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Fig. 1. Semantic word cloud initially generated by our system from the “data and information visualization” Wikipedia page on the left.
Realized adjacencies are shown in green and the main missing adjacencies in yellow. On the right the same word cloud after local user
improvements. More adjacencies are realized, remaining large missing edges are shorter, and we can see three clusters emerge.

Abstract—Word clouds are a popular text visualization technique that summarize an input text by displaying its most important words
in a compact image. The traditional layout methods do not take proximity effects between words into account; this has been improved
in semantic word clouds, where relative word placement is controlled by edges in a word similarity graph. We introduce MySemCloud,
a new human-in-the-loop tool to visualize and edit semantic word clouds. MySemCloud lets users perform computer-assisted local
moves of words, which improve or at least retain the semantic quality. To achieve this, we construct a word similarity graph on which a
system of forces is applied to generate a compact initial layout with good semantic quality. The force system also allows us to maintain
these attributes after each user interaction, as well as preserve the user’s mental map. The tool provides algorithmic support for the
editing operations to help the user enhance the semantic quality of the visualization, while adjusting it to their personal preference. We
show that MySemCloud provides high user satisfaction as well as permits users to create layouts of higher quality than state-of-the-art
semantic word cloud generation tools.

Index Terms—Semantic word cloud, text visualization, human-in-the-loop

1 INTRODUCTION

Word clouds are a common text visualization technique, where an input
document is summarized into a compact visualization of its most im-
portant words, and the font size of each word is scaled proportionally to
its frequency in the input text. Word clouds have gained popularity [25]
through the automated tool Wordle [12] introduced in 2009. While
these colorful, compact layouts are aesthetically pleasing and playful,
word clouds have been found to be a poor analytical information visu-
alizations technique. When presented with a traditional layout that is
purely optimized for compactness, users fail to properly identify the
themes of the source text [14]. Instead, a proposed improvement is to
use the positioning of the words in space to encode higher-level infor-
mation about the text, e.g., by clustering together words that correspond
to a shared overarching theme.

Cui et al. [11] proposed such a semantically enriched visualization.
In their paper they presented a system, where for each word a vector
is computed that contains the similarity values the word has with ev-
ery other word. These vectors are used to build a high-dimensional
similarity matrix, which allows the words to be laid out in the plane
using multi-dimensional scaling (MDS). Their technique motivated
further work into efficient systems to create semantic word cloud visu-
alizations. While there are several algorithms to generate such word
clouds with varied layouts [3], there is currently no interactive tool that
allows the user to fine-tune these semantic word clouds in a human-in-
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the-loop way. The online tool implemented by Barth et al. [3] lets a
user generate layouts using many different algorithms and allows for
some limited dragging operations on the words, as well as deletion
but neither operation is supported by algorithms that update the layout.
Since the number of relevant word pairs in a typical data set exceeds
by far the number of word pairs that can be adjacently placed by any
planar word neighborhood structure, fully automated solutions must
favor some of the many semantic links to be represented at the cost of
missing others, purely based on numeric similarity scores. But only a
human user, having deeper semantic knowledge about the underlying
text, knows which of the chosen pairs are most relevant, which ones are
missed, and which ones are less important. Hence, human-in-the-loop
fine tuning can lead to more user satisfaction and semantic accuracy
of the word clouds as meaningful text summary visualizations. While
a tool like EdWordle [26] allows the user to easily edit a word cloud,
having full manual control can be overwhelming for humans, and one
should rather aim to combine the computational power of automated
algorithmic solutions with the expert knowledge of the user. While
the authors of EdWordle argue that a semantic word cloud could be
used as input to their system to be edited, there is currently no simple
way of importing a semantic word cloud into their tool. Additionally,
any updates on the layout are focused on preserving existing neigh-
borhoods and the compactness of the layout. Since the algorithm has
no knowledge of the semantic relationships of the individual words in
the word cloud, a single displaced word could completely perturb the
existing neighborhoods, leading to a flawed layout, where the user has
no guarantee or feedback about its semantic quality.

To address this gap, we introduce MySemCloud, an interactive
human-in-the-loop semantic word cloud editor. Our tool generates a
semantic layout of high quality using an algorithm inspired by Cui et
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al. [11], that performs well on the relevant evaluation criteria for word
clouds [3]. The main contributions of MySemCloud concern the subse-
quent editing steps and are two-fold. Firstly, we propose metric guides
which allow the user to visualize the underlying semantic relationships
within the cloud, e.g., via the links between related words as shown
in Figure 1, as well as guide the user towards potential improvements
of the layout. Secondly, we propose semantic-enhanced interactions.
While most interactive systems focus on changing the appearance of
the words, our system is focused on preserving the semantic quality of
the word cloud. Accordingly, MySemCloud includes a smart dragging
tool that considers the neighbors of dragged words and updates their
position while preserving the visual stability of the layout. Additionally,
extending EdWordle’s compactifying layout updates, our system is able
to consider the semantic relationships when updating the layout, which
allows us to focus on maintaining the most meaningful adjacencies.

In this paper, we first present an overview of the word cloud literature
and current state-of-the-art layout algorithms (Section 2). Then, in
Section 3 we describe our layout algorithms, as well as the quality
metrics we are designing our system for. In Section 4 we introduce the
semantic-aware display as well a our semantic-enhanced interactions.
Lastly, in Section 5, we present an user study to evaluate our system.
MySemCloud can be accessed on ac.tuwien.ac.at/mysemcloud,
where the code has additionally been made available.

2 RELATED WORK

Word clouds were introduced in the early 2000’s [24], but were known
then as tag clouds. In tag clouds, the words that occur the most in
an input text are scaled proportionally to the frequency at which they
appear in the data set and displayed in lines, laid out alphabetically or
by descending frequency. To improve on these layouts, more compact
display methods were proposed [22] that focused on packing the words
more tightly. These compact tag clouds were quite similar to visual-
izations created by designers by hands, as for example pile of words
graphics that appeared in 2008 in the Boston Globe [21]. Word clouds
were further popularized by the Wordles website [25], that allowed
users to generate their own tag clouds, where the words are colored,
displayed in a compact setting and sometimes rotated vertically. Ap-
pealing word clouds are often more than just compact layouts. For
example, in Shapewordles [27] the user chooses a (potentially com-
plex) shape to draw the word cloud in. Extensions to the traditional
word cloud design also include maps, where words are displayed on
geographically significant areas [5, 8, 18].

