
Partitioning Algorithms for Improving Efficiency of
Topic Modeling Parallelization

Hung Nghiep Tran
University of Information Technology

VNU-HCMC
Vietnam

Email: nghiepth@uit.edu.vn

Atsuhiro Takasu
National Institute of Informatics

SOKENDAI (The Graduate University for Advanced Studies)
Japan

Email: takasu@nii.ac.jp

Abstract—Topic modeling is a very powerful technique in
data analysis and data mining but it is generally slow. Many
parallelization approaches have been proposed to speed up the
learning process. However, they are usually not very efficient be-
cause of the many kinds of overhead, especially the load-balancing
problem. We address this problem by proposing three partitioning
algorithms, which either run more quickly or achieve better load
balance than current partitioning algorithms. These algorithms
can easily be extended to improve parallelization efficiency on
other topic models similar to LDA, e.g., Bag of Timestamps, which
is an extension of LDA with time information. We evaluate these
algorithms on two popular datasets, NIPS and NYTimes. We also
build a dataset containing over 1,000,000 scientific publications
in the computer science domain from 1951 to 2010 to experiment
with Bag of Timestamps parallelization, which we design to
demonstrate the proposed algorithms’ extensibility. The results
strongly confirm the advantages of these algorithms.

I. INTRODUCTION

Topic modeling is a very powerful technique in data analy-
sis and data mining. Thus, it has been used quite frequently in
many research areas. However, these models, from the first
and most simple models such as LDA [2] to other more
advanced models such as Bag of Timestamps (BoT) [8], have
one significant drawback in practice: they are generally slow.

A common solution for this problem is parallelization of
model learning. One of the first parallel algorithms was AD-
LDA by Newman et al., which makes multiple data copies
to sample in multiple processes, then synchronizes them [10].
This approach is simple but it requires large memory and a
costly synchronization process after each sampling iteration.

A more sophisticated algorithm was proposed by Yan et al.
based on partitioning data [16]. This algorithm theoretically
guarantees that speedup is near linear, because the overhead is
theoretically very small. Moreover, space complexity is almost
constant with respect to the number of parallel processes.
However, this algorithm is not very popular because it must
deal with the problem of load balancing, which makes it less
useful in practice.

The above algorithm partitions both documents and words
to divide the document–word matrix into P × P parts, where
P is the number of parallel processes. With this partitioning
scheme, partitions on the main diagonal line and on each paral-
lel diagonal line are nonoverlapping with respect to documents
and words, so these partitions are read–write nonconflicting

and could be sampled in parallel on shared data. Hence, this
algorithm reduces memory consumption and synchronization
cost compared with algorithms similar to AD-LDA.

However, when running in parallel, the slowest process
must finish before the next sampling iteration can start, so
all the other processes must wait. Load balancing is the
major overhead that reduces parallelization efficiency of this
algorithm. Thus, to increase parallelization efficiency, work
should be distributed evenly among these processes.

The partitioning scheme is the main point of this algorithm
but it also makes load balancing very difficult because it
is not trivial to divide the document–word matrix so that
each partition contains the same number of word tokens. The
exact solution of this problem is equivalent to an NP-hard
integer programming problem. Current partitioning algorithms
are naive randomized algorithms that must run for a long time
but load balancing is still low.

We address this problem by developing three partition-
ing algorithms based on heuristics to distribute word tokens
evenly in the document–word matrix. The first two are simple
deterministic algorithms. They give good load balancing and
run much more quickly than current randomized algorithms.
The third algorithm is a randomized algorithm based on
some sophisticated conditions to permute the document–word
matrix. This algorithm requires a similar run time as current
randomized algorithms but it gives much better load balancing.

Our partitioning algorithms are also extensible to other
models similar to LDA, e.g., BoT, which is an extension of
LDA allowing topic modeling with time information. Cur-
rently, BoT does not have a parallel algorithm, so we designed
a parallel algorithm for BoT based on Yan et al.’s parallel
LDA and apply our partitioning algorithms to improve the
parallelization efficiency of this model.

We evaluated the proposed partitioning algorithms using
two popular datasets, NIPS and NYTimes, to demonstrate the
load-balancing improvement. We also built a dataset containing
over 1,000,000 scientific publications in the computer science
domain from 1951 to 2010 with information about published
year. We use this dataset to evaluate the designed BoT paral-
lelization.

