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ABSTRACT
Analyzing air pollution data is challenging as there are various anal-
ysis focuses from different aspects: feature (what), space (where),
and time (when). As in most geospatial analysis problems, besides
high-dimensional features, the temporal and spatial dependencies of
air pollution induce the complexity of performing analysis. Machine
learning methods, such as dimensionality reduction, can extract and
summarize important information of the data to lift the burden of
understanding such a complicated environment. In this paper, we
present a methodology that utilizes multiple machine learning meth-
ods to uniformly explore these aspects. With this methodology, we
develop a visual analytic system that supports a flexible analysis
workflow, allowing domain experts to freely explore different as-
pects based on their analysis needs. We demonstrate the capability
of our system and analysis workflow supporting a variety of analysis
tasks with multiple use cases.
Keywords: Visual analytics, machine learning, analysis workflow,
dimensionality reduction, matrix factorization, air pollution.

1 INTRODUCTION
Air quality reflects the influence of natural pollution (e.g., soil dust
erosion, sea breeze, or natural forest fires) and anthropogenic pollu-
tion (e.g., fuel combustion, traffic emission, or industrial activities).
It is the indicator of the environmental health as pollution sources
indirectly degrade the environment [20]. Further, studies show par-
ticulate matter (PM) has associations with adverse health effects
of sensitive groups [41]. The capability of identifying pollution
contributors assists in understanding air pollution events and the
decision making in environmental policies.

In the dynamic atmospheric environment, various pollution
sources, associated with different locations and time periods, con-
tribute to the concentration of PM at one time point. Understanding
air pollution requires researchers to investigate a complicated envi-
ronment in the form of the spatiotemporal multivariate data, com-
posing three major aspects: feature (what), space (where), and time
(when) [34]. Andrienko et al. [2] accordingly derived the elementary
analysis tasks with the review of visualization support.

Researchers have developed various methods to investigate air
pollution, with the focus on different aspects. Non-negative ma-
trix factorization (NMF) is widely used in the field of air quality
study [24] as it extracts a variety of pollution sources from the air
particle composition (e.g., consisting of ions, metals, volatile organic
compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs)).
Anomaly detection is being employed to identify potential air pollu-
tion events from the time aspect [10,12]. Supervised models, such as
CMAQ [7], simulate atmospheric diffusion and chemical reactions
to capture the environmental complexity. Juxtaposing geospatial
maps often delivers the reproduced spatial distribution to let ana-
lysts retrospectively or prospectively study air pollution [12]. These
methods help conduct in-depth analysis; however, they only provide
insights from two of the three aspects at most.

With the assistance of interactive visualizations, we can effec-
tively connect different aspects of the data. Several visualizations
are designed to uncover patterns from the relationships among pollu-
tants [36, 37], while some computational analysis methods are good
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to aid visual exploration. Interactive machine learning (ML) meth-
ods (e.g., clustering methods) have been used to visually compare
different regions [16, 49, 53]. However, these existing approaches
still do not provide effective visual analytics support to uniformly
explore the data from the aforementioned three aspects.

In this paper, we present a methodology that effectively links the
three aspects (i.e., feature/variable, space, and time) of outdoor air
pollution data for interactive analysis. To achieve this, we introduce
an ML pipeline that aims to provide a unified view of the data as
well as to support flexible exploration over different combinations
of the three aspects. Within this pipeline, we employ NMF to ex-
tract the air pollution sources, incorporate correlation analysis to
assist the source interpretation, and use the factorization result to
further explore the time and space aspects. To highlight each re-
gion’s uniqueness in terms of the association with the air pollution
sources, we further adopt contrastive learning, which is an emerg-
ing ML scheme designed to extract salient/unique patterns in one
dataset relative to the other [1]. We develop a visual analytic system
supporting a flexible analysis workflow to allow free exploration
and top-down analysis. By linking the three aspects, we are able to
uncover the hidden air pollution events that happened at a specific
location and time and identify the contributing pollution sources.

Our main contributions include: (1) introducing an ML pipeline
that exploits existing dimensionality reduction (DR) and clustering
methods to investigate the three aspects of the data; (2) prototyping
a visual analytic system that coordinates linked visualizations to
provide a flexible analysis workflow; (3) demonstrating the flexible
analysis workflow that aids a variety of analysis tasks with multiple
use cases using real-world air pollution datasets.

2 BACKGROUND AND RELATED WORK

Our work aids data-driven air pollution analysis with interactive
visualizations. We first describe typical air pollution data and then
discuss representative research on the related topics.

2.1 Air Pollution Data
Air pollution is usually measured with six common air pollutants
(called criteria air pollutants [45]): PM2.5, PM10, NO2, SO2, O3, and
CO. Among these, PM is a mixture of heterogeneous small particles
from multiple pollution sources. Along with the criteria air pollu-
tants, researchers measure a variety of chemical species, including
ions, metals, VOCs, and PAHs, to further understand the details of
PM and identify the sources of PM. For example, if we identify the
pollution source highly relevant to Na+ and Cl– , the air pollution is
likely caused by strong sea breezes as they deliver these ions compos-
ing salt (i.e., NaCl). As we discuss in Sect. 2.2, for this identification
process, researchers often use a matrix factorization method, such as
factor analysis, principal component analysis (PCA), or NMF. Note
that the cost of using various sensors to measure many different
chemical species is often more expensive than using sensors of the
criteria air pollutants [8]; thus, the chemical species tend to be only
measured at limited locations.
Concrete example of air pollution data. In the ensuing sections,
we describe our visual analytics system while analyzing air pollution
data obtained at 12 monitoring sites in the central region of Taiwan.
Each monitoring site has one meteorological station and one air
quality station. The meteorological station samples wind speed,
wind direction, temperature, and relative humidity on an hourly
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basis. The air quality station collects two different types of data at
different sampling rates. The first type includes values of the criteria
air pollutants plus NO recorded hourly. The second type consists
of the concentration values of 49 chemical species, which include 8
ions (e.g., Na+ and Cl– ), 36 metals (e.g., Al and Fe), organic carbon,
elemental carbon, Levoglucosan, Mannosan, and Galactosan, all of
which are the mean value for 12 hours and recorded every 8 am
and 8 pm. In addition, we have GPS coordinates of the monitoring
sites. To supplement our analysis, we also incorporate a dataset from
a large amount of PM2.5 sensors in the same region. The dataset
consists of values of PM2.5 recorded at 537 AirBox sensors [27]
hourly, along with the sensors’ GPS coordinates. All of the data
were collected from March 12th to 31st, 2018.

