2212.03539v3 [cs.LG] 18 Apr 2024

arxXiv

MetaStackVis: Visually-Assisted Performance Evaluation of Metamodels
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Figure 1: Comparing alternative metamodels’ predictive performance with MetaStackVis: (a) a panel for the selection of UMAP
hyperparameters and the active cluster; (b) a stacked bar chart for identifying the best-performing metamodel for each cluster of
base models by analyzing validation metrics and confidence scores; (c) a UMAP plot that aggregates the results of the predicted
probabilities and the metric-based performance for the base models and metamodels of the active cluster; and (d) a zone-based
matrix that combines all pairs of metamodels to designate the possible benefits of an extra stacking layer due to the juxtaposition of
the soft voting outcome (cf. grid of points) versus the optimal outcome from the merger between two metamodels (see gauge charts).

ABSTRACT

Stacking (or stacked generalization) is an ensemble learning method
with one main distinctiveness from the rest: even though several
base models are trained on the original data set, their predictions are
further used as input data for one or more metamodels arranged in
at least one extra layer. Composing a stack of models can produce
high-performance outcomes, but it usually involves a trial-and-error
process. Therefore, our previously developed visual analytics sys-
tem, StackGenVis, was mainly designed to assist users in choosing
a set of top-performing and diverse models by measuring their pre-
dictive performance. However, it only employs a single logistic
regression metamodel. In this paper, we investigate the impact of
alternative metamodels on the performance of stacking ensembles
using a novel visualization tool, called MetaStackVis. Our interac-
tive tool helps users to visually explore different singular and pairs of
metamodels according to their predictive probabilities and multiple
validation metrics, as well as their ability to predict specific prob-
lematic data instances. MetaStackVis was evaluated with a usage
scenario based on a medical data set and via expert interviews.
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1 INTRODUCTION

Stacking (also called stacked generalization [30]) is a machine learn-
ing (ML) paradigm that operates with heterogeneous ML models
arranged in one or more layers, where each subsequent layer sum-
marizes the previous ML models’ predictions [24]. A model in such
a context represents the output structure of the ML algorithm after
fitting it to data and selecting a specific hyperparameter set. In its
simplest form, the stacking ensemble is composed of two layers:
layer 0, which comprises multiple base models, and layer 1, which
contains one or more metamodels [6]. Stacking is a popular method
that typically increases the predictive performance due to the deploy-
ment of several models. It can also attain a low bias and low variance
simultaneously [13], especially when juxtaposed against a single ML
model [29]. However, one should ensure getting the top-performing
and diverse models by carefully choosing ML algorithms on the
underlying and metamodel layers [21].

To eliminate—as much as possible—trial-and-error processes
and manage the complete procedure of building impactful stacking
ensembles, interactive visual analytics (VA) solutions have been
demonstrated to be very effective [7]. Nevertheless, there has been
little work to formally investigate further the influence of alternative
metamodels on predictive performance (e.g., by visually comparing
various metamodels). In a stacking ensemble scenario, Latha and
Jeeva [14] found that the random forest algorithm is better in terms of
predictive capability when used as a metamodel compared to random
trees for the particular healthcare data set they examined. However,
the choice of different metamodels depends on the given problem,
and the applications of the same metamodels to local subsets of base
models instead of all ML models could impact their prediction [32].
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Furthermore, the current literature poorly covers the detection of
behavioral differences between the most powerful base models’
predictions and the metamodels’ results. Finally, an indication that
an additional layer would be beneficial when composing a stacking
ensemble is another interesting but yet unexplored issue.

This short paper presents a follow-up analysis of the impact of
different metamodels on the prediction and works as a stand-alone
extension tool of our IEEE VAST’20 paper on StackGenVis [7], a
source-available VA system [27] for constructing high-performance
stacking ensembles. StackGenVis is the first VA system [5] specially
designed to visually monitor and handle the stacking process from
scratch with the selection of diverse algorithms and concrete models,
including data wrangling support. Its current version was developed
using logistic regression with default hyperparameters at the meta-
model layer. In this work, we present MetaStackVis (see Fig. 1),
an interactive and open-source visualization tool [19] for exploring
alternative metamodels after extracting base models from StackGen-
Vis. In addition to comparing various models’ configurations based
on multiple validation metrics and predictive probabilities (or confi-
dence) on the basic and metamodel levels, we also combined pairs
of metamodels and contrasted their overall predictive power, as well
as local performance for continuously misclassified data instances.