This research presents the following main contributions.

1) We develop three partitioning algorithms to address
the load-balancing problem in parallelization of topic

ar
X

iv
:1

51
0.

04
31

7v
1

 [
cs

.D
C

]
 1

4
O

ct
 2

01
5

modeling. These algorithms either run more quickly
or achieve better load balancing than current parti-
tioning algorithms.

2) To demonstrate the extensibility of the proposed
algorithms, we design a parallel algorithm for BoT
and apply the proposed partitioning algorithms to
improve its parallelization efficiency.

3) We build and publish a dataset containing over
1,000,000 scientific publications in the computer sci-
ence domain with information about published year.
This dataset could be used to experiment with time-
aware topic models. We demonstrate analysis of this
dataset using the designed BoT parallelization.

Section 2 presents a summary of related research. In Sec-
tion 3, we define the problem of load balancing and Section 4
presents the proposed approach. Our experiments are described
in Section 5, and results and discussion follow in Section 6.
Section 7 concludes.

II. RELATED WORK

Topic modeling is a powerful technique in text analysis
and data mining. One of the first models was LDA developed
by Blei et al. in 2003 [2]. Since then, many more advanced
models have been proposed, especially models that incorporate
time information like Dynamic Topic Model [1] and Topic over
Time model [15].

Topic modeling algorithms have one significant drawback:
they are generally quite slow. With the appearance of more
advanced algorithms, this problem has become more important.
Many solutions to this problem have been proposed; most of
them use parallelization.

One of the first studies of topic modeling parallelization
was AD-LDA by Newman et al. [10]. This algorithm is very
simple but it requires multiple copies of the data and a costly
synchronization process after each sampling iteration. Many
other parallel algorithms have been proposed. These algorithms
could be categorized into three main approaches: (1) Copy
and Sync, like AD-LDA [7], [10], [14], (2) Nonblocking
Algorithms, which use atomic operations to use shared data
[13], and (3) Data Partitioning, like the algorithm of Yan et
al. [16].

Data partitioning-based algorithms are a very promising
approach because they theoretically guarantee a near-linear
speedup and do not require extra space for data copies.
However, these algorithms have one significant drawback: it is
difficult to achieve load balancing [16]. In practice, therefore,
the speedup is usually not as good as expected.

Few studies have investigated this load-balancing problem.
Current partitioning algorithms are naive randomized algo-
rithms that do not give good load balancing [16]. In this
research, we address this load-balancing problem.

III. PROBLEM DEFINITION

A. Parallel algorithm and partitioning scheme

Many parallelizations have been proposed for LDA algo-
rithms, especially collapsed Gibbs sampling [4], [7], [9], [10],

[13], [14]. As noted, we consider the parallel algorithm pro-
posed by Yan et al. in 2009 [16]. This algorithm theoretically
guarantees that speedup is near linear, i.e., the overhead is
very small. Moreover, space complexity is almost constant with
respect to the number of parallel processes.

The main point of this algorithm is the partitioning scheme.
Unlike AD-LDA, which only partitions documents into many
parts, this algorithm partitions both documents and words.
The document–word matrix is divided both horizontally and
vertically into P×P parts, where P is the number of processes
in parallel. For example, Figure 1 demonstrates a document–
word matrix, which is partitioned 3 × 3 ways [5]. The main
diagonal line contains partitions A1, B1, C1, other parallel
diagonal lines contain partitions A2, B2, C2 and A3, B3, C3,
respectively.

Fig. 1. Partitions of a document–word matrix.

With this partitioning scheme, partitions on the main di-
agonal line and other parallel lines are nonoverlapping with
respect to documents and words. Thus, parallel collapsed
Gibbs sampling on these partitions is read–write nonconflicting
on the document–word counting matrix and the topic–word
counting matrix. As a result, this algorithm only requires one
copy of each of these two matrices.

However, this partitioning scheme also requires that sam-
pling on each diagonal line must be finished completely before
sampling on the next diagonal line. Thus, when running in
parallel, all other processes must wait for the slowest process
to finish. To improve the efficiency of this algorithm, load
balancing between parallel processes must be improved.

B. Load-balancing problem

In collapsed Gibbs sampling, the basic operation is topic
sampling for a word token. For load balancing, work should
be distributed evenly among all processes. Thus, all partitions
that are processed in parallel should contain the same number
of word tokens.

