
Abstract†

In this paper, we propose a parallel randomized
algorithm, calledParallel Fast Assignment using Search
Technique(PFAST), for scheduling parallel programs
represented by directed acyclic graphs (DAGs) during
compile-time. The PFAST algorithm has  time
complexity wheree is the number of edges in the DAG.
This linear-time algorithm works by first generating an
initial solution and then refining it using a parallel random
search. Using a prototype computer-aided parallelization
and scheduling tool called CASCH, the algorithm is found
to outperform numerous previous algorithms while taking
dramatically smaller execution times. The distinctive
feature of this research is that, instead of simulations, our
proposed algorithm is evaluated and compared with other
algorithms using the CASCH tool with real applications
running on the Intel Paragon. The PFAST algorithm is also
evaluated with randomly generated DAGs for which
optimal schedules are known. The algorithm generated
optimal solutions for a majority of the test cases and close-
to-optimal solutions for the others. The proposed
algorithm is the fastest scheduling algorithm known to us
and is an attractive choice for scheduling under running
time constraints.

Keywords: Compile-Time Scheduling, Task Graphs,
Multiprocessors, Parallel Processing, Parallel
Programming Tool, Parallel Algorithm, Random Search.

1  Introduction
To efficiently exploit the tremendous potential of

parallel architectures, the tasks of a parallel program must
be carefully decomposed and scheduled to the processors
so that the program completion time is minimized. When
the characteristics of the parallel program, such as
execution times of the tasks, amount of communication
data, and task dependencies are knowna priori, the
parallel program can be modeled as a node- and edge-
weighteddirected acyclic graph (DAG) , in
which V is the set of nodes‡ and E the set of edges,

†. This research was supported by the Hong Kong Research Grants
Council under contract number HKUST179/93E.

representing tasks and messages, respectively. The weight
associated with a node represents the amount of execution
time of the corresponding task and the weight associated
with an edge represents the amount of communication
time. An example DAG is shown in Figure 1 ( ‘s are the
indices of nodes). With such astaticmodel, the scheduler
is invoked off-line during compile-time and thus can
afford moderate time complexity in order to generate a
better schedule. This form of multiprocessor scheduling
problem is calledstatic schedulingor DAG scheduling [1],
[4], [6], [8], [15]. Static scheduling, even with a very
simple model, is an NP-complete problem [5], [7]. For
instance, the problem is NP-complete even in two models:
(1) scheduling unit-weighted tasks to an arbitrary number
of processors [7], (2) scheduling one or two unit-weighted
tasks to two processors [5]. Optimal solutions exist only in
three simple cases: (i) scheduling a tree-structured DAG
with identical node weights to an arbitrary number of
processors [5], (ii) scheduling an arbitrary DAG with
identical node weights to two processors [5], and (iii)
scheduling an interval-ordered DAG to an arbitrary
number of processors [5]. However, even in these cases, no
communication is assumed among the tasks of the parallel
program. Thus, heuristic approaches are sought to tackle
the problem under more realistic cases in a reasonable
amount of time [8], [11], [15], [16].

While it is understood that static scheduling is doneoff-
line and therefore some extra time can be afforded in
generating a better solution, the time-complexity of a
scheduling algorithm is an important issue from a practical
point of view. Although there are a large number of
scheduling heuristics suggested in the literature and many
of them can generate good solutions, few have a low time-
complexity [6], [10], [13], [14], [18]. As such most of the
algorithms may be inapplicable for practical purposes. In a
recent study [2], we compared 21 recently reported
algorithms and made a number of observations. For
example, we found that an  algorithm may take more
than an hour to produce a schedule for a DAG with 1,000

‡. Throughout the paper we denote  and  byv ande, respec-
tively.
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nodes, a typical size for many applications [2], [20].
Taking such a large amount of time to generate a solution
for an application is a major hurdle in incorporating these
algorithms in parallelizing compilers. On the other hand,
some algorithms have low time-complexity but their
solution quality is not satisfactory [2]. Thus, an algorithm
which meets the conflicting goals of high performance and
low time-complexity is highly desired. In this regard,
Yang and Gerasoulis [21] proposed some novel techniques
for reducing the time-complexity of scheduling
algorithms. Our objective is to design an algorithm that has
a comparable or lower complexity while producing better
solutions.

In this paper, we propose a low complexity scheduling
algorithm calledParallel Fast Assignment using Search
Technique(PFAST) which has  time-complexity
and is a parallel algorithm. The PFAST algorithm is based
on an effective search technique. The linear-time
algorithm first generates an initial solution and then refines
it using a random neighborhood search technique. In
addition to simulation studies, the algorithm is evaluated
using a prototype computer-aided parallelization and
scheduling tool called CASCH (Computer-Aided
SCHeduling) [3], with real applications running on the
Intel Paragon. The PFAST algorithm outperforms
numerous previous algorithms while its execution times
are dramatically smaller. Indeed, based on our
experimental results, the PFAST is the fastest scheduling
algorithm known to us. The algorithm is also evaluated
using random task graphs for which optimal solutions are
known. The PFAST algorithm generated optimal solutions
for a significant portion of the test cases and close-to-
optimal solutions for the other cases. Furthermore, the
algorithm is scalable in that it exhibits an almost linear
speedup. The PFAST algorithm is therefore an attractive
choice for generating high quality schedules in a parallel
processing environment under running time constraints.