2 METASTACKVIS: SYSTEM OVERVIEW

MetaStackVis is a visualization tool implemented in Jupyter Note-
book [12] with Plotly [23] as the visualization library and Scikit-
Learn [22] for ML purposes. It is then deployed using Streamlit [28].
Data Loading Tab. In order to employ this visualization tool,
users have to initially experiment with the most recent publicly avail-
able version of StackGenVis and extract the predicted probabilities
for each data instance and the scores of all validation metrics for the
ML models they prefer in the form of two separate CSV files. The
latter file with the scores should also contain the hyperparameters
used for every ML algorithm to produce the exported ML models.
In this section, we explain MetaStackVis with the beginner-friendly
Breast Cancer Wisconsin data set [10]. The data set includes records
for 699 breast cancer cases, labeled as either benign or malignant
depending on nine features. Through the StackGenVis system, we
split the data into training and testing sets with an 80/20 ratio. For
each of the 11 supported ML algorithms, StackGenVis uses pre-
defined hyperparameter sets to generate concrete models. In all our
experiments, we selected the top 5 base models in terms of overall
performance per algorithm, leading to 55 base models in total.
HDBSCAN Clustering Tab. Afterwards, the base models are
grouped into separate clusters using HDBSCAN [3] according to
their predicted probabilities for all test instances. HDBSCAN is a
state-of-the-art algorithm that focuses on creating groupings with
base models that predict similar testing data subsets [?]. MetaS-
tackVis allows users to test different hyperparameter combinations
for this clustering algorithm (see the first three columns of Table 1)
while optimizing the solution for the density-based clustering val-
idation (DBCV) [20] and the coverage scores, concurrently. The
former is calculated by computing the density within a cluster and
the density between clusters to contribute to the weighted sum of
“validity index” values of clusters, with higher density within a clus-
ter and lower density between clusters indicating better results than
the opposite case. The latter represents how many base models fall
into specific clusters; thus, all base models that belong to an existing
cluster, except for the outliers/noisy data, are divided by the 55 base
models. The last three columns of Table 1 present the results for
the top 5 cluster compositions with the best-found DBCV, Coverage,
and a combination of both scores. This table is sorted in descending
order based on the multiplication of DBCV and coverage. The goal
is to minimize the number of outliers due to a high coverage score
and keep the cluster formations—as precise as possible—with the
DBCYV heuristic. However, users can still manually choose the hy-
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Table 1: Different hyperparameter sets are being used for the HDB-
SCAN clustering to find the top 5 similarly-performing cluster compo-
sitions. The table is sorted according to the DBCV_Coverage column.

min_cluster_size min_samples metric n_clusters DBCV  Coverage DBCV_Coverage
3 5 manhattan 4 0.32 0.42 0.14
3 5 euclidean 4 0.10 0.71 0.07
5 5 chebyshev 2 0.06 1.00 0.06
4 5 manhattan 3 0.08 0.71 0.05
3 30 manhattan 3 0.00 0.24 0.00

perparameters from a pre-determined list of options. MetaStackVis
facilitates users with either testing a new hypothesis or picking the
default cluster division according to the highest DBCV_Coverage.

Visualization Tab. After exploring the desired cluster compo-
sitions, the n_clusters column defines the number of clusters. The
division of base models in them occurs from the HDBSCAN algo-
rithm. We proceed with the defaults, resulting in: cluster_0 and
cluster_1 containing 10 models each, outliers (i.e., unassigned base
models by HDBSCAN) forming a cluster of 32 models, and clus-
ter_2 including 3 models as illustrated in Fig. 1(b), in parentheses.
Next, the 11 metamodels will be trained upon the base models of
all the aforementioned setups. We distill the hyperparameters from
every ML algorithm’s top-performing base model to use them for
the metamodels originating from the same algorithms. However, a
plethora of hyperparameter tuning alternatives can be found in the
literature [25] (cf. Sect. 4 for such limitations). The Visualization tab
in Fig. 1(a) incorporates options for selecting UMAP hyperparame-
ters [18] and the cluster under investigation, as well as three different
views: stacked bar chart, UMAP plot, and zone-based matrix.