With the given partitioning scheme, it is not easy to achieve
load balance. The current partitioning algorithm proposed by
Yan et al. provides poor load balance and must be run for a
long time for better results [16].

To present our algorithms, we formalize the problem in
a similar way to that used by Yan et al. [16]. We define
J as the set of documents and V as the set of words. The
number of documents is D, the number of words is W ,
the number of word tokens is N . The partitioning algorithm
divides J into P disjoint subsets J1, . . . , JP and V into P
disjoint subsets V1, . . . , VP . Then the document–word ma-
trix DW is divided into P × P corresponding partitions
DWmn,m ∈ {1, . . . , P}, n ∈ {1, . . . , P}. For n ∈ {1, . . . , P}
and m⊕n = (m+n) mod P , DWm,m⊕n form diagonal lines
having partitions that are sampled in parallel by P processes.

We define the workload matrix R = (rjw), where rjw is
the number of occurrences of word w in document j. RR is
a list of rows and CR is a list of columns of R. We define
the submatrix Rmn = (rjw)∀j ∈ Jm, w ∈ Vn corresponding
to the partition DWmn. We define the cost of this partition
as Cmn =

∑
rjw∈Rmn

rjw. Because all other processes must
wait for the slowest process to finish, the cost of each parallel
epoch is the maximum cost of the parallel partitions. Thus, the
optimal data partition is equivalent to minimizing the following
cost function:

C =

P−1∑
l=0

max
(m,n):m⊕l=n

Cmn. (1)

We define the optimum cost Copt =
∑

j∈J,w∈V rjw/P . Then,
we define the load-balancing ratio η as

η = Copt/C. (2)

Exact optimization of η is equivalent to an NP-hard integer
programming problem [3]. Thus, instead of an exact solution,
we use other approaches to optimize η.

We define the row workload or the length of row RRj =∑
w∈V rjw. In case we partition the document–word matrix,

this is the number of word tokens in document j. Similarly,
we define the column workload or the length of column
CRw =

∑
j∈J rjw. In case we partition the document–word

matrix, this is the number of word tokens of word w in every
document.

We can compare the lengths of rows or columns to identify
longer and shorter ones. Then we can sort rows and columns
based on their length and find the longest row, longest column,
shortest row, and shortest column.

To achieve the optimum partitions, matrix R should be dis-
tributed evenly. We propose algorithms to distribute workload
evenly and divide R into partitions with equal workload.

IV. PROPOSED APPROACH

First, we propose three heuristics for permuting a matrix
to create an evenly distributed matrix. Then, we develop three
algorithms to divide R into P ×P approximately equal parts.

A. Heuristics

Heuristic 1. To make a matrix more evenly distributed,
interpose a long row and a short row from the beginning of
the row list and interpose a long column and a short column
from the beginning of the column list.

For example, we could make RR1 the longest row, RR2

the shortest row, RR3 the second longest row, RR4 the second
shortest row, . . ., RRD the medium length row. Similarly for
the columns, we could make CR1 the longest column, CR2

the shortest column, CR3 the second longest column, CR4 the
second shortest column, . . ., CRW the medium length column.

Heuristic 2. To make a matrix more evenly distributed,
interpose a long row and a short row from both the beginning
and the end of the row list and interpose a long column and
a short column from both the beginning and the end of the
column list.

For example, we could make RR1 the longest row, RR2

the shortest row, RRD the second longest row, RRD−1 the
second shortest row, . . ., RRD/2 the medium length row.
Similarly, we could make CR1 the longest column, CR2 the
shortest column, CRW the second longest column, CRW−1
the second shortest column, . . ., CRW/2 the medium length
column.

Heuristic 3. This is a generalization of Heuristics 1 and
2. To make a matrix more evenly distributed, interpose rows
with different lengths and columns with different lengths, i.e.,
for every range on the row list and the column list, there
should be rows and columns with all kinds of lengths: from
longest, medium, to shortest. This heuristic tries to distribute
row lengths and column lengths evenly on the row list and the
column list, respectively.

Please note that the considered matrix is not symmetric, so
other similar permutations can be achieved by swapping the
resulting matrix symmetrically vertically and/or horizontally
after applying these heuristics.

