2205.08028v1 [cs.GR] 16 May 2022

arxXiv

Browser-based Hyperbolic Visualization of Graphs

Jacob Miller*
University of Arizona

Stephen Kobourov'
University of Arizona

+

Vahan Huroyan*
University of Arizona

Figure 1: Example layouts of the same graph, generated by the three hyperbolic graph embedding algorithms discussed in
this paper: inverse projection (left), force-directed (center) and hyperbolic-MDS (right).

ABSTRACT

Hyperbolic geometry offers a natural ‘focus+context’ for data visual-
ization and has been shown to underlie real-world complex networks.
However, current hyperbolic network visualization approaches are
limited to special types of networks and do not scale to large datasets.
With this in mind, we designed, implemented, and analyzed three
methods for hyperbolic visualization of networks in the browser
based on inverse projections, generalized force-directed algorithms,
and hyperbolic multi-dimensional scaling (H-MDS). A comparison
with Euclidean MDS shows that H-MDS produces embeddings with
lower distortion for several types of networks. All three methods can
handle node-link representations and are available in fully functional
web-based systems.

Index Terms: Graph drawing; Hyperbolic geometry; Non-
Euclidean embedding; Stochastic gradient descent

1 INTRODUCTION

Node-link representations of graphs in the 2-dimensional Euclidean
plane are the most typically used graph visualizations. The structure
of many graphs, notably planar graphs, can be realized well in the
plane, but others are better represented in non-Euclidean geome-
tries. For example, 3-dimensional polytopes are well represented in
spherical space, while large hierarchies such as trees can be cleanly
embedded in hyperbolic space. Standard hyperbolic projections into
Euclidean space also provide a natural ‘focus+context’ view of the
graph, with parts of the graph near the center of the view shown
large and those far from the center progressively smaller, with the
entire graph being in the view.

A recent work [35] suggests that hyperbolic geometry underlies
complex networks, in a similar way as spherical geometry underlies
geographic data.

Though there has been some work on visualizing hierarchies

“e-mail: jacobmiller] @email.arizona.edu
Te-mail: kobourov@cs.arizona.edu
fe-mail: vahanhuroyan@math.arizona.edu

using hyperbolic space in the browser [25], there are no tools that
support browser-based hyperbolic visualization of general graphs.
We describe three methods for laying out graphs in the 2-
dimensional hyperbolic space, H>. The first method relies on tak-
ing a pre-computed Euclidean layout of a graph and projecting it
into hyperbolic space, providing standard map interactions, such as
pan, zoom, re-center, click and drag. We implement this method
in a web based system that provides several layout algorithms for
node-link and map-based visualization. This allows us to view
and interact with GMaps, MapSets, BubbleSets, and LineSets in
hyperbolic space. The second method makes use of a generaliza-
tion of force-directed algorithms to Riemannian geometries [34].
‘We exploit the locally Euclidean properties of hyperbolic space so
that with the help of Mobius transformations we can accurately
model the forces. In particular, this approach allows us to compute
layouts where distances between nodes in hyperbolic space corre-
spond to the underlying graph-theoretic distances between them.
The third method attempts to directly realize graph distances in H?
through a hyperbolic generalization of multidimensional scaling
(MDS) [16,61]. For this method we adapt stochastic gradient de-
scent (SGD) to hyperbolic space, as SGD has been shown to be
efficient and produce high-quality layouts in Euclidean space [64].
To the best of our knowledge, there are no prior methods to adapt
Euclidean layouts to hyperbolic space, nor any hyperbolic SGD
approaches. All three methods are available online. The projection
method is available through GMap at http://gmap.cs.arizona.edu.
The other two methods are available as a webapp on GitHub at
https://github.com/Mickey253/hyperbolic-space-graphs.

2 RELATED WORK

The graph layout problem typically involves placing nodes and
routing edges in 2-dimensional Euclidean space. Force-directed
algorithms model the system as a set of springs and attempt to
balance the forces on nodes. Both their conceptual simplicity and
their generally aesthetically pleasing results have made this class
of algorithms particularly useful for computing graph layouts [33].
Force-directed algorithms have been generalized to Riemannian
geometries, (e.g., spherical and hyperbolic) by computing tangent
planes at each node [34].

To the best of our knowledge, there are no browser-based tools
for visualizing general graphs in hyperbolic space. Table 1 gives an

http://gmap.cs.arizona.edu
https://github.com/Mickey253/hyperbolic-space-graphs

overview of previous work in hyperbolic network visualization. One
of the earliest approaches by Lamping et al. [38] embeds hierarchies
into the hyperbolic plane by recursively placing each node’s children
evenly spaced around the arc of a circle. This is possible thanks to the
exponential expansion intrinsic to the geometry. They make use of
the Poincaré projection to display the graph on the computer monitor,
which also provides the now well known ‘focus+context’ effect.
Navigating the hierarchy is done by re-centering the projection at a
new node in the hyperbolic plane. The embedding can be computed
in linear time and arbitrary graphs can also be visualized using this
approach by utilizing a spanning tree of the graph and ‘filling in’ the
rest of the edges later.

Table 1: Hyperbolic browsing systems

Description

2 dimensions, hierarchy viewer
Hiearchy visualization application
Web-based data vis suite

Java Hyperbolic Poincaré visualization
Hyperbolic tree visualization library

System | Date

H2 Tree Browser 1995
HVS | 2007

Js InfoVis Toolkit | 2013
Treebolic | 2014
d3-hypertree | 2018

H3 2000 3 dimensions, hierarchy viewer
walrus | 2000 Re-implementation of H3 in Java
h3py | 2015 Re-implementation of H3 in Python

A bioinformatics-motivated java application by Bingham and Su-
darsanam [6] uses a similar approach to visualize phylogenetic trees.
Andrews et al. [2] also rely on Lamping ez al.’s work in their Hierar-
chy Visualization System as do Baumgartner and Waugh [4] who
visualize Roget’s thesaurus. The Java InfoVis Toolkit also imple-
ments a hyperbolic hierarchy browser [5] and TreeBolic implements
the hyperbolic tree layout [9]. More recently, Glatzhofer developed
a hyperbolic hierarchy browser utilizing d3.js, a javascript graphics
library which works in the browser, and can display large hierarchies
smoothly with different layout algorithms [24-26].

While most prior work considers the 2-dimensional hyperbolic
plane, Munzner has also used 3D hyperbolic space to visualize hier-
archies with the help of the Beltrami-Klein projection [40-43]. Here
geodesics are mapped to straight lines rather than the circular arcs of
the Poincaré projection. Munzner’s work has been re-implemented
in two subsequent systems: Walrus [29] and h3py [63].

Hyperbolic space has been explored in the context of non-linear
dimensionality reduction, specifically multi-dimensional scaling
(MDS). The idea is to match pairwise similarities with distances in
an embedding: the more similar two elements are, the closer they
are in the embedding. The Euclidean distance is traditionally used
as a closeness metric. Computing a graph layout can be interpreted
as an MDS problem by treating the graph theoretic distance between
pairs of nodes as their pairwise distance metric.

There are three different types of MDS: classical, metric, and non-
metric (although these labels are not used consistently in different
fields) Here, we refer to Torgerson’s MDS as classical MDS, where
the input distances are converted to similarities, and principal com-
ponent analysis (PCA) is used to obtain the embedding [57]. Metric
MDS minimizes a loss function, commonly known as stress [53].
Finally, in non-metric MDS the input distances are not necessarily
distances, but can be ranks [36].