2.2 Data-Driven Air Pollution Analysis
For air pollution data analysis, NMF (also known as positive ma-
trix factorization) is one of the most widely used ML methods [24].
NMF decomposes a matrix of air pollution data (where rows and
columns represent samples and chemical species, respectively) into
two smaller matrices. By referring to these two matrices, analysts
can identify sources/factors of air pollution [6] (see Sect. 4.2 for the
details). For example, Hasheminassab et al. [23] studied the impact
of the vehicular emissions on air pollution sources. Gon et al. [38]
compared pollution source compositions at different geospatial re-
gions. Liao et al. [29] further compared the compositions at different
levels of altitudes.

As seen with the emergence of urban computing [50], low-cost
particle sensing devices increase the granularity of air pollution
data, enabling advanced data-driven analysis, such as ML on air
quality prediction [48, 51] and pollution event classification [17,
39]. However, as low-cost sensing devices may easily cause errors
and malfunctions, researchers developed monitoring methods to
ensure data quality [10]. As described in the ensuing subsection,
visualization also can help review and analyze large air pollution
data while considering potential problems in the quality of the data.

We use ML methods commonly used in existing works (e.g.,
NMF) and enhance analysis flexibility and interpretability of ML
results by coupling contrastive learning and interactive visualization.

2.3 Visualizations for Air Pollution Analysis
Air pollution data is often multivariate and spatiotemporal. There is
a large collection of existing works on multivariate, spatiotemporal
visualizations, as referred by recent literature surveys [4, 52]. We fo-
cus on works specifically designed for outdoor air pollution analysis
(e.g., the air pollution source identification).

Analysis of air pollution data often requires visual exploration
from each of the three aspects, feature, space, and time, and their
combinations. For example, Qu et al. [36] enhanced parallel coordi-
nates and polar-coordinate-based scatterplots to inform relationships
among air quality relevant features. Ren et al. [37] summarized
the air pollutant propagation by constructing a network for each
time point based on the similarities of air pollutant distributions per
location. They further visualized the distribution changes for each
network community (i.e., group of cities) over time. These works
and others [28, 32] highly relied on visualizations to find patterns
rather than utilizing ML methods.

Several works aided visual exploration with ML methods. En-
gel et al. [16] enhanced NMF by adding regularization terms that
can be used to reduce the influence of noise and uncertainty in the
data. They also provided a visual interface to adjust NMF results
while keeping the expert in the loop. Zhou et al. [53] utilized DR
and clustering methods to group locations with similar air pollutant
distributions. Zhang et al. [49] took a similar approach to group sam-
ples. Deng et al. [15] constructed directed networks that represent
air pollution propagation between different locations and employed
frequent subgraph mining to help review the propagation patterns.

Others employed temporal data mining methods, such as time-series
analysis methods [22, 35] and recurrent neural networks [31].

Our work analyzes air pollution data from the three aspects while
combining interactive visualization and ML. We introduce an analy-
sis pipeline that enables an integrated analysis of the three aspects, as
described in Sect. 4. Also, while the existing visual analytics systems
only support predetermined (one-directional) analysis workflow, our
system supports a more flexible analysis workflow to explore each
of the three aspects or the combinations of them.

3 DESIGN GOALS

As we discussed through our literature survey, analysis of air pol-
lution data usually requires the exploration from the three aspects:
feature, space, and time. Our general goal is to support flexible anal-
ysis from each individual aspect as well as each of the combinations
of them (e.g., feature and space). Also, we aim to effectively help
domain experts perform their common tasks (e.g., pollution source
identification). The detailed design goals (DGs) of our visual analyt-
ics system are listed below. While we derive DGs from the literature
survey, they are also validated by the domain experts during the
expert interview, as described in Sect. 6.

DG1: Supporting pollution source identification. The identifi-
cation of pollution sources is the most common task related to the
aspect of features [24]. The system should support a matrix factor-
ization method that domain experts are familiar with (specifically,
NMF). Also, we should provide visualizations that help them inter-
pret the matrix factorization results with the contexts of measured
air pollutants (e.g., PM2.5) and chemical species (e.g., Na+).

DG2: Aiding pollution event identification and explanation.
An important analysis task related to the time aspect is identifying
when the cause of air pollution occurred—we call this cause pollu-
tion event [12]. The system should aid domain experts in performing
this task as well as understanding pollution events with auxiliary
information, such as related locations and lasting periods.

DG3: Characterizing geospatial regions. Similar pollution pat-
terns are often observed in adjacent stations. As seen in existing
works [38], based on the patterns, domain experts often want to
form regions encompassing multiple stations and understand their
characteristics (e.g., region A is influenced by sea breezes). The
system should support this grouping and characterization process.

DG4: Enabling effective exploration in pairs of the aspects.
To thoroughly analyze air pollution data, exploration from the com-
binations of the three aspects is necessary [12, 23, 38]. However,
simultaneously examining multiple aspects can be a challenging task
as it involves excessive information. Our system should provide
computational analysis and visualization support, allowing users to
effectively explore the complex information.

DG5: Providing analysis flexibility. As air pollution data
analysis often involves various analysis focuses from different as-
pects [21], the system should be able to assist a wide variety of
analysis needs, which could differ between each domain expert. Fur-
thermore, a domain expert often changes their needs during their
analysis. Thus, the system should support multiple different analysis
workflows with a flexible visual interface. The experts should be
able to focus on a particular analysis, and seamlessly move on to a
different analysis based on their intermediate findings.

4 METHODOLOGY

Based on the DGs, we design a visual analytics system (Fig. 1) that
supports a flexible analysis workflow (Fig. 2) to analyze complex
air pollution data from multiple aspects while utilizing ML methods.
As shown in Fig. 1, the system consists of six views: (a) pollution
source, (b) station similarity, (c) station group characteristic, (d)
geospatial map, (e) pollution source contribution transition, and (f)
air pollution transition views. Each view is designed to support the
exploration from a different aspect. For example, while the pollution



Fig. 1: A screenshot of our system’s visual interface. Here we analyze the air pollution collected at the central region of Taiwan. (a) the pollution
source view depicts the composition of pollution source identified by NMF (left) as well as the correlations with air pollutants and meteorological
measures (right). (b) the station similarity view shows the similarity of stations and their cluster ID, which are extracted with the MulTiDR framework.
(c) the station group characteristic view visualizes the influence of each pollution source on each station group/cluster. (d) the geospatial map view
conveys geological locations of stations with their cluster ID. (e) the pollution source contribution transition view informs transitions of pollution
source contributions. (f) the air pollution transition view displays selected stations’ PM2.5 values with a pollution source contribution.