The stacked bar chart in Fig. 1(b) presents the best-performing
metamodel in each cluster, including all base models and the group
of outliers for seven different validation metrics also supported by
StackGenVis. This visualization provides an overview of perfor-
mance (in percentage % format) for the best candidate from the 11
metamodels created in every cluster, using the following metrics:
Accuracy, Precision, Recall, ROC AUC, Geometric Mean, Matthews
Correlation Coefficient (CorrCoeff), F1 Score, and Confidence. The
last metric is the average predicted probability for all test instances.
Additionally, we convert Matthews CorrCoeff to an absolute value
ranging from 0 to 100%. The average of all seven validation metrics
plus the confidence is then divided by 2 in order to compute the
Overall Performance that defines the ranking of the clusters from top
to bottom in this visualization (i.e., from best to worst). Therefore,
Confidence is multiplied seven times to capture the same space as
all validation metrics because users should be able to compare the
two main components of overall performance globally. The legend
for this view maps the metrics to the different color encodings. If a
user deems a metric useless for the given problem, they can deselect
this metric and temporarily hide it. If we compare the total length
of the stacked bars in Fig. 1(b), cluster_0 contains only 10 instead
of 55 base models and reaches the highest overall performance with
Linear Discriminant Analysis as the metamodel.

The UMAP plot in Fig. 1(c) enables the visual exploration of
the base models belonging to the active cluster selected before and
the 11 metamodels summarizing their predictions. Hence, offering a
deeper behavioral analysis of all metamodels in contrast to the base
models. Each point is one model, with base models being smaller
in size, while the opposite is true for the metamodels. The UMAP
projects the high-dimensional predicted probabilities calculated for
the provided data set into two dimensions. In our example, groups of
points represent clusters of models that perform similarly according
to 140 test instances (which is the 20% testing set). A summary
of the performance of each model according to the average value
computed from the seven validation metrics is designated as Metric-
Based Performance in Fig. 1(c) and is being color-encoded using
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Figure 2: The investigation of all and cluster_-2 comprising 12 base models. View (a) presents the performance of the best-performing metamodel
for each cluster according to the seven validation metrics and confidence. The UMAP visible in (b) gathers base models and metamodels
predicting similarly the same test instances in groups (Gs) such as G1— G4. On the other hand, (c) visualizes cluster_2, with G1 showcasing that
most of the metamodels perform identically, G2 solely with tree-based ML algorithms, and G3 with the two most unconfident metamodels. The
unification of predictions from pairs of diverse metamodels is also possible as seen in (d), leading to two promising combinations.

the Viridis colormap [16]. The legend on the left-hand side of this
visualization maps the different algorithms as 11 distinguishable
symbols for each ML algorithm. For example, the right-pointing
arrows are the models constructed from random forest and the left-
pointing arrows from extra trees. The opacity of the models is used
for the confidence previously introduced, with a higher value forcing
the ML model to be more opaque and vice versa.

The zone-based matrix in Fig. 1(d) is inspired by the scatterplot
matrix [4], and it provides a more comprehensive perspective of the
metamodels’ performance. We designed three different zones: the
matrix diagonal, the lower triangular part, and the upper triangular
part. A bar chart in the matrix diagonal visualizes the metric-based
performance of the validation metrics individually as a bar. Color
and text convey the confidence (Conf.) of each metamodel, ranked
from the best- to the worst-performing one, as already explained
for view (b) in Fig. 1. Black denotes the highest confidence value,
while light gray is the lowest possible. The remaining zones allow
users to perform pairwise comparisons between all combinations of
metamodels. The lower triangular part demonstrates the union of all
misclassified test instances by at least one metamodel pair (20 in our
example). The points in the grid are sorted according to the sum of
predicted probabilities for all combinations, leading to the easiest-
to-classify test samples always being on top (in white, if correctly
classified by both metamodels) and the hardest-to-classify at the
bottom (in yellow color, if wrongly classified by both metamodels).
As a reference model, we apply the soft majority voting strategy [2]
(i.e., predicted probabilities being used) with dark red when the row-
wise metamodels are unable to overcome the wrong prediction of the
blue metamodels and light red in case these metamodels are correct
and their confidence surpasses the other metamodel. Thus, more
prominent colors highlight the points and demonstrate the failure of
metamodels to predict these points correctly. On the contrary, the
upper triangular part is about the “theoretically achievable maximum”
predictive performance if the optimal metamodel was selected for
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all the test instances (140 in our case). The gauge charts represent
the average of all validation metrics’ performance in orange (and
in the black text below) and the higher or lower confidence value
compared to this metric-based performance in green or purple colors,
respectively. The exploration of metamodel pairs in Fig. 1(d) aims to
indicate the available room for other schemas, such as establishing
an extra stacking layer to aggregate the predictions of this layer.