Classical MDS has been explored in hyperbolic space, by re-
placing the conversion to similarities with an appropriate hyperbolic
scaling function [14,52]. Using a similar idea, metric and non-metric
MDS have been generalized to hyperbolic space by incorporating
hyperbolic geodesic distance into the cost function [59-61, 65].

It has been shown that some graphs can be embedded with lower
error in hyperbolic space than in Euclidean space [7]. Zhou and
Sharpee [65] show that hyperbolic MDS (H-MDS) can be used to
detect the underlying geometry of a dataset, when comparing its

Figure 2: An example of a GMap Euclidean layout (left) and its
hyperbolic realization (right) via inverse projection.

embedding error to Euclidean non-metric MDS. They go further to
show that the underlying space of genomes is hyperbolic. Krioukov
et al.’s [35] work indicates that hyperbolic geometry may underlie
complex networks and hierarchical networks, such as phylogenetic
trees and the internet.

Greedy embeddings also appear to have a close relationship with
hyperbolic geometry. Indeed, any connected, finite graph admits a
greedy embedding in hyperbolic space, which is not generally true
in Euclidean geometry [31]. Greedy embeddings of graphs allow
for greedy routing, which is particularly useful when a node may
not know the global topology, but only its own position and that of
its neighbors such as in social networks and the internet [22].

An open-source hyperbolic visualization tool, RogueViz [11],
includes different projections and educational tools, although its
restriction to tessellations of the hyperbolic plane makes it less than
ideal for general graphs. Self-organizing maps have been generalized
to hyperbolic space, but are restricted to lattices [45].

Stress-based approaches have been explored in other Riemannian
spaces such as the sphere [18,46] and the torus [12, 13], as different
spaces provide different visualization advantages. Unlike in the
plane, on the sphere one can avoid issues such as central/peripheral
placement, and on the torus larger classes of graphs can be drawn
without crossings. Human subject studies show that these spaces are
no worse than Euclidean space for common navigation tasks [13,18].

One can achieve a similar focus+context effect by using lens
effects [55,56]. In particular, at first glance the Poincaré disk appears
to resemble a fisheye lens. However, a lens effect generally applies
only to a subset of the visible data, scaling or warping it to bring it
into focus. The focus+context view is applied across all of the data
in the Poincaré disk, with an exponential decrease in data size away
from the center, but the entirety of the object remaining in view.

It is worth mentioning that there are also theoretical limits on the
effectiveness of hyperbolic embeddings for general graphs. Some
graphs can be embedded trivially with a low, constant embedding
error (e.g., as cycles and square lattices) but have non-trivial em-
bedding error in the hyperbolic plane [21, 58]. However, other
graphs such as trees and hyperbolic tilings can be embedded better
in hyperbolic space than in Euclidean space. For example, while
Euclidean geometry only admits 3 regular tessellations (triangles,
squares, hexagons), the hyperbolic plane admits infinitely many.

Zheng et al. show that stochastic gradient descent (SGD) can
be used effectively to solve MDS for graph layout in Euclidean
space [64]. In this paper we show that SGD can also be deployed in
hyperbolic space and produces good embeddings.

3 PROJECTION-BASED METHOD

The first method we present is based on the idea of starting with
a precomputed layout and projecting it to the hyperbolic plane.
The implementation is available on the web, in a browser based

Figure 3: Different GMap drawing options for the same graph
using inverse projection from Euclidean to hyperbolic space.

graph visualization system. The system offers several layout algo-
rithms, clustering algorithms and visualization styles, with a focus
on map-like representations such as GMaps [23], MapSets [19],
BubbleSets [15], and LineSets [1]. Several human-subject studies
suggest that such map-like visualizations are at least as good as
traditional node-link diagrams when it comes to task performance,
memorization, and recall of the data [49,51].

The Euclidean layouts are computed then saved in the graphviz
DOT file format which includes graph-wide attributes, a node list,
and an adjacency list [20]. GMap computes the layout and stores
node positions as Cartesian coordinates. This is sufficient to draw
node-link diagrams. Polygons given as a set of vertices are stored as
a graph-wide attribute along with their colors for the other map-like
layouts: GMaps, MapSets, BubbleSets and LineSets. Parsing the
polygons is done as in [46].

The system relies on two different layout algorithms for com-
puting a Euclidean layout: sdfp is a multi-level force-directed al-
gorithm [28] and neato is a implementation of the Kamada-Kawai
algorithm [30]. We show examples of the colors graph drawn as a
node-link, GMap, BubbleSet, and LineSet diagram; see Fig. 3. This
is a graph of the 38 most popular RGB colors, courtesy of xked!.

We make use of a javascript library called Hyperbolic Canvas [3].
It is a mathematical model of the Poincaré disk projection of hy-
perbolic space that allows lines and shapes to be drawn using an
HTML canvas. The projection-based pipeline below is based on the
approach by Perry et al. for browser-based visualization of graphs
on the sphere [46].

3.1 The Projection-based Pipeline

Given a pre-computed 2-dimensional Euclidean layout, the
projection-based method can be summarized as follows:
1. Calculate geometric mean of the 2-d Euclidean layout
2. Apply an inverse hyperbolic Lambert azimuthal projection
centered on the geometric mean
3. Project back into the Euclidean plane of the browser using the
Poincaré projection (providing the look and feel of hyperbolic
space).

Uhttps://xked.com/color/rgb/

3.1.1 Hyperbolic Projections:

It is well known that non-Euclidean spaces (such as spherical and
hyperbolic spaces) can not be perfectly projected to the Euclidean
plane. No matter what type of projection is used, something will
get lost in the translation: distances are distorted, or region areas
are distorted, or angles are distorted. This problem is well studied
in cartography in the context of projecting the sphere onto the 2-d
Euclidean plane.

Knowing that a perfect embedding in the plane is impossible,
useful maps can still be created by choosing which information to
preserve. Three well-known projections of the sphere are gnomonic,
orthographic, and stereographic projections. The gnomonic projec-
tion preserves straight lines; geodesics of the sphere are shown as
straight lines in the projection. This is particularly useful in flight
planning, and is said to be the oldest map projection. The ortho-
graphic projection resembles the view of the Earth from space, and
preserves scale at the center of the projection, making it useful in
visualization. Finally, the stereographic projection preserves angles
and has its roots in star charts used in sailing [54].

Hyperbolic surface is curved (negatively) just like spherical space
is curved (positively), resulting in similar problems when attempting
to display it in the plane of a monitor or on a piece of paper. Just
as the sphere has many projections that serve different purposes,
so there exists many hyperbolic projections to the plane, although
they are not as well studied. These projections can be thought of as
analogous to their spherical counterparts and can often be derived
in an analogous way. For instance, the Beltrami-Klein projection
is analogous to the gnomonic projection of the sphere; they both
preserve geodesics as straight lines. Similarly, the Gans model of
the hyperbolic plane is analogous to the orthographic projection, in
that they both have a point of perspective at infinity. The Poincaré
projection is a spherical analogue of the stereographic projection as
they both preserve angles.

Figure 4: Illustration of an inverse projection: wrapping a plane
drawing on a hyperboloid.