Fig. 2: The flexible analysis workflow. Multiple views collectively support the analysis from the feature, space, and time aspects. Each view has a
main analysis target (e.g., the pollution source view is mainly for analyses from the feature aspect); however, most views consider all the aspects
when producing visualizations (e.g., the pollution source view uses all the three aspects), enabling seamless analyses from multiple aspects. Each
view supports one or multiple tasks (e.g., the pollution source view supports Tasks a1 and a2). Each supported task can be performed after the
other and is highly liked with many other tasks; consequently, the flexible analysis workflow encompasses various subworkflows (e.g., performing
Tasks a1, a2, and then d1). While here covers the main task dependencies, each task could have more links to others.

source view is mainly used to review air pollution sources (i.e., the
feature aspect), the station group characteristic view can be used to
identify pollution sources that have high influence on each region
(i.e., the space aspect while considering the features). The supported
explorations (or analysis tasks) are listed in the analysis workflow
(Fig. 2). With the fully linked coordination of the views, the system
is able to support the flexible analysis workflow. We provide a
supplementary video to demonstrate the system’s functionalities.

4.1 Flexible Analysis Workflow
As seen in Fig. 2, the flexible analysis workflow encompasses multi-
ple different subworkflows (DG5). For example, if domain experts
want to understand geographical regions’ characteristics, they can
first (i) compare the station similarity and geospatial map views to
know how stations are grouped together (Tasks b2, d1), (ii) identify

influential pollution sources from the station group characteristic
view (Task c1), and then (iii) interpret the pollution sources with the
chemical species by looking at the pollution source view (Task a2).

Another subworkflow is to comprehensively understand pollution
sources from multiple aspects. First, we (i) identify and interpret-
ing pollution sources (Tasks a1, a2) and then (ii) associate the
pollution sources and regions with the tasks stated in the first sub-
workflow example (i.e., Tasks b2, c1, and d1). Afterwards, we can
(iii) assess the changes of the influence of each pollution source over
time with the pollution source contribution transition view (Task
e1) and (iv) see the relationships with PM2.5 (Task f2).

We have explained only two subworkflows, but there are myriads
of subworkflows domain experts can follow. As an analysis target
constantly changes while moving back and forward to each of the
tasks, we design the system interface to be flexible for rearranging



the layout. The system allows domain experts to easily switch the
positions of views and focus on a particular view by changing its
window size. In the ensuing subsections, we use the second subwork-
flow explained above in order to introduce each view and analysis
component with a concrete analysis example. We demonstrate more
analysis examples with different subworkflows in Sect. 5.

4.2 Pollution Source Identification and Interpretation

One of our core contributions is an ML pipeline (Fig. 3) designed to
summarize air pollution data from all the three aspects (DG4). The
ML pipeline consists of two parts: (a) pollution source identification
and interpretation using NMF (DG1, DG4) and (b) region summary
and characterization using the MulTiDR framework [19] (DG3,
DG4). Here we describe components related to the first part: NMF
and visualizations shown in the pollution source view (Fig. 1-a1, a2),
which help interpret the NMF result.
Non-negative matrix factorization (NMF). As its name indi-
cates, NMF decomposes a matrix into two matrices where all el-
ements have non-negative numbers. More formally, given a ma-
trix V ∈ Rr×c

+ (r and c are the numbers of rows/observations and
columns/dimensions) and the number of factors p, NMF produces
two non-negative matrices W ∈ Rr×p

+ and H ∈ Rp×c
+ such that their

product, WH, approximates V by minimizing ‖V−WH‖2
F (note

‖·‖F is the Frobenius norm). Similar to those generated by PCA, W
and H are latent/lower-dimensional representations of observations
and latent features/factors (corresponding to components in PCA),
respectively. The strength of NMF over methods that may produce
negative numbers in H (e.g., PCA) is in its interpretability of H. By
restricting loadings (i.e., elements in each row of H) to non-negative
values, each latent feature can be simply interpreted as a weighted
accumulation of original features that have non-zero loadings.

In our case, we use NMF to identify pollution sources from
the data of chemical species related to air pollution (DG1), which
contains the information on the three aspects. This data can be
represented as a third-order tensor XXX ∈ Rt×n×d where t, n, and d are
the numbers of timestamps, stations, and features, respectively. For
instance, when using the data obtained from the 12 sites in Taiwan
(described in Sect. 2.1), t=40, n=12, and d=49. As NMF can
be only performed on a matrix, similar to the work by Fujiwara et
al. [19], we first apply tensor unfolding to XXX (Fig. 3-a1). Tensor
unfolding reshapes XXX to a matrix XD of tn rows and d columns (i.e.,
XD ∈ Rtn×d

+ ) by arranging all vectors of d length obtained through
the slicing of XXX along both timestamps and stations. We then apply
NMF to XD (Fig. 3-a2). Unlike PCA, all latent features in the NMF
results are highly influenced by the selection of p. We follow a
common approach taken by domain experts to select p: manually
searching a small number p so that each latent feature likely shows
a distinct pollution source [29] (e.g., p=7 in Fig. 1-a1).

H ∈ Rp×d
+ derived from NMF on XD contains numerical map-

pings between original features (i.e., chemical species) and latent
features (i.e., pollution sources). For example, when H’s columns
correspond to Na+, Cl−, NH+

4 , and NO−3 and one row vector of H
is [0.5,0.5,0,0], this row (i.e., pollution source) is likely related to
salt (NaCl). On the other hand, W ∈ Rtn×p

+ shows numerical map-
pings between each pollution source and each pair of n stations and t
timestamps. By looking at these mappings, we can identify pollution
sources that highly contribute to a certain station-timestamp pair.

As we mainly want to know which chemical species highly
associate with each pollution source, we further apply row-wise
l2-normalization to H (Fig. 3-a3), which emphasizes high values
while de-emphasizing low values. Similarly, we apply row-wise
l1-normalization to W in order to preprocess this matrix for the en-
suing process in the ML pipeline and to compare how the pollution
sources contribute to different sensor-timestamp pairs (Fig. 3-a4).
We denote the normalized H and W as Ĥ and Ŵ, respectively. In
the rest of this paper, following existing works on air pollution [24],

we call each element value in Ĥ concentration of a chemical species
in a pollution source; each element value in Ŵ contribution from a
pollution source to a station, respectively. Ŵ is also used for the rest
of the analysis pipeline, as described in Sect. 4.3.1.
Visualizations to help interpret NMF results. The pollution
source view provides two visualizations to aid the interpretation
of the pollution sources identified by NMF. While the first visu-
alization (Fig. 1-a(left)) depicts the information of Ĥ, while the
second visualization (Fig. 1-a(right)) presents the correlations be-
tween the pollution sources and air pollutants (e.g., PM2.5) as well
as meteorological measures (e.g., temperature).