3 USAGE SCENARIO

Supposedly Mia is a data scientist working in a hospital. She re-
ceives data about 268 positive and 500 negative patients with eight
features related to Pima Indian Diabetes [26]. Her task is to improve
predictive performance using stacking ensembles. After exploring
the data, ML algorithms, and base models with StackGenVis, she
deploys MetaStackVis to experiment with alternative metamodels.
Overview. First, Mia loads the exported data into MetaStackVis
and chooses the setting for attaining the highest score for the HDB-
SCAN clustering algorithm. The hyperparameters are automatically
set to 3, 5, and Chebyshev metric for the first three column headers
visible in Table 1, respectively; thus, resulting in four clusters in
total with a DBCV of 0.17 and Coverage of 0.49. All clusters are ob-
servable in Fig. 2(a), with cluster_2 consisting of fewer models (i.e.,
12 base models instead of 55) and at the same time achieving better
overall performance for the best-performing metamodel compared to
all. Mia focuses on the UMAP plots for both settings, using the Man-
hattan metric because it is preferable for high-dimensionality [1].
Detailed Exploration of Base Models and Metamodels. An
interesting finding when exploring all in Fig. 2(b) is that the base
models are grouped depending on their origin and, in general, reach
similar metric-based performance regardless of the hyperparameters
chosen. The same effect can be observed for the metamodels: for
example, Group 1 (G1) and G2 are formed because they predict sim-
ilarly the same test instances. However, Mia is surprised by the fact
that the metamodel in G3 and G4 have swapped places, with Gaus-
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sian Naive Bayes (GNB) being closer to Quadratic Discriminant
Analysis and vice versa. This pattern requires a deeper investigation.
Pairwise Combination of Metamodels. Mia continues her explo-
ration with the more efficient and effective cluster_2. From Fig. 2(c),
she acknowledges that most of the metamodels belong to G1. An
exception here is G2, which only contains tree-based ML algorithms
such as Gradient Boosting (GB) and G3 with Adaptive Boosting and
Support Vector Machine (SVM). The last group’s metamodels have
the lowest confidence according to Fig. 2(d), but Mia sees the benefit
of combining diverse metamodels. One candidate is the combination
of GNB and SVM with 89% theoretical maximum prediction score
and confidence (see gauge charts). When combined with a major-
ity voting strategy, the GNB can correctly predict most easy test
instances on top, as shown in the grid of points with light blue color,
but SVM fails to overcome GNB for the difficult-to-classify test
cases at the bottom (due to dark red colors). Another eye-catching
combination is GNB and GB, with 82% hypothetical maximum
metric-based performance and 84% confidence. According to the
grid of points, except for the misclassified instances in yellow, four
cases are correctly classified by GB and one by GNB but neither can
reach higher confidence than its counterpart. Consequently, Mia un-
derstands that a potential extra layer summarizing this second layer’s
predictions could improve the combination of those metamodels.