3.1.2 Hyperbolic Lambert Azimuthal Projection

Since we know we are projecting node-link and map diagrams, it
seems reasonable to choose to preserve areas. One way this can be
accomplished is through a less common hyperbolic analogue to the
Lambert azimuthal projection, which has been called the hyperbolic
Lambert azimuthal projection. This projection is equi-areal, so area
is preserved. The hyperbolic analogue can be derived in much the
same way as the sphere.

Consider two disks: one in the 2-dimensional Euclidean space
and the other in the 2-dimensional hyperbolic space. Denote the area
of the Euclidean disk of radius r as e(r) and the area of a hyperbolic
disk of the same radius 4(r). We can then define the function f(r)
such that e(r) = h(f(r)). Assuming unit curvature, then

h(r) =2n(cosh(r)—1)

e(r)= nr?

1
flr) = arccosh(ir2 +1)
where arccosh is the inverse hyperbolic cosine. This maps the Eu-

clidean plane to the hyperbolic plane and gives us the transformation
(r,8) — (f(r),6), which preserves areas, but distorts angles and

shapes. The further away a shape is from the projection center the
greater the distortion, so centering about the geometric mean reduces
this effect; see Fig. 4.

Figure 5: An example of the default (center), increased zoom (left),
and increased coverage (right) for the same graph.

3.1.3 Poincaré Projection

Recall that the Poincaré projection of the hyperbolic plane is similar
to the stereographic projection of the sphere, in that it preserves
angles. The infinite hyperbolic plane is mapped to the inside of the
unit disk with hyperbolic lines corresponding to either arcs of circles
orthogonal to the boundary of the disk, or diameters of the disk if
the line passes through the origin. The Poincaré disk intrinsically
provides the look and feel of hyperbolic space in the browser. The
‘focus+context’ mentioned before is due to the Poincaré projection.
A small area near the border of the disk represents a very large area
in hyperbolic space, while the same size area near the center of the
disk represents a small area of hyperbolic space. This can be seen
mathematically in the transformation that takes the hyperbolic plane
to the Poincaré disk

e —1

——0)

e'+1

The exponentiation in the Poincaré transformation implies a prac-

tical limit on the hyperbolic radius of about 700, as larger values
require dealing with large numbers and lead to numerical overflow.

(r,6)=>(

3.2 Visualization Considerations

In this section we discuss the interactive features, the parameters,
and the task considerations.

3.2.1 Navigating the Map:

One of the main reasons for using map-like visualization for graphs
is our familiarity with map interactions such as pan, zoom, click
and drag. In the Poincaré disk, clicking and dragging brings new
nodes and regions into focus, allowing the viewer to exploit the
‘focus+context’ property of the projection. We accomplish this by
making use of Mdbius transformations.

A Mobius transformation is a complex function of the form
flz)= Zﬁ;g where z is a complex variable and ad — bc # 0. Mbius
transformations have many uses in complex analysis and geometry,
but one subgroup is especially useful for our purposes; the class of
transformations that map the open unit disk to itself. In particular
the transformation

=20
—Zoz+1
takes zq to the origin and preserves the Poincaré projection of the
hyperbolic plane, i.e., the transformation recenters the Poincaré
projection at zg.

We can obtain transitions that look smooth to the human eye
by repeatedly applying the above transformation at a point some
€ distance from the previous origin in the direction the mouse is
being dragged. Two still images centered at different points in a
random graph are shown in Fig. 6, but interacting with the actual
visualization in GMap better conveys the idea. Fig. 7 additionally
shows the difference between panning to the edge of a map in
Euclidean space and hyperbolic space.

Figure 6: The same graph centered about two different origins.

3.2.2 Parameters

There are a handful of settings in the parameter space, all of which
can be hand-tuned within given bounds.

Edge opacity: controls the opacity of links. This is useful as
the number of edges near the border in large graph can be so large
that the layout is difficult to discern. An edge opacity slider helps
mitigate this problem. The slider adjusts edge opacity from O (fully
transparent) to 1 (fully opaque), which is the default setting.

Label size: controls the relative size of labels in the view. The
natural focus+context view of a graph in hyperbolic space is also
reflected in the node label sizes, which decrease when farther away
from the center. This process is automated by adjusting the font
size of the labels in an inversely proportional fashion with respect to
their Euclidean distance to the center of the disk. A label size slider
allows the (central) font size to be adjusted from O (no labels) up to
40 px Arial. The initial setting is 15px, which ensures readability.

Zoom: controls the size of the Poincaré disk in the browser
window. Intuitively, the zoom slider brings the disk closer or further
away from the point of perspective; see Fig 5. The slider begins at
100% of the browser window size and the slider scales from 50% to
150% of the window size.

Coverage: controls the total area the layout occupies in the
Poincaré disk. As a consequence of Euclid’s parallel postulate not
holding in hyperbolic space, the hyperbolic plane is not invariant to
scale [52]. However, we can re-scale the layout while it is still in the
Euclidean plane, before we project it to H2. By default we use an
initial scaling factor proportional to the diameter (longest shortest
path) of the graph. The scale can be adjusted from 50% to 150% of
the default layout size.

3.2.3 Tasks Considerations

Brehmer and Munzner [10] define an abstract task taxonomy based
on a large body of related research. For domain specific tasks, Lee
et al. [39] identify task abstractions for network data and Saket et
al. [50,51] identify task abstractions for grouped node-link diagrams
(e.g., map-like drawings).

At a high level, we provide support for discover-type tasks by
navigation. Node-link diagrams make adjacency easily apparent, and
map-like drawings provide for straight-forward cluster identification.
Panning aids in search tasks, such as location or exploration. A
node/cluster can also be selected by double clicking, which smoothly
recenters the layout around the selected node/cluster. Given the
infinite space and ‘focus+context’ nature of the Poincaré projection,
it is possible that a viewer may get lost. To alleviate this potential
problem, we provide a reset button, that restores the layout to the
original output of the underlying algorithm.

4 FORCE-DIRECTED METHOD

Our projection-based hyperbolic visualization method uses a pre-
computed 2-dimensional Euclidean layout, but it uses hyperbolic
space just for the visualization and ‘focus+context’ effect, rather
than for the actual graph embedding. Properly embedding the graph

Figure 7: A 2D Euclidean GMap instance of the MusicLand
graph (left) and its hyperbolic realization (right).

in hyperbolic space would allow us to take advantage of the underly-
ing hyperbolic geometry. Algorithms for directly embedding special
classes of graphs in hyperbolic space, such as trees and hierarchies,
can better take advantage of the properties of the space and obtain
better embeddings than via projections. It is also possible to modify
the standard force-directed algorithm for operation in Riemannian
geometries (such as hyperbolic and spherical) by taking advantage
of the locally Euclidean properties of such spaces [34]. The imple-
mentation, which provides visualization in the browser, and is made
available in a browser based system through GitHub.

The idea is to compute a tangent plane at each vertex embedded
in the non-Euclidean Riemannian space, mapping every other vertex
to that plane, performing a step of a force-directed algorithm in
the plane, and projecting back the resulting node position changes
to the Riemannian space. While conceptually simple, this method
allows the graph to make use of the properties of the corresponding
non-Euclidean geometry.

For instance, on the sphere, layout methods that correctly make
use of the geometry allow 3D polytopes to wrap ‘around’ the sphere.
Thus, compared to the plane, a more accurate realization of their
structure is possible; see method two of [46].