In Fig. 1-a(left), each row and column corresponds to a pollution
source and a chemical species, respectively. We label each pollution
source with a capitalized letter starting from A (e.g., seven pollution
sources A–G). Because the number of chemical species can be large
(e.g., 49 in our data), by default, we show the top-15 chemical
species ranked by the column-wise total of Ĥ. We visually encode
each element of Ĥ with a different size of a square. We select this
encoding so as to emphasize large values rather than small ones
(the same motivation as l2-normalization applied on H). The actual
value also can be checked by hovering over each square.

For Fig. 1-a(right), we employ a similar design to Fig. 1-a(left).
Instead of a chemical species, each column corresponds to an air
pollutant or a meteorological measure. Also, we use different col-
ors to differentiate positive and negative correlations (positive: teal,
negative: pink). By default, a correlation value shows the Pearson’s
correlation coefficient between two sets of values of the correspond-
ing pair of pollution source and air pollutant/meteorological measure
recorded at n stations and t timestamps (i.e., each set has nt values).

From these visualizations, for example, in Fig. 1-a(left), we can
observe that Na+ and Cl– ions have a high concentration only in
Source F. This source could be sea breezes as the two ions are com-
monly found in the composition of salt. We can further confirm this
by reviewing other views (e.g., checking whether or not Source F
highly contributes to a region close to the ocean) while incorporating
domain knowledge. From Fig. 1-a(right), we can see Source D has
the small-size squares for all air pollutants. Thus, when compared
with the other sources, Source D likely had less influence on the
air pollution during the studied period. We have identified the air
pollution sources and interpreted some of them (Tasks a1, a2).
Using other views introduced in the following sections, we further
analyze Source F, which is likely related to sea breeze.

4.3 Region Summarization and Characterization
Our ML pipeline helps to construct groups of stations based on tem-
poral similarities in their pollution sources to make spatial related
analyses easier (DG3, DG4). Even though our data has a relatively
small number of stations (12 stations), it is not trivial to compare
contributions of pollution sources to these stations all at once (e.g.,
with many bar charts). This analysis scalability issue becomes even
worse if we have more stations, as described in Sect. 5.3. Using con-
trastive learning [19], the ML pipeline also aids the characterization
of the groups. We perform the grouping and characterization based
on the identified air pollution sources since research on air pollution
often targets on analyses related to the pollution sources. The ML
pipeline addresses this functionality by integrating the NMF process
into the MulTiDR framework [19].

4.3.1 Region Summarization
When investigating the relationships among all stations, we want
to consider both feature distributions and their temporal changes.
Unlike approaches that apply DR to only either feature or temporal
dimensions, the MulTiDR framework can consider both the feature
and time aspects [19]. The MulTiDR framework takes a third-order
tensor as an input and generates a 2D DR result through the process
using two different DR methods, called the two-step DR. To use
the MulTiDR framework, we first apply tensor folding to Ŵ and



Fig. 3: The ML pipeline consisting of (a) NMF and (2) MulTiDR.

obtain a third-order tensor UUU ∈ Rt×n×p (Fig. 3-b1). In the first DR
step, MulTiDR unfolds UUU along timestamps and produces a matrix
UT ∈ R(pn)×t (Fig. 3-b2); then, applies a linear DR method (specifi-
cally, we use PCA) to compress the number of dimensions from t
to 1, resulting in a vector y of np length (Fig. 3-b3). In the second
DR step, y is first folded to generate a matrix Y ∈Rn×p, where each
element contains an air pollution source contribution that represents
the contributions across all timestamps (Fig. 3-b4); then, we apply a
DR method (specifically, we use UMAP) to generate a 2D plot by
reducing the number of dimensions from p to 2, resulting in a matrix
Z ∈ Rn×2 (Fig. 3-b5). Z shows each station’s similarity which con-
siders both feature and temporal aspects. We select PCA and UMAP
because of their strength in data compression and neighborhood
preservation, as discussed in the work of MulTiDR [19].

To tightly link the feature and space aspects, we perform the first
DR on the temporal dimensions of UUU and then the second DR on
the feature dimensions. In this way, the stations’ similarities mainly
reflect the distribution of pollution sources’ contributions while still
considering temporal distribution differences. Here, we have briefly
introduced the two-step DR in the MulTiDR framework. For the
theoretical details, refer to the work by Fujiwara et al. [19].

After obtaining the 2D DR result, Z, which shows the similarities
of stations, we construct groups of stations by applying clustering to
Z (Fig. 3-b6) and visualize the result in the station similarity view.
For example, as shown in Fig. 1-b, 12 stations are clustered in three
groups (green, blue, and purple). We use k-means clustering by
default due to its simplicity of parameter selection (i.e., we need to
only select the number of cluster k) and effectiveness for handling a
smaller number of stations. However, we can easily change it to the
other method (e.g., density-based clustering) based on the data scale
and the distribution of point positions in the DR result.

4.3.2 Region Characterization
In addition to the two-step DR, the MulTiDR framework provides
the algorithmic support using contrastive learning to interpret the
DR result [18, 19]. Through this interpretation, we can character-
ize station groups based on their values of features, i.e., pollution
sources (DG4). The MulTiDR framework employs a contrastive
learning method called ccPCA [18], which reveals features that
highly associate to each cluster’s uniqueness with respect to others.

The constrastive learning process is shown at the bottom right
of Fig. 3. Suppose a cluster contains ntg instances, we extract
Ytg ∈ Rntg×p by selecting the corresponding rows from Y (Fig. 3-
b7). Then, we also extract the rest of Y (i.e., other clusters),
Ybg ∈ Rnbg×p, where nbg = n− ntg. Then, Ytg and Ybg are used
as target and background datasets in ccPCA, respectively. Then,
ccPCA produces a weight vector a ∈ Rp, which shows loadings of
each air pollution source on a cluster’s unique characteristics with re-
spect to others (Fig. 3-b8). Similar to loadings in PCA’s components,

when an absolute loading is large, the corresponding air pollution
has high influence on the unique characteristics. We repeat this
process to obtain a for each cluster. Refer to the work by Fujiwara
et al. [19] for the details on the contrastive learning process.