4 [EVALUATION

We performed online semi-structured interviews with four experts
asynchronously to obtain qualitative feedback on the usefulness of
MetaStack Vis, using the same criteria from prior works [8,9,17,31].
Participants. The first ML expert (E1) is a senior lecturer in
mathematics with a PhD in this field and has 4.5 years of experience
with ML. The second ML expert (E2) is an assistant professor fo-
cusing on ML and deep learning with 7.5 years of experience in ML.
The third VA expert (E3) is a senior lecturer working with clustering
and dimensionality reduction, and he has 6 years of experience with
ML. The fourth VA expert (E4) is a senior lecturer focusing on
natural language processing and applied ML with approximately 10
years of experience. The first three experts have reported no color-
blindness issues. Although E4 has a mild case of colorblindness,
he affirmed having no difficulty accurately recognizing the specific
color combinations we utilized in the MetaStackVis implementation.
Methodology. Each interview lasted about one hour, and the
interviews were conducted as follows: (1) an introduction to our
visualization tool’s main goals; (2) a display of the functionality of
each visualization and interaction with the tool using the Pima Indian
Diabetes data set; and (3) a discussion of the processes followed
to arrive at the findings in Sect. 3. We asked the participants to
comment on anything. Their major points are summarized below.
Workflow. E2 and E4 mentioned that the overall proposed work-
flow makes sense and is appropriately reflected in the spatial arrange-
ment of the views. In particular, E2 commented on the progressive
analysis of the different base model clusters and the produced meta-
models as a positive aspect of MetaStackVis. However, E1 and
E2 suggested a different approach for selecting clusters: concen-
trate first on the UMAP plot and let users pick clusters of interest
with different base models, but they both admitted that using a
user-controlled HDBSCAN clustering should be a practical starting
point before the manual cluster exploration. E1 stated that the Meta-
StackVis workflow requires a thorough understanding of stacking
ensembles and access to the publicly-available StackGenVis source
code [27]. Since it may also be advantageous to feed the generated
human knowledge from MetaStackVis back to StackGenVis, as E4
framed it, we intend to unify all features in a “single tool” solution.
Visualization and Interaction. E3 had an overall good impres-
sion regarding the choice of visual representations to map the com-
puted data. E1 was amazed by the details provided in MetaStackVis
but admitted that it could be slightly overwhelming when one sees
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the tool for the first time. Specifically, E2 and E3 mentioned that the
stacked bar chart and the UMAP plot are easy to interpret, but the
zone-based matrix can be challenging to grasp and certainly needs
additional time to understand. An improvement here could be to
highlight the left-hand side with all confusing data points for the
combinations of the 11 metamodels and the right-hand side with the
gauge charts when users hover over either one of them because it
would become easier to perform pairwise comparisons of the fused
metamodels, as E2 pointed out. Nevertheless, E3 supported the idea
that ordering metamodels from the best- to the worst-performing one
helps interpret the zone-based matrix. Here, E3 and E4 mentioned
that the better-performing pairs of metamodels could be considered
future candidates for input to a potential third layer of metamodels.
E3 was fascinated by the clusters visible in the UMAP plot, which
translates to the prediction capability of each model in the test data
set. E3 mentioned that this visualization illustrates our successful
extraction of useful information and patterns related to cluster struc-
ture. He then continued: “it would be complicated to transform that
information into reliable insights about the performance without
support from the other views”. E2 agreed that the UMAP plot could
suggest how differently the base models perform compared to the
metamodels. E3 proposed to segmentize and vertically align each
metric instead of the global sorting, but he understands that will
affect the global ranking. This observation partially matches with
E1’s comment to focus on one or a group of validation metrics at
a time and not have all seven visualized simultaneously. Although
MetaStackVis already allows users to hide irrelevant metrics, this
feature should be implemented in the future (as with StackGenVis).

Limitations. Efficiency and scalability were two concerns raised
by E4. The former refers to the required computation time to render
all views. However, this does not threaten interactivity as long as
everything gets parallelized and/or pre-computed beforehand [15].
For the latter case, he pointed out the tool’s limitation to visualize
a much larger data set with more difficult-to-predict instances due
to the increased space demand for the zone-based matrix. A simple
solution to this problem could be filtering, which applies to scenarios
where some metamodel pairs are performing poorly. As E2 stated,
the tool works solely with binary classification problems and does
not support alternative hyperparameter optimization techniques [11].
E1 referred to the important role that metamodels’ confidence plays
in the data exposition, but instead of being aggregated as in our
tool, it could be beneficial to use individual visual representations of
spread. He continued to say that it is necessary to visualize the data
distribution on demand to better relate to the underlying explanation
of why some instances are constantly misclassified. In the future, we
plan to improve MetaStackVis to overcome such limitations.

5 CONCLUSION

In this paper, we presented MetaStackVis, a visualization tool that
enables users to visually assess the performance of metamodels in
stacking ensemble learning. It allows users to tune HDBSCAN
and apply metamodels to different cluster compositions of base
models. Users can also compare the metamodels based on seven
validation metrics and their average predicted probability, observe
the performance similarities with the underlying base models, and
check for powerful pairwise combinations of metamodels that hint
at the possible benefit of introducing an extra stacking layer. The
applicability and effectiveness of MetaStackVis were evaluated using
a real-world healthcare data set and interviews with four experts,
who suggested that the comparison of alternative metamodels with
our tool is promising. Finally, they helped us recognize the current
limits of MetaStackVis, which we will work on in the future.
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