We apply this idea to the Kamada-Kawai type of force-directed
graph layout algorithm, for its conceptual simplicity and its desirable
property of capturing graph structure (e.g., graph distances between
pairs of nodes) in the embedding (e.g., realized distances between
pairs of nodes in the non-Euclidean space). Specifically, we compute
the graph theoretic distances between all pairs of nodes and these
define desired distances in the layout. Spring forces, proportional to
the squared Euclidean distance between nodes in the layout, are used
to gradually improve a given initial layout to one in which realized
distances match the graph theoretic distances [30]. Formally, there
is an attractive or repulsive force (similar to stress) defined for any
pair of edges based on the difference between the graph theoret-
ical distance and the realized distance in the current embedding.
Specifically, the total energy of the system is modeled as:

n—1 n 1)
E=Y Y Ekij(‘Pi_Pj‘_dij)
i=1 j=itr1

where given a pair of nodes i and j, d;; is the graph theoretic dis-
tance between them, |p; — p;| is the current realized distance in the
embedding between them, and k;; is the strength of the spring forces
between them. The layout is obtained by reducing the energy of the
system via gradient descent.

4.1 Tangent Plane

In order to compute a tangent plane at some node x in H2, we need
to set the distance between x and every other node in the plane to
the hyperbolic distance between them, and ensure the angle between
the nodes stay the same [34]. The Poincaré disk preserves angles,

Figure 8: Force-directed colors (left) and MusicLand (right)
graphs.

so we only need to map hyperbolic to Euclidean distances. In the
Poincaré model, hyperbolic distance is simplest to compute from
the origin, so we first apply the Mobius transformation that takes x
to the origin. The distance between x and any node y is

1+1y|

dh(x"y) = ln(1— |y|

) = 2arctanh|y|

where arctanh is the inverse hyperbolic tangent. Then, let x be
the center of the disk and for every node y, let the transformation
(lyl,0) = (dp(x,y), 6) be its location in the tangent Euclidean plane,
using polar coordinates.

Once the tangent plane is computed and a step of the force-
directed algorithm has completed, the central node must be placed
back into hyperbolic space. This is accomplished through an inverse
of the above equations. Let y’ be the new location of the moved
node. We apply the transformation

/
(].0)~ > (ramh 21 6)

The following Mobius transformation takes the disk back to its
former origin, zg

—Y—20

—Zoy—1

)=

4.2 Precision

While hyperbolic geometry poses many interesting challenges for
graph drawing, the most notable we encountered was the issue of
precision. It is well known that floating point numbers are not
arbitrarily precise and that this can cause problems when the number
of significant bits needed is large. This effect is pronounced on the
Poincaré disk, as the number of bits needed to accurately reflect the
hyperbolic position increases exponentially as one approaches the
border of the disk. We choose to trade accuracy for stability: using
the Euclidean coordinates of the unit disk, if a node is pushed to
within 0.001 of the border, the node is ‘pulled back’ to avoid errors
from ‘ideal’ points of magnitude > 1. This effectively creates a
bounding region defined by a circle of (Euclidean) radius 0.999 from
the center of the Poincaré disk. This precision could be increased
to allow for larger nodes extremely far away from the center, or
decreased to keep the visual distortion of the drawing small.

4.3 Maps

Once we have computed a layout for a node-link diagram, we can
compute a map-like representation for it by projecting it to the
plane and running the existing GMap/BubbleSets/MapSets/LineSets
algorithm to obtain the needed groups and polygons.

It should be possible to compute the map-like representations
directly in hyperbolic space. For example, the cluster regions (poly-
gons) for GMaps are computed using Voronoi diagrams and it has

been shown that Voronoi diagrams for 2-dimensional points general-
ize to hyperbolic space and can be computed in O(nlogn) time [44].
Similarly, LineSets requires Bezier curves between nodes in a cluster,
which should also be computable in hyperbolic space.

5 MULTIDIMENSIONAL SCALING IN H?2

In the force-directed approach, we compute the graph embedding
with the help of many tangent plane computations, so that we can
use the standard force computations in Euclidean space. Here, we
consider a simple embedding: hyperbolic multidimensional scaling
(H-MDS).

Recall that metric multidimensional scaling is a dimensionality
reduction technique that attempts to preserve relationships between
n data points by finding a set of n points in the target space whose dis-
tances match observed distances. MDS can be naturally formulated
as a graph drawing problem by computing the pairwise distances
through an all-pairs-shortest-paths computation. Metric MDS is
then typically solved by minimizing an objective function. The most
common function used is known as stress

Slress:Z:Wij(HXi—Xj”_ﬂlij)2 M
i<j

where d;; is the given distance between two nodes in the graph,
|X; — X;|| is the distance between them in the target space, and
w;; is a normalization factor (typically 1 if the given distances are
of the same order, or di;z if the given distances include both very
large and very small distances). The stress function is non-convex
and classic optimization techniques are not guaranteed to find the
global optimum. However, existing techniques, such as gradient
descent, stochastic gradient descent and stress majorization, achieve
sufficiently good results in practice.

Early approaches for H-MDS suggest using gradient descent [60].
However, gradient descent is too slow in practice even for relatively
small graph sizes. We adapt stochastic gradient descent (SGD) to
provide reasonable runtimes for the browser.

The SGD algorithm considers random pairs of nodes, calculates
the minimum distance the pair needs to be moved to realize its ob-
served distance d;;, then steps along this direction by a distance
proportional to the learning rate. As we aim to find an embedding
in hyperbolic space, in order to evaluate the stress function and per-
form gradient descent, we need to choose an appropriate coordinate
system. We use a coordinate system known as Lobachevsky coordi-
nates in order to solve the H-MDS problem via SGD. Lobachevsky
coordinates are defined as a pair of real numbers (x,y), where for a
given point, x is its distance along a geodesic horizontal axis and y
is its perpendicular distance to that axis. Lobachevsky coordinates
for hyperbolic space are analogous to Cartesian coordinates for the
Euclidean space. For example any pair of real numbers represents a
point in hyperbolic space and any point in hyperbolic space can be
represented by a pair of real numbers.

5.1 Parameters

The SGD algorithm depends on several parameters and tuning these
parameters can have non-trivial impact. Here we discuss these
parameters and how we set the default values.

5.1.1 Randomization

Computing the stress function for a given embedding requires
O(]V|?) time by definition; see (1). Thus the gradient computa-
tion also requires quadratic runtime per iteration. SGD allows for
better runtimes in practice, using constant-time computations at
each step by only calculating the gradient of a specific pair at a time,
although this pairwise gradient calculation needs to be performed
many more times. The classic SGD method samples the original
data with replacement [47]. In our case, this would mean choosing

Colors Graph Hyperbolic GD vs. SGD Average runtime

— 6D time (seconds)
7 56D time (seconds)

] 200 00 600 800 1000 0 100

200 300 00 500
Steps VI (1 = 3v))

Figure 9: Effect of randomization techniques (left) described in
5.1.1, showing average stress over 30 runs at each step on the
Colors graph and average runtime (right) of HMDS using GD
and SGD over 30 runs (pre-processing omitted). Similar results
were found on other graphs.

two nodes at random every step until complete. On the opposite end,
a method known as random reshuffling enumerates all possible data
subsets (in our case all pairs) and shuffles this list. This ensures that
while the order of pairs moved is random, each pair is guaranteed to
be moved once in a fixed number of steps. Under certain conditions,
random reshuffling outperforms and converges faster than classical
replacement [27] and has been shown to work well for Euclidean
SGD [64]. A third method known as index shuffling randomizes the
indices in place, and pairs are chosen from this new ordering.