2.1 Semantic Word Clouds
The concept of using word placement in the plane is a logical way
to encode more information within a word cloud. With semantic
word clouds, the spatial distance between two words carries seman-
tic meaning, namely placing closely related words nearby each other.
While there exist different methods to compute a word similarity ma-
trix [11, 20, 28], our focus lies in the layout algorithms. Cui et al. [11]
proposed one of the first methods to generate such a semantic lay-
out. Using multi-dimensional scaling (MDS), they computed 2D-
coordinates for the words that approximate the desired relative dis-
tances to the other words. This technique usually results in a sparse
layout. To avoid white space, they construct a Delaunay triangulation
of the layout, on which they use a system of attractive forces preserving
the neighborhoods. A similar result can also be achieved using a system
of forces not on a triangulation of the layout but on the similarity graph
itself [29]. Wu et al. [28] proposed an alternative to the force-based
compaction by using seam carving. They identify vertical or horizontal
sections of the drawing that are empty and remove them from the draw-
ing. The semantic word cloud layout problem has also inspired research
with a more theoretical focus. When representing the words by their
rectangular bounding boxes, it is possible to transform the semantic
word cloud problem to one reminiscent of rectangle contact graphs.
In contact graphs, the edges of an underlying graph are meant to be
realized by a proper edge contact between two boxes representing their
respective vertices. In the Contact Representation of Word Networks
(CROWN) problem, the number of edges of the input similarity graph

that are realized in the contact graph has to be maximized. Barth et
al. [2] proposed approximation algorithms to solve the problem on
restricted graph classes which were later improved by Bekos et al. [4].
Barth et al. [3] compared multiple semantic word cloud algorithms
using the most common semantic word cloud evaluation metrics. To
our knowledge, there is currently no semantic word cloud layout system
that offers an interactive component. This is a natural extension of the
model when considering the amount of interest that interactive word
clouds have generated [16, 17, 26]. The dynamic semantic word clouds
introduced by Cui et al. [11] have been studied further. They explored
word clouds generated from a collection of documents at different time-
points. Not only was semantic relatedness encoded with proximity, but
placement was also used to accommodate later changes of the data,
e.g., words needing space to grow between two timestamps. Binucci et
al. [6] designed a layout algorithm that creates such word clouds over
time without a-priori knowledge of the complete data collection.

2.2 Interactive Word Clouds
Visualization construction and authoring tools are of great interest to the
information visualization community. Thus, creating interactive tools
was a natural next step to the growing popularity of static word cloud
layout systems. One of the first tools created was ManiWordle [17]
which allowed the user to change the font, the color and orientation of
the words as well as their position to potentially modify the whole lay-
out. The interactive system allows users to fine-tune an automatically
generated layout to match their personal aesthetic criteria. To maintain
a compact layout, ManiWordle recomputes a layout using the Wordle
algorithm but only considering the unedited words. In WordlePlus, Jo et
al. [16] extended these interactive environments to multitouch systems.
To update the word cloud after the changes, boundary words are moved
in the gaps left by a potential edit. While the interactive component is
positively received, updating the word cloud itself remains a challenge
as both solutions tend to disturb the mental map of the user signifi-
cantly. Wang et al. [26] proposed EdWordle, a solution using rigid body
dynamics to preserve the neighborhoods of the unedited word as well
as to preserve stability of the layout. While the authors of EdWordle
argue that their tool allows users to edit semantic word clouds without
destroying the layout, there is currently no straightforward method of
generating an initial semantic layout with EdWordle, and additionally
the user has no ability to conserve the semantic quality during the edits.
If a user moves a word, its direct neighborhood is lost, and the user has
no knowledge of whether or not significant semantic information was
lost. Similarly, while the remaining neighborhood is preserved, there is
no guarantee of its actual semantic quality. The visualizations that were
created by designers using EdWordle are reminiscent of the semantic
word cloud thematic clustering, which highlights their strength as an
information communication tool, but to create those word clouds from
scratch is time consuming and can be overwhelming. Also, if the user
does not have expert knowledge of the text, they might not have the
information necessary to create such a layout. Thus there is a need for
a tool which provides a good quality semantic layout as a starting point
that a user can easily fine tune subsequently, as well as information
about the semantic similarities of the words in the text and interactions
tailored towards preserving the semantic relationships in the layout.

3 SEMANTIC WORD CLOUD LAYOUT

The general problem of generating semantic word clouds has been
studied in depth by Barth et al. [3]. Here we present our method in
detail, which has been inspired by several works and tailored to our
needs and implementation choices (JavaScript and D3.js). There are
two main steps to the generation of a semantic word cloud layout.
The first step involves generating from an input text a similarity graph
and the second step concerns the actual layout of the words in the
plane. An overview of our system can be seen in Figure 2. The
goal is to generate a layout, where the relative position of two words
indicates their similarity or lack thereof. There exist multiple metrics
to describe the relationships between the words in the input text, and in
the visualization, word pairs that score highly on the chosen relatedness
metric should appear closer together than word pairs with a low score.
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Fig. 2. Steps to create an initial semantic word cloud layout: (1) stop words are removed, the remaining words are stemmed, and the top k words are
selected, (2) from those words and (2’) the similarities computed from the co-occurrences in the input text (3) the words are laid out in the plane
using MDS, and (4) attractive and repulsive forces are activated to obtain a compact, but overlap-free initial semantic word cloud layout.

This results in thematic clusters in the final layout, where the user is
then able to understand the content and how different terms are related
in the text source.

3.1 Constructing the semantic similarity graph
The first step is to extract the words from the given text, which will later
form the vertex set of our similarity graph. Using the natural language
processing (NLP) library Natural [23], we first remove irrelevant words
from the text, for example “that”, “the”, “for”, ... that are not significant
and should not be displayed. We then use stemming on the remaining
words, meaning words are shortened to their meaningful stem, e.g.,
the words “explanation” and “explaining” would both be understood
by the algorithm as their stem “expla”. For each of these stems we
choose one of the words of the text as the representative of all the
words with the same stem. This allows us then to accurately rank word
frequencies, and to choose the top k words that are found (see step
(1) in Figure 2). We found that in most cases k = 50 is sufficient to
cover the main themes of the text without overloading the visualization.
This step is already sufficient to create a word cloud without additional
semantic information. Finally for each chosen word, the number of
times the stem occurs is summed up and we scale the font size of the
word proportionally to this frequency.