B. Partitioning algorithms

Heuristics 1 and 2 are simple, so they can be used directly
to develop the algorithms. Heuristic 3 is more complicated. It is
used as an inspiration to develop the third algorithm, which is
more sophisticated. The first two algorithms are deterministic
and the third one is randomized.

Algorithm 1. This algorithm permutes rows and columns
based on Heuristic 1, then divides rows into P parts with
approximately equal numbers of word tokens, and similarly
for columns.

Algorithm 1: Data partitioning Algorithm A1.
Input : Matrix workload R
Output: Partitions of documents J1, . . . , JP and

partitions of words V1, . . . , VP
// Permute rows.

1 Sort the row list RR in descending order.
2 for each row RRi in RR do
3 if i mod 2 = 0 then
4 Insert the last row RRD before RRi.
5 Remove the last row.

// Permute columns.
6 Sort the column list CR in descending order.
7 for each column CRi in CR do
8 if i mod 2 = 0 then
9 Insert the last column CRD before CRi.

10 Remove the last column.

// Partition rows and columns
11 Divide RR into P consecutive groups J1, . . . , JP , each

one having an equal number of word tokens.
12 Divide CR into P consecutive groups V1, . . . , VP , each

one having an equal number of word tokens.

Algorithm 2. Similar to Algorithm 1, but this algorithm
permutes rows and columns based on Heuristic 2.

Algorithm 3. Given the number of parallel processes P ,
we build P ranges on the row list. Each of them has rows

Algorithm 2: Data partitioning Algorithm A2.
Input : Matrix workload R
Output: Partitions of documents J1, . . . , JP and

partitions of words V1, . . . , VP
// Permute rows.

1 Sort the row list RR in descending order.
2 for each row RRi in RR, i < D/2 do
3 if i mod 2 = 0 then
4 Swap row RRi with row RRD+1−i.

// Permute columns.
5 Sort the column list CR in descending order.
6 for each column CRi in CR, i < V/2 do
7 if i mod 2 = 0 then
8 Swap column CRi with column CRV+1−i.

// Partition rows and columns
9 Divide RR into P consecutive groups J1, . . . , JP , each

one having an equal number of word tokens.
10 Divide CR into P consecutive groups V1, . . . , VP , each

one having an equal number of word tokens.

with all kinds of length and similarly for columns. To do this,
the algorithm randomly shuffles workload matrix R under the
restrictions that row and column lengths are distributed evenly.
With these restrictions, this algorithm is guaranteed to achieve
better load balance than simply shuffling rows and columns as
in Yan et al.’s algorithm.

Then we divide the rows of matrix R into P parts with
approximately equal numbers of word tokens and similarly
for columns. This is a randomized algorithm, so we repeat the
process several times and compute the load-balancing ratio η
each time; then we find the partition set with the highest η. This
algorithm runs quite quickly, because it contains only single
loops. Moreover, every loop could be executed in parallel. In
practice, this algorithm has approximately the same running
time as the partitioning algorithm proposed by Yan et al.

Algorithms A1 and A2 are deterministic so they require
only one run time, in contrast to the randomized algorithm,
which require tens or even hundreds of run times to achieve
good results. Hence, A1 and A2 could be as much as two orders
of magnitude faster than the randomized algorithm.

C. Parallel algorithm for BoT

BoT is an extension of LDA that makes use of time
information, e.g., a paper’s year of publication. It is similar
to Dynamic Topic Model [1] and Topic over Time model
[15]. Figure 2 presents the graphical model of BoT with a
similar notation to that for LDA. In this model, each document
Jj , j = 1 . . . D is attached to a timestamp array TSj =
{ojs, s = 1, . . . , L} with length L. This array is considered
to extend the content of document Jj and timestamps are
considered equivalent to words. Each timestamp ojs has the
topic assignment yjs. Timestamps share the topic per document
distribution θ with words, but also have their own timestamps
per topic distribution π with prior γ [8].

BoT gives us information about the presence of a topic in
the time line among other advantages over LDA [8]. However,

Algorithm 3: Data partitioning Algorithm A3.
Input : Matrix workload R
Output: Partitions of documents J1, . . . , JP and

partitions of words V1, . . . , VP
1 Create empty temporary lists RT = RT1, . . . , RTP , and
CT = CT1, . . . , CTP .
// Permute rows.