We investigate these three randomization methods in the context
of H-MDS: classical sampling with replacement, shuffling of indices,
and random reshuffling. We demonstrate that random reshuffling
tends to reach the lowest stress values; see Fig. 9. We use random
reshuffling and define an iferation as a full pass through all pairs
and show, in Section 5.1.4, that we only need a constant number of
iterations.

5.1.2 Initialization

As the stress function (1) is non-convex, there are no convergence
guarantees for gradient descent or for SGD.

Recent work has shown that ‘smart initialization’ is not necessary
for SGD in Euclidean space, as the algorithm is consistent regardless
of initial embedding [8]. To see if this holds true for hyperbolic
space, we performed a small-scale analysis on a selection of graphs
(chosen from the sparse matrix collection [17]) and compared our
smart initialization to random initialization.

Knowing the Euclidean algorithm is good at escaping local min-
ima, we run Euclidean SGD on the graph for 5 iterations, then project
this layout into hyperbolic space to obtain our smart initialization.
Random initialization is obtained by placing each node uniformly
at random in a circle of hyperbolic radius 1. While we initially saw
small improvements, there was no statistically significant benefit of
smart initialization over using a random initialization, confirming
the results of [8].

5.1.3 Learning Rate

Another important parameter for SGD is the learning rate. At each
iteration of gradient descent, we move the value being optimized
along the steepest direction of the gradient by a size proportional to
the learning rate, 1. If the learning rate is very small, the algorithm
might take too long to converge; if the learning rate is too large, the
algorithm might not converge. Thus, the proper choice of learning
rate is crucial for both the accuracy and the speed of the algorithm.

Generally, it is good for 7] to be large for the initial steps to move
the system quickly to a lower energy configuration, but 17 should
tend toward zero as the number of iterations increases so that the
algorithm converges. Computing a good 1 is a research topic all on
its own and is important for SGD’s effectiveness [8,48]. We upper
bound the product nw;; < 1 as in [64]. This allows us to use a larger
initial rate to ‘jump’ out of bad neighborhoods and possible local

10x10 Lattice 50 node random tree

— arexplbt)

— aisqrt(1+00)

15 To 15
iterations. Iterations

Les Mis graph Colors graph

— avexp(-bt)
alL+bt)
160 — aisan(1+by)

Figure 10: Effect of learning rate on various classes of graphs
(average over 15 runs each). Graphs used are a 10x10 grid (top
left), 50 node random trees (top right), the Les Mis graph [32]
(bottom left), and the colors graph (bottom right).

optima, but still converge as 1 goes to 0. We set a maximum and a
minimum learning rate, a function s(¢) that outputs a learning rate

n at time step . $(f0) = Nmax = d,%w and $(tmax = Nmin = ed,%lin
where d;,4 and d,,i, correspond to the longest and shortest shortest
paths of the input graph, respectively.

Euclidean SGD works particularly well with an exponential de-
cay learning rate [64]. To test if hyperbolic SGD behaves the same
way, we compare this exponetial decay learning rate with two ad-
ditional schedules: ®(1/¢) and ®(1/+/1) schedules. We define the
exponential schedule according to [64] using nmaxe*'”, the tradi-
tional ©(1/1) as {7 and the @(1/+/7) schedule as \/ﬁ. We set
a=dy;, and b= —(tyax)log ™.

As expected, the ©(1/r) schedule struggles to step out of lo-
cal minima. It is somewhat surprising that the @(1/+/¢) schedule
appears to achieve lower minima for some classes of graphs; see
Fig. 10. This could be due to the function’s larger learning rates
allowing the system to avoid local minima.

5.1.4 Stopping Condition

Gradient descent algorithms terminate either if they converge or if
they reach a maximum number of iterations. The convergence is
reached when the change in objective function value is less than
some tolerance. However, computing the stress value at each itera-
tion is time consuming and we avoid doing this for SGD. Instead,
we measure the max change in pairwise distance per iteration.

For our web focused application, we primarily investigate the use
of fixed number of iterations, although one can select to iterate until
convergence under ‘advanced options.” We set f,,,, = 20 using the
exponential learning rate described above, after experimenting with
different input graphs. We observe that there is little improvement
after 20 iterations; see Fig. 12

5.2 Evaluation

Similar to SGD for Euclidean space, we see similar improvements in
time and quality using SGD in hyperbolic space. Experiments were
conducted using a desktop machine with an Intel Core i7-3770 CPU
@ 3.40GHz x 8 processor, 32 GB of memory, and NVidia GeForce
gt 640 graphics running Ubuntu 20.04.3 LTS. Both the GD and SGD
algorithms are implemented in Python, making use of the Numpy,
Graph-tool, and Numba libraries.

Euclidean vs hyperbolic scale Spherical scale on cube graph

— Euclidean scale
Hyperbolic scale 175

3 2 H
Scale factor Scale factor

Figure 11: Left: Distortion on triangular lattice graph shown in
Fig. 14. Hyperbolic space gets worse as the scale increases, but
Euclidean can embed the graph with constant error. Right: The
effect of scale on the sphere on a cube graph. For this example,
there is a noticeable optimum at around 7 /3 (note that the diam-
eter of a cube graph is 3).

Stress curves on btreed Stress curves on qh8s2

900 900
— G Average — 6D Average.
0 560 Average w00 SGD Average
700 70
a0 600
500 500 \\
400 200 \
300 300
200 20 -
— —
B ® e @ w0 o % o e W fo o
Stress curves on 1138_bus Stress curves on dwt_1005
900 200
— G Average — GoAverage
0 560 Aversge a0 SGD Average
700 700
600 \ 6001
fa0 Esoo
a0 00
300 300 —
200 200
A— A~
R) % D B Bt s

Figure 12: Average stress plots of GD and SGD. Initial stress val-
ues are omitted.

As mentioned in section 5.1.4, while the overall complexity of
SGD is no different than GD, the run time is significantly faster; see
Fig 9. We conduct this experiment by generating a single random
graph on n nodes, then computing an embedding using the classic
GD and SGD, and recording the average time over 30 runs. Each
graph of n nodes has 3n edges selected at random. At 500 nodes,
GD takes over a minute but SGD takes only about 1.5 seconds.

Consistent with the findings in Euclidean space, hyperbolic SGD
also performs better than GD in regards to quality; see Fig. 12. We
show a selection of 4 graphs from the sparse matrix collection [17]
and plot the stress minimization curves as each algorithm proceeds.
Often just a few iterations of SGD is enough to ‘untangle’ the layout
and the curve often bottoms out quite quickly.

5.2.1 Comparison across geometries

The stress function (Eq. 1) offers a natural evaluation for the quality
of a graph embedding, based on how well pairwise distances in the
embedding match the corresponding graph distances. While the
quadratic term in the stress equation makes it suitable for gradient
descent, it also makes it somewhat disingenuous to compare across
different graphs and different embedding spaces. With this in mind,
we measure how well a graph embedding captures the underlying
graph structure using the related distortion measure; see [52].
N 1w [I1X =Xl = dij
Distortion = ———) ———"——" 2
12} 4 @)

(I‘z/\) e

i

Figure 13: A full binary tree (left) and the Les Mis [32] graph
(right), an example of a small complex (social) network.