To evaluate word similarities, further pre-processing is required. For
a pair of words w1,w2, their similarity is calculated using the Jaccard
similarity, which performs slightly better than the cosine similarity [3],
a common alternative. We calculate it in the following way. Let S(w) be
the set of sentences the word w appears in. Then the Jaccard similarity
of two words w1,w2 is a score in [0,1] given by:

s(w1,w2) =
|S(w1)∩S(w2)|
|S(w1)∪S(w2)|

.

From this we create a complete weighted graph G = (V,E), where
the vertices in V represent the top k words selected and the edges are
weighted by the Jaccard similarity s(w1,w2) for each edge (w1,w2)∈E.
Some word pairs might have little or no similarity, meaning the two
corresponding words rarely occur in the same sentence; thus we remove
edges with Jaccard similarity below some threshold σ from the graph.
We set σ = 0 as a default, removing only edges corresponding to words
that never co-occur (see step (2) in Figure 2).

3.2 Creating the initial layout
Using multidimensional scaling (MDS) [13], we initialize the positions
of the vertices of G in the plane. At this step some words may be tightly
clustered together and overlap, while others may be spread much further
apart (see the example layout of step (3) in Figure 2). We then apply
a forced-based system to the graph to adjust word positions, meaning
we assign forces to the edges and vertices of the graph and then use
these forces to simulate the motion of the vertices. It is important that
words do not overlap one another so we must consider node overlap
removal methods [10] that rely on a force system to naturally extend
our layout algorithm. We calculate the distance between each pair of
words in the x and the y dimension (see Figure 3a). If their bounding

(b)

(c)

(a)

Fig. 3. The force system to create the initial layout, (a) shows the
repulsive forces that push overlapping words away from one another to
prevent the bounding boxes from overlapping, (b) the attractive forces
that pull all words toward their similar neighbors, proportionally to their
respective similarity score and (c) the attractive forces that pull all words
towards the center,

boxes overlap, the words are either pushed vertically or horizontally
away from one another, in the direction that resolves the overlap fastest.
That is, if there is more overlap in the x-dimension, the force will be
applied vertically, thus ensuring a top/bottom or side contact between
the two boxes remains after the resolution of the overlap (see step (4)
in Figure 2). This method is similar to the Force-Transfer-Algorithm
introduced by Huang et al. [15].

To obtain a compact layout, we must also apply attractive forces
between each pair of words that is connected by an edge in G as well
as a centering force on every word. Consider a word w1 that shares
an edge with a word w2. Then there is a force from the center point
of the bounding box of w1 oriented towards the center point of w2
that is scaled by the value s(w1,w2), meaning more strongly related
words have a stronger attractive force (see Figure 3b). To ensure that
our layout is displayed in the center of the canvas, we also add a
weak attractive force from each word to the center of the canvas (see
Figure 3c). Since our graph is dense, the force system might struggle
to find a stable layout immediately, thus, we let it recompute iteratively
new positions while decreasing the strength of the forces before we
stop its computation and we obtain a final layout. Since our system
is interactive, it is undesirable to let the system stabilise itself for too
long as it affects the responsiveness of our system negatively. But it is
also necessary to not stop it too early either to ensure our layout is of
sufficiently good quality. We found experimentally that 1000 iterations,
which could be computed in about 230ms, are a good compromise.
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3.3 Semantic word cloud quality metrics
To design an automatic word cloud system, we often rely on optimizing
quantitative metrics that measure the aesthetic qualities that are desir-
able in such a visualization. For classical, non-semantic word clouds,
creating a compact design is the main visual criterion, and it remains
an important aspect for semantic word clouds, too. But we must also
consider metrics for the semantic quality of the visualization. Next, we
introduce the main quality metrics that are relevant to evaluate semantic
word cloud layouts [2–4].

The semantic quality can be measured in two main ways, the first
being realized adjacencies [2, 3, 26]. When modeling the words as
their rectangular bounding boxes, a realized adjacency corresponds to a
segment contact between two boxes that share an edge in the semantic
graph, see the highlighted edges in Figure 4. As this edge is weighted,
the metric is weighted as well, meaning that it is better to realize a
contact between two highly related words over one or more contacts
of low weight. This metric captures the notion that the simplest way
to understand that two words are related is if they are directly next to
one another. As the boxes themselves are an abstraction of the words,
rather than checking for a proper contact between two boxes, we check
if the bounding boxes of two words w1 and w2 overlap. More precisely,
assume w2 has the smaller bounding box. We artificially inflate the
size of its bounding box by 20% and check if it overlaps with the
bounding box of w1. Experimentally, we found that limiting a contact
to a distance of 0 between two bounding boxes was too strict and words
that visually appeared to be in contact were not counted as not realized.
For a semantic input graph G = (V,E) and a word cloud layout Γ of G,
the value r(Γ) ∈ [0,1] of the realized adjacencies E ′ ⊆ E according to
the above definition is calculated in the following way:

r(Γ) =
∑e∈E ′ s(e)
∑e∈E s(e)

,

where s(e) is the similarity score (weight) of the edge e in G. To realize
every adjacency, the input graph would need to be planar [9]. But
semantic similarity graphs are dense, almost complete graphs, so this
value r(Γ) is often low. Nevertheless it is still an effective method to
compare two layouts as that value can easily double from one drawing
to the other. For an arbitrary graph G, finding the maximum realizable
adjacency value is an NP-hard problem [2]. It was found that the cycle
cover algorithm [4] has the best performance for this metric [3].