As show in Fig. 1-c, we visualize a weight vector a obtained for
each cluster in the station group characteristic view, where each bar
height, color, and horizontal position represent the loading, clus-
ter ID, and air pollution source, respectively. When a bar has a
positive loading, a cluster tends to have larger contributions of the
corresponding pollution source across different stations and times-
tamps, and vice versa. For example, in the pollution source contri-
bution transition view, which we explain in Sect. 4.4, we can see
Cluster 1 tends to have lower values for Source A than other
clusters across timestamps, while Cluster 1 tends to have higher
values for Source B. When we have many clusters (e.g., 9 clusters),
the overlaps of bar charts could cause a visual clutter. To alleviate
this issue, the system supports filtering based on a cluster ID, which
can be applied by hovering over a cluster ID in the cluster legend.

4.3.3 Relating to Geographic Information
We provide the geospatial map view (Fig. 1-d) to inform each sta-
tion’s location along with the clusters obtained with the MulTiDR
framework. This view can be used to relate the clusters to the ge-
ographic locations and understand or validate the clustering result
based on the knowledge of the corresponding regions. Circular
points in Fig. 1-d represent stations’ geolocations. To overlay the
cluster information on stations, we employ Bubble Sets [13]. The
isocontours (or bubbles) are colored by cluster IDs (e.g., the green
bubble corresponds to Cluster 1). Also, the view shows PM2.5
values measured at a large number of sensors (specifically, 537 Air-
Box sensors in our data) to provide general air pollution information
(represented by PM2.5) with a high spatial granularity. We use a rect-
angle grid, in which we show the average of PM2.5 values recorded
at stations in each grid at a selected timestamp in the air pollution
transition view and colorcode the value with a yellow-red colormap.
The same color encoding is also applied to the circular points.

From the visualizations in Fig. 1-b, c, d, we further understand
Source F with the spatial aspect (related to Tasks b2, c1, and
d1). First, from the station group characteristic view, we notice
that Source F has a high contribution to characterizing Cluster
1 (colored green). Additionally, by looking at the geospatial map
view, we can see that Cluster 1 is located relatively close to the
ocean. As a remaining analysis question, we further want to know
when Source F dominates the air pollution in the region.

4.4 Temporal Pattern Extraction
To relate the air pollution source and region information with the
temporal information, we develop two different visualizations: the
pollution source contribution transition (Fig. 1-e) and air pollution
transition (Fig. 1-f) views. While the former is to reveal general
temporal patterns for each pollution source and region, the latter is
to review temporal changes in the main air pollutant, PM2.5, as well
as to associate each air pollution source with PM2.5.
Analysis of temporal patterns of pollution sources. The pollution
source contribution transition view (Fig. 1-e) provides a small multi-
ple of line charts. Each row of the view corresponds to one pollution
source. x- and y-axes represent a timestamp and a contribution of
each pollution source, respectively. To provide the analysis and vi-
sualization scalabilities, instead of showing values of each pollution
source for all stations, we visualize an aggregated value for each
group of stations. To aggregate values, from Ŵ, we compute the
average contribution of stations in each group at each timestamp.

From this view, around March 18th, Source F has a peak and
Cluster 1 (green) has an especially high contribution of Source
F. Thus, we can expect that some pollution events relating to Source
F occurred around this date and heavily affected a region correspond-
ing to Cluster 1 (Tasks e1 and e2).



Relating the temporal patterns of pollution sources and PM2.5.
The air pollution transition view (Fig. 1-f) uses gray lines to show
selected stations’ PM2.5 values over time. For example, in Fig. 1-
f, the five stations belonging to Cluster 1 are selected. Note
that there are unconnected lines because the sensors sometimes
failed to measure PM2.5 due to hardware errors. As there are many
timestamps for PM2.5 (recorded every hour), this view provides a
zooming-in/out interaction along the time axis. In Fig. 1-f, we zoom
into the days around March 18th (specifically, from 15th to 25th). We
also show the information of the selected time range at the bottom
side of the line chart, where the range from March 15th to 25th is
highlighted with a gray rectangle. Also, the user can select a specific
timestamp using a mouse, with the selected timestamp shown at
the top left (e.g., March 17th, 10 PM in Fig. 1-f). PM2.5 values of
all the stations at the selected timestamp are also visualized at the
geospatial map view. The gray lines in the air pollution transition
view can be used to find anomalies or similarities in PM2.5 values
at some stations and/or some timestamps (Task f1). For example,
we can see that all the stations in Cluster 1 have similar PM2.5
values in the selected time range.

Additionally, temporal changes of a selected pollution source’s
contribution to each station are shown with a black line (e.g., Source
F is selected in Fig. 1-f). While we do not know the direct influence
of each pollution source on PM2.5 values, this visualization is help-
ful to see a potential association between each of the sources and
PM2.5 as those sources consisting of the chemical species often pro-
duce PM2.5. To further emphasize time periods where the selected
pollution source has the highest contribution among all the sources
for each station, we fill the underneath of a black line within such
time periods with a semitransparent black. Consequently, we see
darker-colored areas when more stations share such time periods.

By interactively filtering the stations, within Cluster 1, we ob-
serve that Source F has the highest contribution on three stations,
XC, EL, and DC, from March 17th to 19th. These three stations are lo-
cated along the coast; thus, this result also supports our interpretation
that Source F is sea breezes (Tasks f2, f3).
Summary of the analysis example. We performed one analysis
example to explain our system’s functionalities and analysis work-
flow. First, based on the NMF result, we identified multiple pollu-
tion sources from the data and considered Source F as sea breeze
(Tasks a1, a2). Then, incorporating the aspect of space, we saw
Source F has a high influence on the region of Cluster 1, which
contains the stations near the coast (b2, c1, d1). Lastly, by adding
the temporal aspect, we identified when and where in Cluster 1
Source F highly contributes to the air pollution—on the three sta-
tions along the coast around March 18th (Tasks e1, e2, f2, and
f3). This analysis example demonstrates the importance of analyses
from the three aspects and the effectiveness of our flexible workflow,
ML pipeline, and the system interface to perform such analyses.
Implementation. Our system is a web application. For the back-
end, we use Python to integrate all the existing algorithms of NMF
and MulTiDR. Specifically, we use Scikit-Learn [33] implemen-
tation for NMF, where we adopt the nonnegative double singular
value decomposition for the consideration of data sparsity. For Mul-
TiDR, we use the implementation the original authors provided [19].
To implement the front-end user interface, we use a combination
of HTML5, JavaScript, React, and D3 [5]. We use Django and
GraphQL to communicate between the front-end and back-end.