Similar to stress, perfectly capturing all pairwise distances will result
in distortion of 0. It has been shown that some classes of graphs,
such as trees, can be embedded in the hyperbolic plane with lower
distortion value than in Euclidean space [7,35]. We numerically
demonstrate that the SGD algorithm for H-MDS achieves lower dis-
tortion values for trees. It has also been shown that some classes of
graphs, such as cycles, can be embedded in the Euclidean plane with
constant distortion but cannot be embedded with constant distortion
in the hyperbolic space. We demonstrate both of these properties for
trees and cycles; see Fig. 15.

The ability to compare graph embeddings in various spaces (Eu-
clidean, Spherical and Hyperbolic) creates an interesting application
of MDS. Similar to how Zhou and Sharpee detect the geometry of a
dataset [65], we can determine which of the three consistent geome-
tries is best suited for a given graph, by performing Euclidean MDS,
Spherical-MDS and H-MDS, and comparing their corresponding
distortion values. Table 2 shows the distortion values for several
classes of graphs for Euclidean space, Spherical space and Hyper-
bolic space. The cube graph (and other graphs that correspond to 3D
platonic solids) embeds best in spherical space. Lattices (as well as
paths and cycles) embed best in Euclidean space. Trees (and other
hierarchies) embed best in hyperbolic space.

5.2.2 Scale Invariance

It is known that the Euclidean MDS is invariant to scale. That is,
given a distance matrix and its corresponding embedding by MDS,
if one scales all distances by the same scalar and applies MDS to
the scaled distances, the achieved embedding should be the scaled
version of the initial one. However, this property does not hold for
spherical-MDS (S-MDS) and H-MDS. This can perhaps be most
intuitively seen by looking at the non-Euclidean analogues of the
Pythagorean theorem (assuming unit curvature).
Euclidean: a® +b? = ¢2,
Spherical: cos(a) + cos(b) = cos(c),
Hyperbolic: cosh(a) + cosh(b) = cosh(c).
While we can multiply both a and b by the same constant k to
obtain k2¢2 in Euclidean space, the same property does not hold for
hyperbolic and spherical spaces.

So then, our objective function for H-MDS becomes

Stress = Z w;j(gdist(X;, X ;) — Oca','j)z7
i<j

where the gdist((X;,X;)) is the geodesic distance in hyperbolic space
between nodes X; and X ;.

Spherical space is even more problematic when considering em-
bedding scales, as for any given radius of the sphere, the maximum
distance that one can achieve on the sphere is finite (rather than
infinite in Euclidean and hyperbolic space). This leads to a natural
heuristic scale value: o = ﬁ, where d;,4x is the diameter (longest

Figure 14: Triangular lattice with scaling factor oo =1 (left) and
optimized o. = 0.22 (right).

Ring (cycle) Graphs Random trees

— Euclidean Distortion — Euclidea
Hyperbolic Distortion

Figure 15: Euclidean and hyperbolic embedding distortion on
rings (left) and trees (right). It can be seen that the number of
nodes in a ring in Euclidean space does not matter, but distortion
gets worse with size of the ring in hyperbolic space. The inverse
is true for trees, they can be embedded with constant distortion in
hyperbolic space but not Euclidean.

shortest path) of the graph. This normalizes d to a maximum distance
of 7, which is the longest distance possible on the unit sphere.

In the hyperbolic space, although one can achieve arbitrarily large
distances, similar to the S-MDS, scaling the data or considering
a different hyperbolic radius can drastically affect the embedding.
Thus, there is a need to find an appropriate scaling parameter ¢ for
which the achieved embedding best captures the underlying graph
distances. If « is very small, the layout occupies a small fraction
of the hyperbolic space, resulting in an embedding that is similar to
Euclidean space, and thus does not capture the focus+context effect.
If o is large, then most of the graph is located at the periphery,
making it hard to see. We can find a good scaling parameter for
any given graph using binary search for the value of ¢ that achieves
lowest embedding distortion and this is indeed an available option
under ‘advanced options.” We show an example of an optimized o
compared to a naive o = 1; see Fig. 14. By default we set o@ = d/l’gt,
where dyqy is the length of the longest shortest path in the graphs.
This caps the largest distance to a hyperbolic unit length of 10 and
the resulting embeddings tend to capture the focus+context effect
and do not place large parts of the graph near the periphery.

Table 2: Distortion on small graphs across geometries. Averaged
over 10 runs.

[Graph [Spherical | Euclidean | Hyperbolic |

Cube 0.1296 0.2437 0.2645
Lattice 0.2421 0.1486 0.2306
Tree 0.1944 0.1284 0.0682

6 DISCUSSION, LIMITATIONS AND FUTURE WORK

We described three methods for visualizing graphs in hyperbolic
space, which are illustrated in Fig. 1. We present a small-scale

Projection FDA SGD Projection FDA SGD

Colors 1.1062 1.1555 0.2514 0.5864 0.662 0.2227

Music 1.7201 13.9767 0.435 l.SAA‘ 06182 0.1957

btree8 2.2095 29.9494 1.9346 13885 0.8873 0.1379

1138_bus 7.4513 210.5452 10.625 2.3551 09352 0.1576
Time (s) Error (distortion)

Figure 16: Average time in seconds (left) and average distortion
value (right) on the listed graphs for each of three methods pre-
sented in the paper.

comparison of the three approaches by comparing time and distortion
values; see Fig. 16. The projection-based method allows us to show
any 2D Euclidean graph representation in hyperbolic space, where
we can take advantage of the ‘focus+context’ properties of the space
while still relying on standard map interactions. Related work has
been limited to standard node-link representations, but this method
can be applied to any graph visualization metaphor, which we show
with GMaps, MapSets, BubbleSets, and LineSets. The method
currently relies on Lambert azimuthal projections and the Poincaré
disk model. We have not yet explored other projections or the
Beltrami-Klein model. Finally, this method does not fully take
advantage of the underlying geometry of the space.

The inherent distortion of shapes and angles introduced when
using the inverse Lambert projection to the hyperbolic plane implies
that at some threshold the outer regions of the layout become too
distorted to be of use. This is already apparent in the MusicLand ex-
ample from GMap as shown in Fig. 7, with around 250 nodes. Even
though our method can handle larger graphs, it is clear that larger
graphs pose additional challenges. A multi-level representation of
the graph might be useful to provide ‘semantic zooming’ where we
start with a high level overview of the graph and zooming in brings
up more details, following Schneiderman’s mantra (overview first,
zoom and filter, details on demand).

When moving through a curved space, an inherent property causes
an observer to incur rotation. This could be desirable, as it gives
several different perspectives on the same layout, but it could po-
tentially be confusing when navigating large maps. Specifically,
moving the layout in the Poincaré disk, incurs a rotation in the lay-
out (clockwise or counter-clockwise): consider translating a layout
some fixed distance up, the same distance to the right, then again
down, and back to the left. In 2D Euclidean geometry, the layout
would be identical after these transformations, while in the Poincaré
disk (and hyperbolic geometry in general) this causes a 90-degree
rotation. An orientation correcting transformation could be applied
after translating the layout, but in our prototype we only provide the
‘reset button,” which restores the original layout.

The force-directed method utilizes the geometry of hyperbolic
space, but is not as efficient as our projection-based method. The
underlying Kamada-Kawai algorithm is already rather computation-
ally expensive, due to the all-pairs shortest path calculations and
many tangent plane computations. There are several scalable force-
directed algorithms for Euclidean space, which can be adapted to
the hyperbolic setting, but this remains as future work.