The second semantic quality metric is distortion [3], which compares
the distance of each word pair to their similarity score. Distortion can
be seen as a relaxation of realized adjacencies as two highly correlated
words do not need to touch but can instead be sufficiently close to
indicate a meaningful relationship in the visualization, as shown by
the colored edges in Figure 4. It also reflects the notion that unrelated
words should not be close to one another, which the realized adjacencies
metric fails to properly account for, since in its commonly accepted
definition there is no penalty when two unrelated words touch. But with
distortion, if their similarity value is low then they should be far away
from one another in the plane. The distortion value d(Γ) of a layout Γ

of G is computed using Pearson’s correlation coefficient δ (Γ) between
the (dis)similarity matrix and the distances realized in the plane:

δ (Γ) = 1−
∑(u,v)∈E(1− s(u,v)− (1− s))(dΓ(u,v)−dΓ)√
∑(u,v)∈E(1− s(u,v)− (1− s))2(dΓ(u,v)−dΓ)2

,

where 1− s((u,v)) corresponds to the dissimilarity of u and v, (1− s)
is the average dissimilarity value in G and similarly, dΓ(u,v) is the
minimum distance between the bounding boxes of u,v in Γ and dΓ is
the average distance in Γ. The distortion is then defined as

d(Γ) =
δ (Γ)+1

2
,

as δ (Γ) has its values in [−1,1]. A value of d(Γ) = 1 indicates that
every word is positioned at an ideal distance from any other word, 0 in-
dicates the inverse and a value of 0.5 signals that there is no correlation

A

C

B

O

Fig. 4. Word O is strongly connected to every other word. It successfully
realizes its adjacency with word A (green highlight), but not with the word
B (red highlight) as the boxes do not touch, but the distortion value with
word B is good (green edge) as they are still close, unlike the distortion
value with word C (red edge). The compactness corresponds to the ratio
of the blue area over the area of the gray bounding box.

between similarities and distances. Barth et al. [3], who first intro-
duced the distortion metric, found that the seam-carving algorithm [28]
performed well with this metric.

Both metrics help us gauge the semantic quality of a layout. To
evaluate its overall aesthetic quality, one can further consider compact-
ness [3,26]. The compactness c(Γ)∈ [0,1] of a layout Γ of G represents
the ratio of the space used by the words over the total space available
in the bounding box of Γ. More precisely,

c(Γ) =
∑v∈V a(v)

a(Γ)
,

where a(v) represents the area of the bounding box of v and a(Γ) is the
area of the bounding box of the entire word cloud. Most non-semantic
word cloud layout methods achieve high values of compactness as
they can form a tight packing without considering relative word place-
ment. When semantics are considered, the need to separate some words
from each other to obtain good distortion values often leads to lower
compactness values.

There exist further metrics [3] to evaluate the visual quality of a
word cloud layout, namely uniform area utilization, which requires the
words to be evenly distributed over the canvas. One can also consider
the aspect ratio of the layout, where a ratio of 1 could be desirable, or
one closer to traditional media formats like 16:9, in contrast to extreme
aspect ratios, which might make the visualization difficult to read.

As our main interest point is the semantic quality of the layout and
how it can be maintained during interactive steps, we will focus our
attention on the realized adjacencies and distortion values of our layout,
but retain the compactness metric in our quantitative evaluation as it is
the most established of the three aesthetic layout quality metrics.

4 MYSEMCLOUD

MySemCloud is designed as a tool for a general public audience, with
no deeper design expertise. It is created for users who wish to sum-
marize familiar texts with informative word clouds in different media
forms (presentation, social media) and focus on the information deliv-
ery. The target user is expected to have expert knowledge of the input
text, but limited expertise in graphic design. MySemCloud should be
simple to use to ensure the user can quickly achieve a desired result.
Therefore we focused on repositioning operations that are directly made
on the visualization canvas. It is meant to be an alternative to existing
editing tools which focus heavily on aesthetics and extensive design
expertise.

In this section we present the technical details of our novel inter-
active semantic word cloud editing tool MySemCloud. Typically, a
word cloud for a given text computed using the approach outlined in
Section 3 is of good quality but does not take subjective user pref-
erences into account yet. Since current algorithmic methods cannot
predict which semantic relationships a user prefers to highlight over
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others, MySemCloud implements intelligent interaction modes and
visual aids meant to guide the user in fine-tuning the computed word
cloud themselves.

To help the user during their desired editing steps, MySemCloud pro-
vides two smart support tools, a semantic-aware display and semantic-
enhanced interactions.

4.1 Semantic-aware display
The metric guides are a system of display layers meant to translate the
underlying semantic data into visual cues that help the user understand
and edit the layout while optimizing its visual and semantic quality.
Specifically they correspond to three options that each can be toggled
on or off together or separately and change the user interface.

The adjacencies metric guide lets the user display the edges of
the semantic word similarity graph. When toggled on, for every edge in
the semantic graph whose endpoints are reasonably close to each other
in the visualization to be considered an adjacency (see Section 3.3), the
edges are displayed using a green segment between the center points
of the two words corresponding to the edge’s endpoints. The width
of the segment is scaled proportionally to the similarity value of the
edge. Additionally, some missing adjacencies are also shown in yellow.
Since the graph is very dense, we only focus on showing the most
significant missing contacts in the graph. We sort the list of missing
adjacencies and select the ten highest-weight edges that are not realized,
as shown in Figure 5a. This helps the user see where strongly connected
components lie as well as the main missing adjacencies.

To ensure that all the data is visible, we offer a secondary view:
when selecting a specific word using the right click, we replace the
display of the main missing adjacencies of the cloud, with a display of
all the edges that are incident to the selected word as shown in Figure 6.
When the adjacency metric guide is active, if a user wants to move a
word, they have the information of the word’s adjacencies in its starting
position, adjacencies that will likely be lost, and the adjacencies that
might be realized in its new neighborhood, and thus make a decision of
how to best adjust the position of a word. The user might also decide
which missing adjacencies are globally too important not to be realized
and quickly identify those in the general view.

The distortion metric guide shows to the user which positions
are, or are not, semantically meaningful. When selecting a word with
the right click in the distortion view, a heat map will be displayed,
where a darker green shade indicates positions that achieve high values
for the distortion metric for the chosen word, and pale yellow shades
represent positions that realize low values for the same metric. To
create the heat map, we produce a tiling of the bounding box that the
word cloud currently occupies. We compute a new distortion value by
updating the length of the edges incident to the selected vertex only,
then use a color gradient to associate a shade with the values obtained
on a scale from dark green to pale yellow. This creates a color scale
that indicates in which areas of the cloud the strongest neighbors of
the selected word lie, and in which area the unrelated words are. The
resulting view can be seen in Figure 5b. When turning the metric
guide on, the words with the most negative impact on the distortion
are highlighted in grey. To compute this, we calculate for each edge e
of the input graph an ideal length ℓ(e) = (1− s(e))D

2 , where D is the
longest distance between two words in the visualization. We calculate
the penalty, i.e. the difference between the ideal length and the actual
length of e. If two words are unrelated and the difference is positive,
they are too close and the penalty is squared. For each word we sum
the penalties incurred with all other words, and finally highlight in grey
the five words that achieve the highest sum.