5 USE CASES

Sect. 4 has already demonstrated a concrete case using one subwork-
flow. Here, using other subworkflows, we present three additional
analyses on the air pollution data obtained in Taiwan (Cases 1, 2)
and another open dataset obtained in the United States (Cases 3, 4).

While these cases are performed by our team’s visualization
researchers who have gained basic domain knowledge through litera-

Fig. 4: Case 1. Explaining the cause of the air pollution event: (a) the
anomaly inspection of PM2.5, (b) the contribution of Source A to the
anomaly in Station DC, (c) the location of the corresponding anomaly,
(d) the contribution of Source E to the anomaly in Station DC, and
(e) the source interpretation with the chemical species.

ture study on the air pollution analysis research, the findings in each
analysis (including the one in Sect. 4) are reviewed and evaluated
by the domain researchers in our team. For example, they expressed
that our findings on Source F in Sect. 4 are very interesting. From
the pollution source view, they also found that Source F shows a
high concentration of NO−3 (i.e., nitrate) as well as Na+ and Cl– .
This composition was likely caused by an atmospheric reaction be-
tween NaCl and HNO3, indicating that Source F represents aged
sea salt with nitrate contamination [11]. They also showed positive
impressions on our visual analytics system’s functionalities and are
interested in applying our system to their ongoing research projects.

5.1 Case 1: Explaining the Cause of Air Pollution Events
This subworkflow starts by anomaly inspection, a common task
for domain experts in analyzing air pollution data, followed by
understanding the cause of the anomaly through identification of the
contributing pollution source to the anomaly.

As annotated in Fig. 4-a, in the air pollution transition view, we
observe a PM2.5 anomaly with a value of 2,152 µg/m3 at 1:00 p.m.
on March 12th, 2018 (Task f1). To find a station that recorded
this anomaly, we hover over the air pollution transition view with
a vertical auxiliary line indicating the selected timestamp. Then,
as shown in Fig. 4-c, we inspect the geospatial map view, which
visualizes the observed PM2.5 values at the selected timestamp, and
we visually identify that the anomaly is recorded by Station DC
(Task d2). We focus on Station DC in the air pollution transition
view and manually select each of the pollution sources to review their
contributions to Station DC (Task f2). When selecting Source
A (Fig. 4-b), we observe that Source A has the highest contribution
during the corresponding time period, whereas Source E (Fig. 4-d)
has the second highest contribution (Task f3). This indicates that
Sources A and E are likely related to this anomaly event.

As shown in Fig. 4-e, using the pollution source view, we further
examine chemical species that have high concentrations in Sources
A and E (Task a2). As annotated in Fig. 4-e, we can see that
organic carbon (abbreviated as OC) has the highest concentration
in Source A, while Source E has high concentrations of both OC
and elemental carbon (EC). Because EC comes from the incomplete
combustion of carbon-contained materials and OC can be produced
through the organic compound gas-to-particle process, Sources A
and E are likely related to biomass burning. The domain researchers



Fig. 5: Case 2. Uncovering hidden air pollution events: (a) the inspec-
tion of influential sources on each station group’s characteristics, (b)
the examination of time periods with high pollution source contribu-
tions, (c) the observation of PM2.5 values during the period for Cluster
1, (d) the contribution of Source D to Station DC, (e) the interpreta-
tion of Source D with the chemical species, and (f) the contribution of
Source D to Station NT in the same period.

confirmed that this case was due to biomass burning. They explained
that the existence of Levoglucosan in Sources A and E (even with
a small concentration) further supports this finding as Levoglucosan
is a species that is almost totally derived from biomass burning [43].

Through this subworkflow (Tasks f1, d2, f2, f3, and a2), we
may infer that biomass burning caused this air pollution event at
Station DC. According to the Environmental Protection Agency
(EPA) and the local fire department [3], the related air pollution
was caused by the household straw combustion at this time period.
Further, Chen et al. [9] discussed different types of biomass burning
and indicated that OC and EC often associate with straw combustion
emissions. This information validates not only the factorization
result by NMF but also the inference derived from this subworkflow.

5.2 Case 2: Uncovering Hidden Air Pollution Events
This subworkflow starts by examining the characteristics of one
region and by finding a pollution source of interest. Then, the
subworklow moves on to a detailed exploration of a time period
where the source highly contributes to the pollution in order to
uncover any hidden air pollution events in the transition.

Here we focus on Cluster 1, which includes Station DC we
have examined in Case 1. From the station group characteristic view
shown in Fig. 5-a, we notice that many sources have high absolute
loadings on the characteristics of Cluster 1 (Task c1). We check
each pollution source’s contribution transitions in Fig. 5-c. From
this view, we can see that each source has different contribution
peaks and Cluster 1 has different levels of peaks from the other
clusters for all the sources except for Source C (Task e3), which
is expected from Fig. 5-a showing Source C’s minor loading on
Cluster 1. One interesting observation is that, as annotated by
the red rectangle, Source D starts to contribute to the air pollution
after March 23rd and it keeps having a much higher contribution
to Cluster 1 when compared it to the other clusters (Tasks e1,
e2). This sudden increase in the contribution implies the possible
existence of pollution events around that period, which leads us to

use the air pollution transition view for a more detailed examination.
As shown in Fig. 5-d, we visualize PM2.5 values of the stations in

Cluster 1. We see only the slight increase of PM2.5 at each station
after around March 23rd except for one acute peak at 9:00 a.m. on
March 30th, as annotated with the red circle (Task f1). However,
since our previous finding from the pollution source contribution
transition view suggests that Source D increases its contribution
around this period, we further inspect the contribution of the Source
D to the stations in Cluster 1 with the air pollution transition view.
As identified by the filled areas in Fig. 5-e, after interactively filtering
the stations, we can see that Source D has the highest contribution
to Station DC from March 25th to March 31st (Task f3).

According to the local fire department’s report on March 30th,
2018 [30], there were 180 fire incidents around Station DC from
March 24th to 30th. They indicated that these were all due to the
forthcoming Qingming festival. Since the burning of some papers,
called joss papers, as a ritual offering is an important part of the
festival, fire incidents frequently happen, especially in rural areas.
The PM2.5 anomaly observed at Station DC at 9:00 a.m. on March
30th also has been reported and investigated by the EPA [30], where
the cause is confirmed to be the joss paper burning.