Our third method lays out a graph directly into the hyperbolic
plane using H-MDS, a generalization of multidimensional scaling.
The algorithm is implemented, fully functional and available on-
line on GitHub. In order to optimize the stress function of H-MDS
we employed stochastic gradient descent, which not only signifi-
cantly improves the runtime, but often finds a better minimum when
compared to gradient descent. H-MDS also requires an all-pairs-
shortest-paths computation, but relatively few iterations. Adapting a
sparse approximation method for graphs in which the pre-processing
is prohibitively expensive could be a direction for future work.

In this work we visualized the hyperbolic space by using the
Poincaré disk model, as it provides the look and feel of hyperbolic
space. Other models such as the Beltrami-Klein model or Poincaré
half-plane model may provide additional benefits for visualization.

While we have addressed the computational scalability of hyper-
bolic layouts with hyperbolic SGD, visual scalability remains an
open problem. Recent work has pointed to limitations on hyperbolic
graph embeddings [18,21], but it is also known that some graphs can
be embedded in hyperbolic space with lower error [35] Determining
whether a lower distortion in a geometry corresponds to better task
support remains a promising direction for future work.

As discussed in Section 5.2.2, scaling is crucial for hyperbolic and
spherical embeddings and a robust algorithm to efficiently determine
the correct scaling parameter for H-MDS and S-MDS is needed. We
provide an efficient heuristic for setting the scale and provide a more
computationally expensive method to find a scale that minimizes
distortion, but a closed form solution remains an open problem.

A possible promising application for hyperbolic/spherical visual-
ization are virtual reality and augmented reality, as prior work seems
to have only considered spherical space in this context [37].

A potentially interesting question is how the hyperbolic geometry
may change the layout’s aesthetic properties. Wang et al. optimize
edge orientation to better facilitate navigation tasks on graphs using
a fish-eye lens [62]. Perhaps optimizing over additional aesthetic
criteria could improve the readability of hyperbolic graph layouts.

REFERENCES

[1] B. Alper, N. H. Riche, G. A. Ramos, and M. Czerwinski. Design
study of LineSets, a novel set visualization technique. /EEE Trans. Vis.
Comput. Graph., 17(12):2259-2267, 2011.

[2] K. Andrews, W. Putz, and A. Nussbaumer. The hierarchical visualisa-
tion system (HVS). In 71th International Conference on Information
Visualisation, pp. 257-262. IEEE Computer Society, 2007.

[3] N. Barry. Hyperbolic Canvas Github Page. https://github.com/
ItsNickBarry/hyperbolic-canvas. accessed: 2021-06-06.

[4] J. Baumgartner and T. A. Waugh. Roget2000: a 2d hyperbolic tree
visualization of Roget’s thesaurus. In Visualization and Data Analysis,
vol. 4665 of SPIE Proceedings, pp. 339-346, 2002.

[5] N. G. Belmonte. Javascript InfoVis Toolkit. https://philogb.
github.io/jit/demos.html. accessed: 2021-06-06.

[6] J. Bingham and S. Sudarsanam. Visualizing large hierarchical clusters
in hyperbolic space. Bioinform., 16(7):660-661, 2000.

[7]1 T. Blisius, T. Friedrich, A. Krohmer, and S. Laue. Efficient embedding
of scale-free graphs in the hyperbolic plane. IEEE/ACM Trans. Netw.,
26(2):920-933, 2018.

[8] K. Borsig, U. Brandes, and B. Pédsztor. Stochastic gradient descent
works really well for stress minimization. In Graph Drawing and
Network Visualization - 28th International Symposium, vol. 12590, pp.
18-25. Springer, 2020.

[9]1 B. Bou. Treebolic2 Webpage. http://treebolic.sourceforge.
net/treebolic2/en/index.html. accessed: 2021-06-06.

[10] M. Brehmer and T. Munzner. A multi-level typology of abstract visu-
alization tasks. IEEE Trans. Vis. Comput. Graph., 19(12):2376-2385,
2013.

[11] D. Celinska and E. Kopczynski. Programming languages in GitHub:
A visualization in hyperbolic plane. In Proceedings of the Eleventh
International Conference on Web and Social Media, pp. 727-728.
AAAI Press, 2017.

[12] K. Chen, T. Dwyer, B. Bach, and K. Marriott. It’s a wrap: Toroidal
wrapping of network visualisations supports cluster understanding
tasks. In CHI ’21: CHI Conference on Human Factors in Computing
Systems. ACM, 2021.

[13] K. Chen, T. Dwyer, K. Marriott, and B. Bach. Doughnets: Visualising
networks using torus wrapping. In CHI ’20: CHI Conference on
Human Factors in Computing Systems. ACM, 2020.

[14] J.R. Clough and T. S. Evans. Embedding graphs in lorentzian space-
time. PloS one, 12(11):e0187301, 2017.

[15] C. Collins, G. Penn, and S. Carpendale. BubbleSets: Revealing set
relations with isocontours over existing visualizations. IEEE Trans. Vis.
Comput. Graph., 15(6):1009-1016, 2009.

[16] A. Cvetkovski and M. Crovella. Multidimensional scaling in the
poincare disk, 2016.

https://github.com/ItsNickBarry/hyperbolic-canvas
https://github.com/ItsNickBarry/hyperbolic-canvas
https://philogb.github.io/jit/demos.html
https://philogb.github.io/jit/demos.html
http://treebolic.sourceforge.net/treebolic2/en/index.html
http://treebolic.sourceforge.net/treebolic2/en/index.html

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. A. Davis and Y. Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1-1:25, 2011.

F. Du, N. Cao, Y. Lin, P. Xu, and H. Tong. iSphere: Focus+context
sphere visualization for interactive large graph exploration. In Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing, pp.
2916-2927. ACM, 2017.

A. Efrat, Y. Hu, S. Kobourov, and S. Pupyrev. MapSets: Visualizing
embedded and clustered graphs. J. Graph Algorithms Appl., 19(2):571-
593, 2015.

J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz - open source graph drawing tools. In Graph Drawing, 9th
International Symposium, vol. 2265 of Lecture Notes in Computer
Science, pp. 483—484. Springer, 2001.

D. Eppstein. Limitations on realistic hyperbolic graph drawing. In
Graph Drawing and Network Visualization - 29th International Sympo-
sium, Lecture Notes in Computer Science. Springer, 2021.

D. Eppstein and M. T. Goodrich. Succinct greedy geometric routing
using hyperbolic geometry. [EEE Trans. Computers, 60(11):1571—
1580, 2011.

E. R. Gansner, Y. Hu, and S. Kobourov. GMap: Visualizing graphs and
clusters as maps. In /IEEE Pacific Visualization Symposium PacificVis,
pp- 201-208. IEEE Computer Society, 2010.
M. Glatzhofer. Hyperbolic tree of
hyperbolic-tree-of-life.github.io/.
M. Glatzhofer. Hyperbolic browsing. Master’s thesis, Institute of
Interactive Systems and Data Science (ISDS),Graz University of Tech-
nology, Austria, 2018.

M. Glatzofer. d3-hypertree Github page. https://github.com/
glouwa/d3-hypertree. accessed: 2021-06-06.

M. Giirbiizbalaban, A. Ozdaglar, and P. A. Parrilo. Why random reshuf-
fling beats stochastic gradient descent. Mathematical Programming,
186(1):49-84, 2021.