This paper is organized as follows. In Section 2, we
first discuss the trade-off between more complexity and
better performance. In the same section we introduce the
idea of using neighborhood search to improve the
scheduling performance. In Section 3 we describe the
proposed PFAST algorithm and its design principles. In
Section 4 we present a detailed example to illustrate the
functionality of the algorithms. Section 5 contains the
performance results of the PFAST algorithms as well as a
comparison with other algorithms. The final section
concludes this paper.

2  Related Work and Motivation of a New
Approach

Traditional DAG scheduling algorithms attempt to
minimize the schedule length through local optimizations
of the scheduling of individual nodes. However, most of
the local optimization strategies are not effective in
general in that most algorithms minimize the start-time of
a node at each scheduling step. These algorithms differ
only in the way of selecting a node for scheduling. Some
of them construct a list of nodes before scheduling starts
(as in the list scheduling algorithms like the MCP
algorithm [20]) while some of them dynamically select
nodes for scheduling (e.g., the DLS algorithm [19]).
However, in an optimal schedule, some nodes may have to
start later than the earliest possible time. Thus, like most
algorithms of a greedy nature, these scheduling algorithms
cannot avoid making a local decision which may lead to a
sub-optimal schedule. As backtracking is not employed in
order not to incur high complexity, a mistake made in an
earlier step may not be remedied in later steps.

To obtain an optimal schedule, we have to tackle the
scheduling problem from a global perspective. However,
global information is usually obtained at the expense of
high time-complexity. To obtain such global information,
we can use the characteristics of the task graph such as the
graph structure and the relative magnitudes of the node and
edge weights. Using such attributes, we can decide, from a
global point of view, which nodes in the task graph deserve
special attention so that eventually an optimal schedule
can be constructed. For instance, some previously reported
scheduling algorithms is based on a global characteristic
structure of the task graph, namely, thecritical path (CP).
A CP is a path with the maximum sum of node and edge

O e v+( ) Figure 1: A simple DAG.
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weights or simply, the maximumlength. Thus, if an
unlimited number of processors are available, the length of
the CP provides an upper bound on the schedule length. In
light of this attractive property, most scheduling
algorithms assign higher priorities to nodes of the CP for
scheduling. For example, in most list scheduling
algorithms, a node on the CP occupies an earlier position
in the scheduling list. However, while the CP length
provides an upper bound on the schedule length, making
all the nodes on the CP start at the earliest possible time
does not guarantee an optimal schedule. In fact, if the edge
weights are much larger than the node weights in general,
such a strategy can even lead to a bad schedule [2].

To meet the conflicting goals of high performance and
high efficiency, we employ an effective optimization
technique—neighborhood search [17]. In simple terms, in
a neighborhood search algorithm, an initial solution with
moderate quality is quickly generated. Then, according to
some pre-defined neighborhood, the algorithm
probabilistically selects and tests whether a near-by
solution in the search space is better or not. If it is better,
adopt it and start searching in the new neighborhood;
otherwise, select another solution point. Usually the
algorithm stops after a specified number of search steps
has elapsed or the solution does not improve after a fixed
number of steps. The success of such neighborhood search
techniques chiefly relies on the construction of the solution
neighborhood. A judiciously constructed neighborhood
can potentially lead the search to attain the global optimal
solution.

3  The Proposed Algorithm
In this section, we present the proposed PFAST

algorithm and its design principles. To facilitate
understanding of the neighborhood search technique, we
first restrict the discussion to the sequential version of the
PFAST algorithm, which is referred to as simply the FAST
algorithm. We then describe the parallelization technique
leading to the PFAST algorithm. A detailed scheduling
example will be presented in Section 4.

3.1  A Solution Neighborhood Formulation
Neighborhood search is an old but effective

optimization technique. The principle of neighborhood
search is to refine a given initial solution point in the
solution space by searching through the neighborhood of
the initial solution point. To apply the neighborhood
search technique to the DAG scheduling problem, we have
to define a neighborhood of the initial solution point (i.e.,
the initial schedule). We can arrive at such a neighborhood
definition by using the observation discussed below.