Khezri et al. [25] studied the impact of the joss paper burning on
air pollution. Their results show that the increase in the concentra-
tions of Zn, Ca, K, Mg, Fe, and Al (listed in order of the increase)
can be linked to the increase of PM2.5 during the joss paper burning.
They further reported that Ca, Al, Na, Mg, and K (in order of the
concentration) have a high concentration in the unburnt joss paper.
As shown in the pollution source view (Fig. 5-b), we observe that
Source D is mostly characterized by Ca, K, Na, Al, Fe, Mg, and
Zn and is thus likely related to the combustion of joss paper (Task
a2). Without the information obtained from the station group charac-
teristic and pollution source contribution transition views, we would
not have be able to reach this finding. This shows the usefulness of
our ML pipeline to find this type of hidden pollution events.

We can further inspect the contribution of Source D to the other
clusters in order to investigate any possible hidden pollution events
(Tasks f2, f3). For example, as shown in Fig. 5-f, we observe
that Source D has the highest impact on Station NT belonging
to Cluster 2 on March 27th, indicating another possible pollution
event due to the joss paper burning for the Qingming festival.

In this analysis involving many tasks in our flexible workflow,
we can infer that Source D characterizes Cluster 1, as it highly
contributes to Station DC from March 25th to 31st, which is not
visible if observing only PM2.5 values. More specifially, Source D
is likely related to the joss paper burning. With this potential relation
in mind, we may explore other regions to examine the possible
existence of hidden air pollution events, such as one potential event
at Station NT on March 27th.

5.3 Case 3: Validating Data Quality
This subworkflow starts with the validation of the clustering result
using the station similarity view and the geospatial map view. While
the clustering using the MulTiDR framework incorporates all of
the three aspects, the geographical locations provide us a good
intuition to assess clustering quality as adjacent stations usually have
similar influence from air pollutants. Thus, by comparing these two
views, we can perform quick validation of data quality from multiple
aspects (utilizing the MulTiDR framework) in an intuitive manner
(referring to the geographical locations). When observing suspicious
clustering results, we can further identify the cause of the issue in a
top-down manner, such as finding influential sources on clusters and
then reviewing the space or time aspect of such sources.

In this use case, we analyze the air pollution open dataset provided
by the U.S. EPA [46] to demonstrate our system’s applicability to
various datasets. We use 20 stations that collect both PM2.5 and
57 VOCs (e.g., benzene, ethane, and isoprene). All of these values
are recorded on an hourly basis, from August 1st to September



Fig. 6: Case 3. Validating data quality: (a) the grouping of similar sta-
tions, (b) the comparison of the clustering result with the geographic
information, (c) the inspection of influential sources on Cluster 1’s
characteristics, (d) the examination of source contribution transition,
(e) the observation of a clear change in the contributions to Cluster 1.

Fig. 7: Case 4. Combining multiple subworkflows: (a) the investigation
of the cyclic contribution of Source B to Cluster 3 after the data
validation in Fig. 6, (b) the interpretation of Source B with the chemical
species, (c) the observation of PM2.5 values of the stations in Cluster
3, and (d) the inspection of Sources D and E as influential sources on
Cluster 2’s characteristics.

30th, 2020. This data forms a third-order tensor XXX ∈ Rt×n×d , where
t=1,464, n=20, and d=57. For NMF, we select p = 9.

After loading the dataset into the system, we first review the
relationships among stations in the station similarity view (Fig. 6-
a). This view shows that Cluster 1 is well separated from the
others (Tasks b1 and b2). Thus, we can expect that Cluster 1
has different behaviors from the others (in terms of the feature and
time aspects as described in Sect. 4.3). However, as shown in Fig. 6-
b, many stations in Cluster 1 are located with similar regions to
Cluster 2. This is counterintuitive as stations at different locations
are clustered together (Task d1).

To investigate the cause of this cluster formation, we inspect the
station group characteristic view (Fig. 6-c), and we notice that most
sources have negative loadings on the characteristics of Cluster 1
(Task c1). We then check each pollution source’s contribution tran-
sition in Fig. 6-d and highlight Cluster 1 (Fig. 6-e). We observe
that, starting from September, most sources keep having a much
lower contribution to Cluster 1 when compared with the other
clusters in the same period and even Cluster 1 before September
(Tasks e1, e2, and e3). As some sources (e.g., Source I) even
show no contribution to Cluster 1 in September, we check the raw
data outside the system and then find out that, during this period,
the stations in Cluster 1 have many missing values for the VOCs
related to those sources. We thus infer that the missing values in
September lead to this cluster formation. This result notifies us
that, during analyses on this data, we should keep being aware of
potential analysis issues due to these missing values.

5.4 Case 4: Combining Multiple Subworkflows
In the previous cases, we have separately demonstrated different
subworkflows. However, as the analysis workflow supported by the
system is highly flexible, we can connect multiple subworkflows
(resulting in a more all-inclusive subworkflow) to thoroughly analyze
the data. Here, following the data validation performed in Case 3,
we analyze the U.S. air quality data mainly from the time aspect.

As we have noticed the data quality issue in Cluster 1, we focus
on analyzing Clusters 2 and 3. Going back to Fig. 6-d, we see that
Source B has a continuous cyclic pattern for both Clusters 2 and
3 (Task e1). We further assess this pattern with the air pollution
transition view. As shown in Fig. 7-a, we observe that Source B
usually has a high contribution during the daytime (Tasks f2). We
then examine the pollution source view to interpret which chemical
species are related to Source B (Fig. 7-b). We see only isoprene has
a high concentration in B (Task a2). Following the study by Brown
et al. [6] and the guidelines by the U.S. EPA [44], we identify that
Source B is likely biogenic emissions, a natural pollution source
often contributed by photochemical reactions of vegetation.

We also review PM2.5 values of the stations in Clusters 2 and 3
with the air pollution transition view. As annotated in Fig. 7-c, when
selecting Cluster 3, we observe that there are PM2.5 anomalies at
Stations Livermore and San Ramon at two different time peri-
ods. We can thus use the same subworkflow described in Case 1 to
understand the causes. Similarly, from Fig. 7-d, we can explore how
Sources D and E influence Cluster 2 using the same subwork-
flow described in Case 2. This case shows how we can transition
from one subworkflow to another based on intermediate analysis
findings, demonstrating the flexibility of our analysis workflow.