Y. Hu. Efficient, high-quality force-directed graph drawing. Mathemat-
ica journal, 10(1):37-71, 2005.

Y. Hyun. https://www.caida.org/catalog/software/walrus/
#H2540, 2000. Accessed: 2021-06-06.

T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inf. Process. Lett., 31(1):7-15, 1989.

R. Kleinberg. Geographic routing using hyperbolic space. In IN-
FOCOM 2007. 26th IEEE International Conference on Computer
Communications, pp. 1902—-1909. IEEE, 2007.

D. E. Knuth. The Stanford GraphBase: a platform for combinatorial
computing, vol. 1. AcM Press New York, 1993.

S. Kobourov. Force-directed drawing algorithms. In Handbook
on Graph Drawing and Visualization, pp. 383-408. Chapman and
Hall/CRC, 2013.

S. Kobourov and K. Wampler. Non-Euclidean spring embedders. /[EEE
Trans. Vis. Comput. Graph., 11(6):757-767, 2005.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
gund. Hyperbolic geometry of complex networks. Physical Review E,
82(3):036106, 2010.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.

0. Kwon, C. Muelder, K. Lee, and K. Ma. A study of layout, rendering,
and interaction methods for immersive graph visualization. IEEE Trans.
Vis. Comput. Graph., 22(7):1802-1815, 2016.

J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based
on hyperbolic geometry for visualizing large hierarchies. In Human
Factors in Computing Systems, CHI 95 Conference Proceedings, pp.
401-408. ACM/Addison-Wesley, 1995.

B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task
taxonomy for graph visualization. In Proceedings of the 2006 AVI
workshop on BEyond time and errors: novel evaluation methods for
information visualization, pp. 1-5, 2006.

T. Munzner. H3: laying out large directed graphs in 3d hyperbolic
space. In IEEE Symposium on Information Visualization, pp. 2—10.
IEEE Computer Society, 1997.

T. Munzner. Exploring large graphs in 3d hyperbolic space. IEEE
Computer Graphics and Applications, 18(4):18-23, 1998. doi: 10.
1109/38.689657

life. https://

[42]

(43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

T. Munzner. Interactive visualization of large graphs and networks.
PhD thesis, Stanford University, 2000.

T. Munzner and P. Burchard. Visualizing the structure of the world
wide web in 3d hyperbolic space. In Procedings of the 1995 Symposium
on Virtual Reality Modeling Language, pp. 33-38. ACM, 1995.

F. Nielsen and R. Nock. Hyperbolic voronoi diagrams made easy. In
Prodeedings of the 2010 International Conference on Computational
Science and Its Applications, ICCSA 2010, pp. 74-80. IEEE Computer
Society, 2010.

J. Ontrup and H. J. Ritter. Hyperbolic self-organizing maps for semantic
navigation. In Advances in Neural Information Processing Systems 14,
pp. 1417-1424. MIT Press, 2001.

S. Perry, M. S. Yin, K. Gray, and S. Kobourov. Drawing graphs on
the sphere. In AVI "20: International Conference on Advanced Visual
Interfaces, pp. 17:1-17:9. ACM, 2020.

H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pp. 400407, 1951.

S. Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

B. Saket, C. Scheidegger, S. Kobourov, and K. Borner. Map-based
visualizations increase recall accuracy of data. Comput. Graph. Forum,
34(3):441-450, 2015.

B. Saket, P. Simonetto, and S. Kobourov. Group-level graph visual-
ization taxonomy. In /6th Eurographics Conference on Visualization,
EuroVis 2014. Eurographics Association, 2014.

B. Saket, P. Simonetto, S. Kobourov, and K. Borner. Node, node-
link, and node-link-group diagrams: An evaluation. IEEE Trans. Vis.
Comput. Graph., 20(12):2231-2240, 2014.

F. Sala, C. D. Sa, A. Gu, and C. Ré. Representation tradeoffs for
hyperbolic embeddings. In Proceedings of the 35th International
Conference on Machine Learning, vol. 80 of Proceedings of Machine
Learning Research, pp. 4457-4466. PMLR, 2018.

R. N. Shepard. The analysis of proximities: multidimensional scaling
with an unknown distance function. i. Psychometrika, 27(2):125-140,
1962.

J. P. Snyder. Map projections: A working manual. U.S. Government
Printing Office, 1987.

C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann. A
Survey on Interactive Lenses in Visualization. In EuroVis - STARs. The
Eurographics Association, 2014.

C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann.
Interactive lenses for visualization: An extended survey. In Computer
Graphics Forum, vol. 36(6), pp. 173-200. Wiley Online Library, 2017.
W. S. Torgerson. Multidimensional scaling: I. theory and method.
Psychometrika, 17(4):401-419, 1952.

K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and
social networks. Comput. Geom., 59:1-12, 2016.

J. Walter, J. Ontrup, D. Wessling, and H. Ritter. Interactive visualization
and navigation in large data collections using the hyperbolic space. In
Third IEEFE International Conference on Data Mining, pp. 355-362.
IEEE, 2003.

J. A. Walter. H-MDS: a new approach for interactive visualization with
multidimensional scaling in the hyperbolic space. Inf. Syst., 29(4):273—
292, 2004.

J. A. Walter and H. J. Ritter. On interactive visualization of high-
dimensional data using the hyperbolic plane. In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 123-132. ACM, 2002.

Y. Wang, Y. Wang, H. Zhang, Y. Sun, C. Fu, M. Sedlmair, B. Chen,
and O. Deussen. Structure-aware fisheye views for efficient large graph
exploration. IEEE Trans. Vis. Comput. Graph., 25(1):566-575, 2019.
S. Zhang and A. Kelleher. H3py Github Page. https://github.
com/buzzfeed/pyh3, 2016. Accessed: 2021-06-06.

J. X. Zheng, S. Pawar, and D. F. M. Goodman. Graph drawing
by stochastic gradient descent. [EEE Trans. Vis. Comput. Graph.,
25(9):2738-2748, 2019.

Y. Zhou and T. O. Sharpee. Hyperbolic geometry of gene expression.
Iscience, 24(3):102225, 2021.

https://hyperbolic-tree-of-life.github.io/
https://hyperbolic-tree-of-life.github.io/
https://github.com/glouwa/d3-hypertree
https://github.com/glouwa/d3-hypertree
https://www.caida.org/catalog/software/walrus/#H2540
https://www.caida.org/catalog/software/walrus/#H2540
https://github.com/buzzfeed/pyh3
https://github.com/buzzfeed/pyh3

	1 Introduction
	2 Related Work
	3 Projection-based Method
	3.1 The Projection-based Pipeline
	3.1.1 Hyperbolic Projections:
	3.1.2 Hyperbolic Lambert Azimuthal Projection
	3.1.3 Poincaré Projection

	3.2 Visualization Considerations
	3.2.1 Navigating the Map:
	3.2.2 Parameters
	3.2.3 Tasks Considerations

	4 Force-directed Method
	4.1 Tangent Plane
	4.2 Precision
	4.3 Maps

	5 Multidimensional Scaling in H2
	5.1 Parameters
	5.1.1 Randomization
	5.1.2 Initialization
	5.1.3 Learning Rate
	5.1.4 Stopping Condition

	5.2 Evaluation
	5.2.1 Comparison across geometries
	5.2.2 Scale Invariance

	6 Discussion, Limitations and Future Work