Lastly, the compactness metric guide helps the user create a
more space-efficient layout. When active, the bounding box of the
word cloud is displayed, and the words that are on the boundary are
highlighted (see Figure 5c). A user interested in creating a more com-
pact layout can then select a boundary word and, using any of the two
semantic metric guides, find a new suitable position that results in a
more compact layout. This guide can be used alone, but as it only
optimizes towards compactness, it is more relevant for semantic word

clouds when used alongside the distortion or adjacencies guide. When
used with a semantic guide, the user can more easily consider the global
appearance of the word cloud while improving its semantic quality.

The three different views can be used individually or in any com-
bination. Thus, the user can choose how to edit the layout in a way
that can preserve the important neighborhoods, or they can choose to
improve it by using the information from the underlying data set. While
some views could potentially contain more information, we chose to
prioritize simpler views to encourage the user to layer views on top of
one another.

4.2 Semantic-enhanced interaction
The default interaction step of MySemCloud is a drag-and-drop opera-
tion, where the user moves a word from one place to another. Once the
new word is in place, we resolve any overlaps that were induced by the
move. These edits cause minimal disturbances of the user’s mental map
and are useful for precise refinements of the layout. We additionally
provide two semantic-enhanced edit modes. Updating a force-based
layout is often a challenge: a single local move can greatly perturb a
graph’s layout. Thus, our semantic-enhanced interactions are not only
focused on incorporating the semantic graph with the interaction, but
also on maintaining the stability of the previous layout. After any move
is done by the user, the values of the quality metrics of the layout are
updated to give the user direct feedback about how much impact the
move they made has had.

The neighborhood-follows mode helps preserve the distortion
and adjacencies in the graph. Specifically, when this mode is toggled
on and a word is moved, the positions of its strong neighbors will be
updated as well. There are two main components to this step.

The first component concerns the selection of the vertices whose
position should be updated. We compute a breadth-first search tree of
G rooted at the moved word w1, and add vertices from that tree to the
relevant vertices list in the following way. We first consider all the
children of w1. If those have similarity value with w1 higher than our
threshold θ , they are added to the list. We then look at the children of
those selected vertices. We compute the ratio of their similarity value
with their parent over their depth in the tree. If those are higher than
θ , they are similarly added. We continue down the tree using the same
ratio of similarity with the parent divided by depth of the vertex until
all vertices have been considered. This method ensures that we are
less likely to select grandchildren of w1, and will do so only if they are
strongly related to their parent (and that parent is strongly related to
w1). We set θ = 0.1.

The second component is the update of the layout itself. First the
non-overlap forces and attractive forces are turned off. An anchoring
force is added to every word, oriented from the center point of the word
to its current position at the start of the move. For each edge linking
a vertex of the relevant vertices list to their parent, we reactivate the
attractive forces in the following way: all edges between w1 and its
children in the list are reactivated with their full strength, all the edges
between the chosen children of w1 and their own chosen children will
be reactivated at partial strength, and every further edge will have its
strength decreased proportionally to their depth in the BFS tree of w1.

Finally, when the new positions are computed, the anchoring forces
of the moved neighbors are updated to be directed to their current
position, the overlap removal forces are reactivated and we compute the
final layout. Using this move, when a word is dragged, its highly similar
neighbors will follow it, thus preserving the important adjacencies in
the graph. Since those following words might have strong adjacencies
themselves, we search deeper in the tree to find if some are significant
enough that further words might be moved as well. The anchoring
force pulls any following words back towards their starting position.
This helps to maintain the stability by not permitting the moved words
to go too far. It also avoids significantly disturbing the distortion value
of the layout as can be seen in Figure 7.

The fill-holes mode aims to preserve the compactness without
damaging adjacencies. A common issue with interactive word clouds
is that when a word is moved, the space left behind should be filled

5



(a) (c)(b)

Fig. 5. The different metric guides, (a) shows the realized adjacencies guide with the realized edges in green and the strongest missed adjacencies in
yellow, (b) shows the heat map that indicates the positions with the highest distortion values for the selected word “visualization” in red and highlights
the five most misplaced words, and (c) shows the compactness metric guide with the words stretching the bounding box highlighted.

Fig. 6. The right click operation under the adjacencies metric guide
show the five links of the selected word “Archived”. We see one realized
adjacency with “visualization” and five missing ones.

Fig. 7. “Bar” is moved to the position marked by a red cross using
the neighbors follow mode, the algorithm selects “show”, “chart” and
“comparison” as its significant neighbors. “Comparison” was close to the
new position and is able to realize the contact after the move. “Chart” and
“show” also move closer to “bar” but “show” has more similar neighbors in
the upper part of the visualization and thus does not move too far away.

to re-establish the compactness of the layout. In MySemCloud, we
resolve this issue by reactivating the forces of the system similarly to
how we generated the first layout. Specifically all the attractive forces
corresponding to the edges are reactivated, as are the centering and the
non-overlap forces. This allows the layout to re-compactify itself, in a
manner where words that are more strongly related to one another will
more likely be pulled together into the hole created by a word move
than weakly related words. This operation can also be triggered with a
button, without needing a move.

When used together, these interactive modes tend to update the
layout significantly such that a user’s mental image might be disturbed.
The fill-holes mode tends to increase the value of realized adjacencies,
as it attempts to close the gaps between words. The neighbors-follow
mode can also be used for larger updates: when wanting to place a new
topic in an entirely new area of the layout, it can effectively allow the
user to move a cluster of related words at once.

MySemCloud further contains a mode to toggle the bounding boxes
of the words, as it makes it easier to notice directly if the contacts
are realized or not. This is also helpful with compactness as one can
quickly spot gaps in the rectangle packing. It also contains an undo
button which reverts the layout to its state before the last move was
executed, as well as a button to save a certain state of the layout. The
user can then load any saved state at any point in the editing process,
or recover an unsaved state using the undo button. Lastly, the values
of the metrics are displayed for the current layout, the previous layout,
as well as the best value achieved by a layout. After every move the
values are updated and if the layout achieves a new optimum for any
value, it is saved automatically.

5 EVALUATION

We evaluate MySemCloud from two different perspectives. First, we
explore in a controlled study how the semantic-aware display and the
semantic-enhanced interactions are able to allow users to improve the
quality of initial semantic layouts. Second, we present findings from
a qualitative study during which participants were able to freely use
MySemCloud to design word clouds of their own text data. We want
to show that MySemCloud is not only able to generate word clouds of
high semantic quality, but that it additionally is a good compromise
between the existing interactive, but non-semantic word cloud editors
and the non-interactive, semantic word cloud layout algorithms.