2 Sort the row list RR in descending order.
3 Divide items in RR into groups of P consecutive items.
4 for each group of P consecutive items in RR do
5 Uniformly randomly shuffle items in this group.
6 Assign each item i in this group to the list RTi.
7 Set the row list RR to empty.
8 for each temporary list RTi in RT1, . . . , RTP do
9 Uniformly randomly shuffle items in RTi.

10 Append all items in RTi to the end of RR.
// Permute columns.

11 Sort the column list CR in descending order.
12 Divide items in CR into groups of P consecutive items.
13 for each group of P consecutive items in CR do
14 Uniformly randomly shuffle items in this group.
15 Assign each item i in this group to the list CTi.
16 Set the column list CR to empty.
17 for each temporary list CTi in CT1, . . . , CTP do
18 Uniformly randomly shuffle items in CTi.
19 Append all items in CTi to the end of CR.

// Partition rows and columns
20 Divide RR into P consecutive groups J1, . . . , JP

having equal numbers of word tokens.
21 Divide CR into P consecutive groups V1, . . . , VP

having equal numbers of word tokens.

Fig. 2. Bag of Timestamps graphical model.

collapsed Gibbs sampling for BoT must sample timestamps
in addition to words in each document, which increases the
learning time and makes BoT less popular in practice. To
exploit the benefits of BoT, we design a parallel algorithm for
learning BoT and demonstrate that our partitioning algorithms
are easily extensible to models similar to LDA.

In BoT, there are two topic assignment matrices, the
document–word matrix DW and the document–timestamp
matrix DTS. The document–topic counting matrix CTheta

is updated based on both DW and DTS. The topic–word
counting matrix CPhi is updated based on DW and the topic–
timestamp counting matrix CPi is updated based on DTS.

For parallel BoT, we first partition DW into P × P
partitions as in Yan et al.’s parallel algorithm. Then, we also
partition DTS into P × P partitions, so partitions on the
diagonal are nonconflicting with respect to documents and
timestamps. Another approach is to merge the timestamp array
into the document content, then partition and sample both
words and timestamps in one matrix. In this research, we use
the first approach for its simplicity.

With this partitioning scheme, each sampling iteration of
the whole DW and DTS matrices requires P epochs. In each
one, we do parallel processing on partitions in a diagonal
line. In each epoch, we consecutively sample all words in a
diagonal line of DW , then all timestamp–topic assignments in
a corresponding diagonal line of DTS.

Similar to the parallel algorithm for LDA, load balancing is
a critical problem in this algorithm. Our partitioning algorithm
is easy to apply to BoT. We treat the matrices DTS and DW
equivalently, so we define a workload matrix R′ corresponding
to R. In R′, rows still correspond to documents but columns
correspond to timestamps. With these differences noted, we
apply the same partitioning algorithm to R′ and obtain P ×P
partitions for the DTS matrix as J ′1, . . . , J

′
P and V ′1 , . . . , V

′
P .

V. EXPERIMENTAL SETTINGS

A. Datasets

For experiments on our partitioning algorithms for LDA,
we used the two popular datasets NIPS and NYTimes1. These
datasets were preprocessed by removing stop words but not
stemming.

To experiment with BoT, we needed a dataset with time
information. We therefore built a dataset from Microsoft
Academic Research2 (MAS), which contains over 1,000,000
scientific publications in the computer science domain from
1951 to 2010. Each document has a title and an abstract. We
removed stop words and applied the Lovins stemmer using
Weka3 [6]. Table I shows the statistics of our datasets.

TABLE I. DATASETS.

Dataset NIPS NYTimes MAS
Documents, D 1500 300,000 1,182,744

Unique words (Not Stemmed), W 12,419 102,660 728,546
Unique words (Stemmed), W N/A N/A 402,252

Word instances, N 1,932,365 99,542,125 92,531,014
Unique timestamps, WTS N/A N/A 60

First timestamp N/A N/A 1951
Last timestamp N/A N/A 2010

B. Measurement metrics

To measure the efficiency of partitioning algorithms, we
computed the load-balancing ratio η as defined in Section

1http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
2http://academic.research.microsoft.com
3http://www.cs.waikato.ac.nz/ml/weka

III-B. To our knowledge, the algorithm proposed by Yan et
al. is currently the best algorithm [16]. We used this algorithm
as the baseline to evaluate our algorithms.

