icons with transparent back-
grounds onto appropriate background regions of infographics. Our trained icon
proposals generalize to real-world infographics, and together with a text pars-
ing system [J] and an icon classifier, can be used to annotate infographics. We
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presented a multi-modal summarization application, which given an infographic
as input, produces text tags and visual hashtags to summarize the infographic’s
topics.

Infographics are specifically designed with a human viewer in mind, charac-
terized by higher-level semantics, such as a story or a message. Beyond simply
detecting and classifying the objects contained within them, an understanding of
these infographics involves understanding the included text, the layout and spa-
tial relationships between the elements, and the intent of the designer. Human
designers are experts at piecing together elements that are cognitively salient (or
memorable) and maximize the utility of information. This new space of multi-
modal data can give computer vision researchers the opportunity to model and
understand the higher-level properties of textual and visual elements in the story
being told.
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