We implemented MySemCloud in JavaScript. The text submitted in
the client is sent to a backend server running on Node.js that handles
the semantic similarity computation using the NLP library Natural [23]
and generates the MDS layout. The final layout is computed in the
client using the popular JavaScript visualization library D3.js [7] for
the force layout computation and the rendering.

Both aspects of the evaluation were performed as a back-to-back in-
person user study that took 45min during which each participant worked
individually with the tutor. We recruited 20 participants (5 women, 15
men) who were students or researchers in Computer Science. None of
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the participants had used a word cloud creation tool or layout algorithm
previously. One participant reported not being familiar with word
clouds, and another reported having heard about semantic word clouds.
All participants reported normal or corrected-to-normal vision, and had
no color vision deficiencies. The study was conducted on a 27” LCD
screen at a 2560×1440 resolution using a mouse as input device.

5.1 High quality layout creation
We introduced in Section 3.3 several metrics to evaluate the quality
of a semantic word cloud layout. In the study, we focused on the
two semantic quality metrics realized adjacencies and distortion, and
on the non-semantic compactness metric. In this section we eval-
uate the quality of the layouts created by the 20 participants using
MySemCloud. Specifically, we investigate how efficiently users can
improve the quality of the layouts using the semantic-aware display
and semantic-enhanced interactions provided in MySemCloud.

5.1.1 Study Design
The study was conducted in three steps, an introduction and train-
ing phase, followed by a set of word cloud improvement tasks, and
completed by a short questionnaire.

To start, the participants were given an introduction to semantic
word clouds, as well as the definition and intuition behind each metric.
They were then introduced to the tool, and each of its functionalities
was explained. They were given time to learn to use the tool, and told
what the tasks would consist of. During this training they could ask
questions and familiarize themselves with MySemCloud.

Data Sets. The data sets used for the study were the following: (1)
A summary of the book “Harry Potter and the Philosopher’s Stone” [19]
as a training data set and (2) the English Wikipedia page for the “Euro-
pean Union” [1] for the study tasks.

As the users of MySemCloud are expected to have some familiarity
with the texts they are designing a cloud for, we chose text data sets
covering topics of broader public interest. One participant reported
no familiarity with the Harry Potter book, but all participants reported
having sufficient knowledge of the European Union to understand the
content of the layout being presented to them.

Tasks. Four tasks were given to the participants to evaluate the
different aspects of our tool. They were asked to improve the value of a
metric as much as possible within a given time. For task 1 they had to
improve the realized adjacency metric, for task 2 the distortion metric,
the compactness metric for task 3 and to improve in parallel as much as
possible the values of the realized adjacency and compactness metrics
for task 4. While the participants spent time training on the tool before
the tasks were undertaken, we randomized tasks 1 through 3 to avoid
systematic bias through leaning effects. We gave the participants 2
minutes for tasks 1, 2, and 3 and 2.5 minutes for task 4. We calculated
the improvement rate achieved by each participant within each task for
the targeted metric. We did not give participants a lot of time as we
were interested at how efficient our design was at guiding the users
during the edits. The last task was given more time as we expected
it would be more complicated for the participants to optimize two
potentially conflicting goals simultaneously. We focused on combining
compactness and realized adjacencies as those have been the strongest
focus of previous semantic word cloud layout algorithms [2–4, 17, 26].
The participants were not obliged to use the relevant metric views for
each task or specific interaction modes, but were asked to choose the
setup that they felt most efficient working with.

Once the participants had completed the tasks, they were given a
questionnaire to describe their understanding of the quality metrics and
to evaluate the difficulty of the task.

5.1.2 Results/Findings
Figure 8a shows the results of the four metric improvement tasks. Our
hypothesis was that we believed candidates would successfully com-
plete all four tasks, but struggle with task 4 when balancing the two
different metrics. We found that the candidates were most successful
with the compactness improvement task, as 19 participants improved

the compactness of the bounding box. For the task of increasing the
realized adjacencies values, the candidates were similarly very success-
ful, with only two candidates failing to improve the layout. When the
candidates were tasked of improving adjacencies and compactness in
parallel, they were similarly successful. No participant failed to im-
prove realized adjacencies on this second attempt, but some neglected
the bounding box improvement.

Three candidates had chosen for the compactness task to completely
ignore any semantic positioning by creating a tight packing of rectan-
gles, but could not rely on this strategy on the combined task. Those
participants successfully improved the layout when they had to preserve
and improve its semantic quality.

The participants on average clearly outperformed the four automated
layout algorithms on most tasks. The cycle cover algorithm, that is
designed towards maximizing realized adjacencies was outperformed
by 11 participants in task 1 as well as in task 4. No participant was
able to obtain a better distortion value than what was achieved by the
seam carving algorithm, but they usually performed better than most
of the competing algorithms, confirming the anticipated advantages of
our human-in-the-loop approach.

We also note that they were able to efficiently target the two metrics
at the same time in task 4, unlike for example cycle-cover which is
targeted towards adjacencies and performs poorly on compactness.
Candidates in general did not heavily disregard one metric for the
other as the best participants achieved good values for both metrics and
similarly the worst performers tended to struggle with both metrics.

The task to improve distortion proved difficult, as eight participants
did not succeed in improving the distortion value of the initial layout.
During the interview, six participants reported that while they under-
stood the intuition behind this metric, they had issues understanding
how to translate it visually. When asked which metrics they thought
were the most relevant for semantic word clouds, distortion was the
best received metric with eight participants commenting that it was the
most relevant metric for these layouts, two of those had reported having
trouble with the distortion improvement task.

The difficulties with this task are likely due to the participants fo-
cusing on the larger words of the layout. Those, when moved, tended
to heavily disrupt the initial layout, often lowering its overall quality.
More successful participants focused instead on average and smaller
sized words, which often were farther from ideal positions. Given
additional targeted training and more time for the task, we suppose that
candidates could have been more successful. An example of a word
cloud with high realized adjacencies and distortion scores can be found
in Figures 8b and 8c. Notice that high value distortion layouts are less
densely packed, which is contrary to high realized adjacency and high
compactness value layouts. As many participants naturally tried to
augment the compactness of each layout even when the tasks did not
require it, this can also explain the difficulties they encountered. One
might consider an alternative definition to the metric, that is compatible
with denser layouts, or that results in higher swings of the value of
the metric which would give more feedback to the user regarding the
efficiency of their edit.