We also wanted to confirm that parallelization does not
affect the quality of extracted topics. To do this, we compare
the perplexity computed from the nonparallel and parallel
algorithms. Lower perplexity indicates that the model has
better ability to describe data. For simplicity, we use training
set perplexity defined as:

Perp(x) = exp(− 1

N
log p(x)), (3)

with
log p(x) =

∑
ji

log
∑
k

θk|jφxji|k. (4)

C. Model parameters

For both LDA and BoT, we set Number of topics = 256.
The hyperparameters were selected based on the suggestions in
the LDA and BoT papers [2], [8]. For LDA, α = 0.5, β = 0.1.
For BoT, γ = 0.1. The length of the timestamp array was set
to L = 16. These settings are not critical in our experiments.

We ran each model until it converged. As we observed, this
required no more than 200 sampling iterations for the burn-in
period for all three datasets.

We repeated algorithm A3 100 times on NIPS and NY-
Times. On MAS dataset, we repeated algorithm A3 100 times
for R matrix and 200 times for R′ matrix.

Our experimental program was developed based on the Java
source code for nonparallel collapsed Gibbs sampling LDA
provided by Phan et al. [11].

VI. RESULTS AND DISCUSSION

A. Partitioning algorithms

We show the load-balancing ratios η achieved by the
proposed algorithms and by the baseline algorithm. Table
II shows results for the NIPS dataset. The three proposed
algorithms all gave better results than the baseline algorithm.
Algorithm A3 gave the highest η and the two deterministic
algorithms A1 and A2 gave quite good results.

TABLE II. LOAD-BALANCING RATIO FOR NIPS.

P 1 10 30 60
Baseline algorithm 1.0 0.9500 0.7800 0.5700

Algorithm A1 1.0 0.9613 0.8657 0.7126
Algorithm A2 1.0 0.9633 0.8568 0.7097
Algorithm A3 1.0 0.9800 0.8929 0.7553

Table III shows results for the NYTimes dataset. Again,
algorithm A3 gave the best results in all experiments. The other
two deterministic algorithms A1 and A2 gave very competitive
results, which are approximate to the baseline algorithm when
P = 10 and P = 30 but are higher when P = 60.

B. Parallel learning BoT

Here we present the results for our parallel algorithm
with BoT. Table IV shows the perplexity of nonparallel BoT
compared with parallel BoT. The perplexity is approximately

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://academic.research.microsoft.com
http://www.cs.waikato.ac.nz/ml/weka

TABLE III. LOAD-BALANCING RATIO ON NYTIMES.

P 1 10 30 60
Baseline algorithm 1.0 0.9700 0.9300 0.8500

Algorithm A1 1.0 0.9559 0.9270 0.9011
Algorithm A2 1.0 0.9626 0.9439 0.9175
Algorithm A3 1.0 0.9981 0.9901 0.9757

the same for all cases, i.e., parallelization does not affect
the quality of extracted topics. Interestingly, the parallel algo-
rithm achieves a slightly better perplexity than the nonparallel
version. This is similar to results reported for other parallel
algorithms [5], [10].

TABLE IV. PERPLEXITY OF BOT FOR THE MAS DATASET.

Algorithm Nonparallel Parallel P = 10 Parallel P = 30
Perplexity 595.2567 595.0593 593.9016

C. Discussion

For data partitioning-based parallel algorithms, the over-
heads are mostly because of load-balancing problems. Hence,
the speedup factor is approximately η×P [16]. Improving the
load-balancing ratio η directly improves the speedup factor.
When η is close to one, these parallel algorithms achieve a
near-linear speedup.

As we lacked a dedicated server for the experimental
environment, we did not record the exact running time of
each algorithm. However, in most cases, the running times of
partitioning algorithms are small. Typically, Algorithm A3’s
running time is two orders of magnitude faster than the model
training time. Running times for algorithms A1 and A2 are
two orders of magnitude faster than those of other randomized
algorithms, such as Algorithm A3 and Yan et al.’s algorithm.

The partitioning algorithms improve the efficiency of the
parallel algorithm but do not affect the quality of the extracted
topics. The perplexities resulting from parallel algorithms are
almost unchanged and even slightly better. This could be
explained that parallelization adds stochasticity to the model,
similarly to other stochastic algorithms, to give a better result
[5], [12].