6 EXPERT REVIEW

To evaluate the usefulness of our prototype system, we conducted
an informal interview with two experts in air pollution analysis.
The first expert (E1) is an assistant professor in a public health
department who has knowledge of the dataset used in Sect. 5.1 and
Sect. 5.2. The second expert (E2) is a researcher with over 10 years
of experience in air quality simulation and modeling. To facilitate
discussion from various perspectives, the interview as conducted
jointly by two of our team members: one is an air quality scientist
and the other is a visualization expert. The informal interview used
a video conference setup. We first explained our work’s background
(including the design goals) and our system; then, we demonstrated
the two use cases described in Sect. 5.1 and Sect. 5.2. While our
team’s visualization researcher operated the system remotely, all the
participants were able to specify what user actions they would like
to perform during the interview.

All the participants confirmed that the design goals fulfill the
analysis requirements and the system achieved all the set goals.
Generally, they had positive comments on how the system enables
efficient and effective analyses. E1 commented, “This system allows
us to simultaneously examine how pollution source contribution
changes over time and across stations, which was not available
before.” They also stated that the cluster information in the geospa-
tial map view is useful, as E2 noted, “All the air pollution analysis
eventually requires our geographical understanding for validation.”

The two experts also pointed out potential improvements on the
system. E1 said, “The use cases seem reasonable. I can easily tell
Sources A and E are related to biomass burning, but it is hard to
identify their differences. There might be tracers that exclusively
exist in one of them”, and suggested that statistical support could
be provided to inform the reliability of the NMF results. E2 asked,
“How would the stations’ similarities change if we also consider the
wind information?” and was further interested in the wind influence
on the pollutant propagation.

Overall, all the participants agreed that the system provides essen-
tial information for performing analysis and each visual component



is easy to use. They noted that their familiarity with the studied
environment might lead to this impression; however, they also com-
mented that, in any case, such familiarity is required to perform air
pollution analysis. We plan to incorporate their suggestions in our
future work, for example, by making the system more flexible to
perform analyses related to the wind field.

7 DISCUSSION

Through the analysis examples and the expert review, we have shown
the effectiveness of our system and flexible workflow for data-driven
air pollution analysis. Here, we provide additional discussions on
our visual interface, ML pipeline, and flexible analysis workflow.
Visual scalability. As discussed in Sect. 4, our system provides
better analysis scalability for all of the three aspects by incorporating
multiple ML methods. For example, the number of features is
reduced by NMF and the MulTiDR framework clusters stations
while considering both time and feature aspects. With the aid of ML,
we can effectively and efficiently analyze air pollution data with the
scale of those currently studied by domain researchers (e.g., the data
analyzed in Sect. 5). However, we can expect that, in the future, we
would be able to collect larger scale data in terms of data variety
(with the advancement of the sensing technology) and volume (with
the reduction of the device cost). As have been seen in the ML field,
ML methods would still deal with such higher variety and volume
data, but visual scalability could limit the analysis capability.

For example, for the feature aspect, our system currently supposes
the use of a small number of pollution sources (e.g., less than 10);
however, in the future, the number of available chemical species
would be increased and, as a result, a larger number of pollution
sources would need to be extracted (e.g., 30). In such a case, the pol-
lution source view should use a more scalable visualization, such as
a heatmap that aggregates rows based on their similarities [18]. For
the space aspect, as the number of clusters increases, the geospatial
map view suffers from visual clutters due to the Bubble Sets convey-
ing the cluster information. To solve this, alternative visualization
designs should be developed in the future. For the time aspect, when
the temporal granularity is increased (e.g., recording every tenth
minute), directly visualizing time series would not be helpful to find
trends because of noises and fluctuations in the recorded data. For
this, we can consider to further incorporate computational analy-
sis methods developed for temporal data, such as smoothing and
functional data analysis methods [14].
Consideration of information loss and spatiotemporal continu-
ity. Our ML pipeline sequentially uses three different DR methods
(NMF, PCA, and UMAP) to extract the essential information. The
information loss could be inherited and amplified through each DR.
However, as demonstrated in case studies, our methodology is still
able to provide insights since each of the three DR methods reduces
unimportant information with a different focus. NMF considers the
co-occurrences of chemical species to identify a pollution source,
PCA tries to preserve the variance of the temporal distribution for
each pollution source, and UMAP retains the similarities of the
source behaviors for stations. Also, the amount of information loss
can be captured by measures provided by these DR methods, such
as “explained variance ratio” in NMF and PCA. When the loss is
too high (e.g., in a case with many timestamps), we can consider
applying feature selection before DR.

One limitation of the current ML pipeline is the lack of considera-
tion of the continuity among different time points and locations. For
example, air pollution usually propagates from one place to another.
Our system employs NMF because it is more familiar with domain
experts than advanced decomposition methods, which consider the
continuity of space, time, or both. However, to provide further
analysis capabilities, we plan to provide an option to use advanced
methods, such as dynamic mode decomposition [40].
Guiding analyses. Our methodology implements the flexible analy-

sis workflow by coupling the ML pipeline and linked visualizations.
As demonstrated, with this methodology, we can complete vari-
ous analysis tasks to derive insights from the data. Our interface
even supports the flexible coordination of views, allowing domain
experts to focus on a specific set of visualizations based on their
ever-changing analysis needs. Unlike visual analytics systems fol-
lowing Shneiderman’s mantra—“overview first, zoom and filter, then
details-on-demand”[42], our workflow does not have one-directional
analysis steps. Instead, multiple views provide overviews or details
but with a different focus (e.g., the pollution source and pollution
source contribution transition views provide the overviews of fea-
tures and time points, respectively). The analysis is guided by
visually distinct elements (e.g., a high bar in the station group char-
acteristic view suggests an important pollution source to understand
clusters), which is close to the concept of “entry point” in the HCI
field [26].

Before being familiar with analysis using our system, domain
experts might not be able to decide which view to begin or move on
to, in order to successfully perform their analysis tasks. We plan to
extract common analysis tasks and the corresponding subworkflows
through long-term use of our system by domain experts; then, analo-
gous to map applications, based on the selected analysis task (i.e.,
destination), visually guide analysis steps (i.e., path) to complete
the task. Also, to uncover patterns in multivariate, spatiotemporal
data, broad exploration of the data might be needed. By extending
existing approaches [47], we plan to inform which part of the data
is already or still not investigated. We can further investigate how
these guides can alleviate analysts’ cognitive loads.

8 CONCLUSION
We have introduced a visual analytic system that supports a variety
of analysis tasks for air pollution data analysis. By incorporating
multiple machine learning methods, the system enables the efficient
exploration of the data and provides a flexible analysis workflow
that involves domain experts in the loop. As demonstrated in the use
cases, our system’s analysis capability aids in performing various
domain-specific analyses. Our work, thus, contributes to facilitating
data-driven air pollution analysis.
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