We hypothesized candidates would understand the compactness met-
ric most easily, as well as not have many difficulties with the realized
adjacencies metric. Each participants graded the difficulty of improving
each metric on a seven point Likert scale, where 1 meant the task was
very difficult and 7 meant very simple. They found that compactness
was the simplest, rating it a 6.3 (simple), distortion was the most diffi-
cult giving it a 3.95 rating (neither simple nor difficult), and they gave
realized adjacencies a 4.65 grade (slightly simple to simple).

5.2 Qualitative evaluation

In this section, we want to understand how MySemCloud could be used
as a word cloud design tool and how users approach it as a visualization
tool to present a text of their choosing. We want to study the interest
users have in semantic word cloud layouts and how much they value
being able to edit and fine tune their layouts.
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Fig. 8. (a) Each point corresponds to the ratio of the metric value obtained by a participant for the task indicated by the column over the value of the
starting layout. The left values in task 4 correspond to realized adjacencies and on the right is the compactness. The grey lines link values obtained
in the same layout. A value of 1 means no improvement, anything above the line corresponds to a better value in the targeted metric and a value
below 1 shows a worsening of the score. On average every task was successful, although distortion was the most difficult overall. The horizontal
lines correspond to values achieved with the algorithms specified in the legend [2,3,17,26]. (b) an example of a semantic word cloud achieving high
realized adjacencies values and an improvement ratio of 1.84, (c) an example of a semantic word cloud achieving high distortion value corresponding
to an improvement ratio of 1.11. Both layouts were created using MySemCloud in under 5 minutes and outperform the best automated layouts.

5.2.1 Study Design
For this task, we simulated a typical use case of our tool, where a user
creates a semantic word cloud for a text they have a deep knowledge of.
As our pool of participants contained 13 researchers and 7 students who
had at least obtained a Bachelor’s degree, each participant was able to
choose a scientific text that they had expert knowledge of. Of the 20
participants, 10 chose a paper they were a main author of, 4 chose their
thesis, and 6 chose a paper they had thoroughly studied.

A semantic word cloud was generated from the chosen input text
using MySemCloud, and the participants were asked to edit the layout
into a visualization of their liking. They were able to take as much
time as they desired and could use any functionality of MySemCloud.
Overall, the candidates took between 5 and 20 minutes to arrive at a
final layout and had different design goals.

The candidates were then introduced to the semantic word cloud
generation tool created by Barth et al. [3]. The functionalities were
explained and they were able to try out the different algorithms on the
text they had previously chosen. They were also shown the layouts
generated using the Cycle Cover algorithm [2], the layout computed
using the Seam Carving method [28], the Inflate & Push layout [3]
as layouts which, respectively, achieved high values for the realized
adjacency, distortion and compactness metrics.

They then completed a questionnaire covering their experience using
MySemCloud, their impression of semantic word clouds in general
and they were asked to compare MySemCloud to the non-interactive
layout algorithms. Lastly, an interview was conducted during which
each participant was asked about their design goals for their personal
word cloud, their impression of the metrics and the quality of the
visualization as well as their impression of MySemCloud.

5.2.2 Results/Findings
Our hypothesis was that participants would preserve the semantic group-
ing created by the original layout, and would focus on changing the
placements of some words to more appropriate topic clusters.

Design goals. We identified three different types of design goals
amongst the participants: the compact designs (13), the clustered de-
signs (5) and the mind map designs (2).

An example of a compact design can be seen in Figure 9b. Here
the participant did not edit the initial layout (Figure 9a) significantly,
most of the changes are results of the interaction modes and overlap
removal forces. The main aspects of those compact designs revolve
around a strategic placement of the largest words toward the center. Our
algorithm tends to draw the bigger words towards the center as they
often have a very high degree in the similarity graph. This was rated
positively by eight participants as it aligned with their design goal. The
smaller words are naturally arranged on the periphery. Some of those
words are moved, often using the hints given by the semantic metric

guides, closer to the most related large neighbor. In the interviews,
eight participants describe a layout with the main themes centered as
an ideal layout. The resulting layouts appeared more compact, but due
to their often rounded designs achieved on average a coverage of under
60% of the bounding box volume.

A related class are the clustered designs, e.g., see Figure 9d created
from the layout of Figure 9c. Here we note that the final layout is less
dense and multiple thematic clusters appear. Four participants preferred
that the larger words were separated and serve as the centers of thematic
clusters. In those word clouds, the larger words were spread out and
the smaller words that were misplaced or at the periphery between two
clusters were brought closer to a certain cluster. Every such design in
our study achieved a compactness score of less than 50%.

The last designs are the mind map designs. In those cases, partic-
ipants disregarded the initial layout and instead created from scratch
a new layout, where small topic bubbles containing few words were
spread around the canvas around the central most meaningful word.

We found that participants consistently spent time fixing the reading
direction of some word pairings, e.g., the two words “induced” and
“subgraph” should not be reverted. Additionally, they separated words
that were loosely related when they had the same font size and appeared
side to side, as they would otherwise appear visually as a word pair
rather than two independent words.

Metrics. The importance of the metrics was evaluated next. The
participants were asked which metric, if any, they were interested in
when working with the MySemCloud layout. We hypothesized that
participants would naturally lean towards compact layouts and realized
adjacencies. Seven participants noted they mostly were interested
in compactness. As for the semantic metrics, four reported paying
attention to the distortion value, and five to realized adjacencies. They
were then asked how the value of the metrics was correlated with
the quality of the layout. Those answers did not align well with the
participants’ personal design goals. Specifically, eight participants
thought that distortion was the most meaningful metric, six thought
distortion and realized adjacencies were equally the most relevant and
three thought that adjacencies were a better indicator of semantic quality.
Compactness was not received as well as the general impression was
that it was misleading. Five participants noted that higher compactness
lead to worse layouts, and three that it was a secondary goal and only
beneficial up to a point.