As we can see, the deterministic algorithms A1 and A2 are
quite good in most cases, and they run much more quickly than
the randomized counterparts. They should therefore be used in
the first place to find whether the load-balancing ratio is good
enough. If better load balancing is required, we would use the
randomized algorithm A3, which is guaranteed to achieve a
higher η but requires longer running time.

VII. CONCLUSION

In this paper, we have addressed the load-balancing prob-
lem in the parallelization of topic modeling. We developed
three partitioning algorithms that either run more quickly or
achieve better load balance than current algorithms. Two de-
terministic algorithms give good results and run more quickly
than the baseline algorithm by two orders of magnitude. The
other algorithm is a randomized algorithm that is guaranteed
to give much better results but requires running time similar
to the baseline algorithm.

These algorithms can easily be extended to other models
similar to LDA. We demonstrate their extensibility by design-
ing a parallel algorithm for BoT and apply our partitioning
algorithms to improve its parallelization efficiency.

We tested our ideas on two popular datasets NIPS and
NYTimes. We also built a dataset containing scientific publi-
cations with time information and showed how to analyze this
dataset using BoT. The experimental results strongly confirm
the advantages of our algorithms.

The proposed algorithms have the potential to improve the
applicability of topic modeling, especially advanced models
like BoT, on large-scale text data, such as scientific pub-
lications. Improving the parallelization efficiency of topic
modeling is still an open problem, especially on advanced topic
models, and so is an interesting topic for future research.

REFERENCES

[1] D. M. Blei and J. D. Lafferty. Dynamic topic models. In Proceedings of
the 23rd international conference on Machine learning, pages 113–120.
ACM, 2006.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[3] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[4] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings
of the National Academy of Sciences, 101(suppl 1):5228–5235, 2004.

[5] A. Ihler and D. Newman. Understanding errors in approximate
distributed latent dirichlet allocation. Knowledge and Data Engineering,
IEEE Transactions on, 24(5):952–960, 2012.

[6] J. B. Lovins. Development of a stemming algorithm. Technical report,
DTIC Document, 1968.

[7] T. Masada, T. Hamada, Y. Shibata, and K. Oguri. Accelerating collapsed
variational bayesian inference for latent dirichlet allocation with nvidia
cuda compatible devices. In Next-Generation Applied Intelligence,
pages 491–500. Springer, 2009.

[8] T. Masada, A. Takasu, T. Hamada, Y. Shibata, and K. Oguri. Bag
of timestamps: A simple and efficient bayesian chronological mining.
In Advances in Data and Web Management, pages 556–561. Springer,
2009.

[9] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algo-
rithms for topic models. The Journal of Machine Learning Research,
10:1801–1828, 2009.

[10] D. Newman, P. Smyth, M. Welling, and A. U. Asuncion. Distributed in-
ference for latent dirichlet allocation. In Advances in neural information
processing systems, pages 1081–1088, 2007.

[11] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning to classify
short and sparse text & web with hidden topics from large-scale data
collections. In Proceedings of the 17th international conference on
World Wide Web, pages 91–100. ACM, 2008.

[12] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 693–701, 2011.

[13] A. Smola and S. Narayanamurthy. An architecture for parallel topic
models. Proceedings of the VLDB Endowment, 3(1-2):703–710, 2010.

[14] P. Smyth, M. Welling, and A. U. Asuncion. Asynchronous distributed
learning of topic models. In Advances in Neural Information Processing
Systems, pages 81–88, 2009.

[15] X. Wang and A. McCallum. Topics over time: a non-markov
continuous-time model of topical trends. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 424–433. ACM, 2006.

[16] F. Yan, N. Xu, and Y. Qi. Parallel inference for latent dirichlet allocation
on graphics processing units. In Advances in Neural Information
Processing Systems, pages 2134–2142, 2009.

	I Introduction
	II Related Work
	III Problem Definition
	III-A Parallel algorithm and partitioning scheme
	III-B Load-balancing problem

	IV Proposed Approach
	IV-A Heuristics
	IV-B Partitioning algorithms
	IV-C Parallel algorithm for BoT

	V Experimental Settings
	V-A Datasets
	V-B Measurement metrics
	V-C Model parameters

	VI Results and Discussion
	VI-A Partitioning algorithms
	VI-B Parallel learning BoT
	VI-C Discussion

	VII Conclusion
	References