MySemCloud. We hypothesized that our users would enjoy the
playful nature of the tool, and appreciate the novelty of semantic word
clouds as opposed to the more commonly seen compact non semantic
layouts. We also believed that the users would rate highly the ability to
interact and improve the visualization over the current best performing
layout algorithms. The impressions of MySemCloud as an interactive
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Fig. 9. Example of semantic word clouds generated for task 2, (a): a word cloud before and after the user fine-tuned the layout, the larger words have
been organised in topic clusters and few smaller words have been moved, (d): a word cloud created by a user, gaps separate the different themes
which are themselves clusters together.
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Fig. 10. Participants used a seven point Likert scale to rate the following
ten statements from strongly disagree (−3) to strongly agree (3): 1.) It
was easy to learn MySemCloud (MSC), 2.) It was easy to use MSC,
3.) I liked to use MSC, 4.) It was fun to use MSC, 5.) I felt creative
while using MSC, 6.) I am satisfied with the result, 7.) The metrics
were understandable, 8.) The metric guides were understandable, 9.)
MSC represented the data well, and 10.) MSC was faithful to the data;
(a) (1.–6.) covers the user experience, (b) (7.–8.) the metrics and (c)
(9.–10.) shows that our tool was preferred to the automated layouts.

editor were very positive. Participants valued the simplicity and effi-
ciency of the design (8). Nine participants highlighted the different
interaction modes and six the metric guide views. Two participants
were interested in the ability to see the underlying data and noted that
data exploration was for them a strong use case for MySemCloud.

We evaluated our tool using the same questionnaire developed to
evaluate ManiWordle [17] and EdWordle [26], as well an additional
set of questions targeted at our system. We can see in Figure 10a that
the design of my MySemCloud was found to be very efficient. We can
note that creativity was not rated as highly by the users, which is to be
expected as we designed the tool to create effective semantic text visu-
alizations as a focus over aesthetics. Moreover, the semantic-enhanced
interactions somewhat restrict the edits of the word clouds compared to
the free drag-and-drop mode. The participants rated highly the quality
of the visualization they created using the tool, and thought that the
tool itself represented the underlying information of their chosen input
text faithfully (see Figure 10c). Additionally, while some participants
reported issue with the distortion metric, on average when consider-
ing all the metrics, the participants had a strong understanding of the
optimization goals of the semantic word clouds (see Figure 10b).

Lastly, when comparing their experience of MySemCloud to the non-
interactive layout algorithms, 16 participants preferred MySemCloud,
with 7 indicating a strong preference. On their preference of seman-

tic word clouds over traditional word cloud layouts, 17 participants
preferred semantic layouts, two found that it depends on the use case
and one participant found that semantic layout presented them with
too much information. Additionally, two participants answered that
they naturally assumed non-semantic word clouds had a semantically
meaningful layout, and thus found them misleading.

5.3 Limitations
Interactive word clouds offer more than updating the position of words.
For example ManiWordle [17] and EdWordle [26] allow the user to
rotate or color words. Such functionality has not yet been implemented
in MySemCloud, but could be appealing for users. The focus of My-
SemCloud so far is the semantic quality of the layout, but it could be
worthwhile to study how a system that supports both general aesthetics
and semantics is perceived. Such an in-depth system could overwhelm
the user, but as some participants in our study suggested, these are
possible extensions of MySemCloud.

Additionally, we chose not to allow the user to interact with and mod-
ify the underlying data computed by the NLP algorithm, to ensure that
it remains faithful to the input text. In the creative part of our user study,
however, some participants had complaints about the limitation of the
NLP library, e.g., as we often worked with text from mathematical
publications, the word “theorem” could appear, which the participant
considered to not be actually relevant, but the NLP algorithms consid-
ered it significant due to its high frequency in the text. Similarly, when
dealing with technical vocabulary, stemming can fall short, e.g., the
words “parameterized” and “parameter” being considered two indepen-
dent words. Thus, the need to remove and add some words from the
top-k word list is a natural addition to MySemCloud. While editing
the input data might help generate a better initial layout, users will still
need to refine the visualization further. Therefore we chose to focus
on the more difficult task of providing meaningful information to the
user to guide the direct interactions with the layout, while adding data
editing modes remains as future work.

With regards to the interactive modes, we noticed that the partici-
pants would sometimes move a word on the boundary slightly to trigger
some compaction using fill holes; so having a button to trigger the
compaction directly would be a natural addition. Lastly, the implemen-
tation of the bounding boxes sometimes caused visual confusion, and
the participants would attempt to bring two words together that would
not stay close. This is due to the perception of the bounding box by the
user being different from the bounding box used in the algorithm. An
implementation similar to EdWordle that considers the bounding box
of each letter individually might lessen those issues.

6 CONCLUSION

In this paper we presented MySemCloud, a novel human-in-the-loop
word cloud editor combining the strength of the semantic word cloud
layout algorithms with those of interactive word cloud systems.

We found that users were often dissatisfied with layouts computed
by state-of-the-art algorithms as they tended to focus on the wrong se-
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mantic relationships, had sometimes undesirable layouts for the largest
words, and would misplace several words. The study participants, on
average, outperformed the state-of-the-art algorithms on almost all
quality metrics with our human-in-the-loop approach. We also found
that the focus on compactness provided by previous word cloud editors
was detrimental to a visualization of high semantic quality, and the lack
of semantic information made the word clouds less interesting.

Overall, we showed that MySemCloud successfully bridges the
gap between non-interactive semantic layouts and the existing non-
semantic interactive tools. While some users did not believe that they
could successfully improve a layout and were happy to spend a longer
amount of time to completely recreate their layout, the large majority of
our participants fell between those two extremes and engaged happily
with our interactive system. We also found that our tool has a strong
potential for data exploration, more so when the users do not have
expert knowledge of the input data.

A promising avenue for future work would be to grow the different
interactions offered by MySemCloud, most importantly the ability to
select which words should or should not be displayed. Further interac-
tive possibilities should be considered carefully as not to overwhelm
the user. One can also consider iterating on the current interactive
modes. The neighbors-follow mode requires a certain similarity value
as a threshold, and it, as well as the fill-holes mode, reactivate forces
at a set strength coefficient. These parameters could be set by the user,
and would offer flexibility at the cost of making the tool more complex.

It could also be interesting to study layout methods that take into
account user preferences to generate the visualization. Some users
are not willing to spend time carefully editing a layout, but still have
preferences about which semantic elements should be highlighted. Such
a user-centered layout algorithm would combine naturally with our
human-in-the-loop fine-tuning system. Lastly, one could also consider
extending this approach to handle time-varying data, as the words need
to be laid out not only with regards to user preferences but also to enable
morphing and optimize stability between subsequent word clouds.
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