A simple neighborhood point of a schedule in the
solution space can be defined as another schedule which is
obtained by transferring a node from a processor to another
processor. In the DAG scheduling problem, one method of
improving the schedule length is to transfer ablocking-
node from one processor to another. The notion of
blocking is simple—a node is called blocking if removing
it from its original processor can make the succeeding
nodes start earlier. In particular, we are interested in
transferring the nodes that block the CPNs (CP nodes)
because the CPNs are the more important nodes. However,
high complexity will result if we attempt to locate the
actual blocking-nodes on all the processors. Thus, in our
approach, we only generate a list ofpotential blocking-
nodes which are the nodes that may block the CPNs.
Again, to maintain a low complexity, the blocking-nodes
list is static and is constructed before the search process
starts. A natural choice of blocking-nodes list is the set of
IBNs and OBNs† (with respect to an initial CP) because
these nodes have the potential to block the CPNs in the
processors. In the schedule refinement phase, the
blocking-nodes list defines the neighborhood that the
random search process will explore. The size of such a
neighborhood is  because there are  blocking-
nodes andp processors.

3.2  Scheduling Serially
To generate an initial schedule, we employ the

traditional list scheduling approach—construct a list and
schedule the nodes on the list one by one to the processors.
The list is constructed by ordering the nodes according to
the node priorities. The list is static so that the order of
nodes on the list will not change during the scheduling
process. The reason is that as the objective of our
algorithm is to produce a good schedule in  time,
we do not re-compute the node priorities after each
scheduling step while generating the initial schedule.
Certainly, if the schedule length of the initial schedule is
optimized, the subsequent random search process can start
at a better solution point and thereby generate a better final
schedule.

In the FAST algorithm, we use the CPN-Dominant List
as the scheduling list. The CPN-Dominant List can be
constructed in  time since each edge is visited
only once.

Construction of the CPN-Dominant list:
(1) Initially, the list is empty. Make the entry CPN

be the first node in the list. SetPosition to 2.

†. An IBN (In-Branch Node) is an ancestor of a CPN but is not a
CPN in itself. An OBN (Out-Branch Node) is a node which is nei-
ther a CPN nor an IBN.
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Let  be the next CPN.
Repeat
(2) If  has all its parent nodes in the listthen
(3) Put  atPosition in the list and increment

Position.
(4) else
(5) Let  be the parent node of  which is

not in the sequence and has the largestb-
level†. Ties are broken by choosing the
parent with a smallert-level. If  has all its
parent nodes in the sequence, put  at
Position in the sequence and increment
Position. Otherwise, recursively include all
the ancestor nodes of  in the sequence so
that the nodes with a larger value ofb-level
are considered first.

(6) Repeat the above step until all the parent
nodes of  are in the list. Then put  at
Position in the list.

(7) endif
(8) Make  to be the next CPN.

Until  all the CPNs are in the list.
(9) Append all the OBNs to the sequence in a

decreasing order ofb-level.

Using the CPN-Dominant List, we can schedule the
nodes on the list one after another to the processors. Again,
in order not to incur high complexity, we do not search for
the earliest slot on a processor but simply schedule a node
to the ready-time of a processor. Initially, the ready-time of
all available processors is zero. After a node is scheduled
to a processor, the ready-time of that processor is updated
to the finish-time of the last node. By doing so, a node is
scheduled to a processor that allows the earliest start-time,
which is determined by checking the processor’s ready-
time with the node’s data arrival time (DAT). The DAT of
a node can be computed by taking the maximum value
among the message arrival times across the parent nodes.
If the parent is scheduled to the same processor as the
node, the message arrival time is simply the parent’s
finish-time; otherwise it is equal to the parent’s finish-time
(on a remote processor) plus the communication cost of the
edge. Not all processors need to be checked in this process.
Instead, we can examine the processors accommodating
the parent nodes together with an empty processor (if any).
The procedure for generating the initial schedule can be
formalized below.

InitialSchedule:
(1) Construct the CPN-Dominant List;

Repeat

†. Theb-level of a node is the length (sum of the computation and
communication costs) of the longest path from this node to an exit
node. Thet-level of a node is the length of the longest path from
an entry node to this node (excluding the cost of this node)

(2) Remove the first node  from the list;
(3) Schedule  to the processor, among the

processors accommodating the parent nodes of
 together with a new processor (if any), that

allows the earliest start-time by checking ’s
DAT with the ready-times of the processors;

Until  the list is empty;

The time-complexity ofInitialSchedule is derived as
follows. The first step takes  time. In the repeat
loop, the dominant step is the procedure to determine the
data arrival time of a node. The cumulative time-
complexity of this step throughout the execution of the
repeat loop is also  because each edge is visited
once. Thus, the overall time-complexity ofInitialSchedule
is also .

Given the procedureInitialSchedule we present the
sequential version of our neighborhood search algorithm.
In order to avoid the algorithm being trapped in a local
optimal solution, we incorporate a probabilistic jump
procedure in the algorithm. The FAST algorithm is
outlined below.

The FAST Algorithm:
(1) NewSchedule = InitialSchedule
(2) Construct the blocking-nodes list which

contains all the IBNs and OBNs;
(3) BestSL = infinity; searchcount = 0;
(4) repeat
(5) searchstep = 0;counter =0;
(6) do { /* neighborhood search */
(7) Pick a node  randomly from the

blocking-nodes list;
(8) Pick a processorP randomly;
(9) Transfer  toP;
(10) If schedule length does not improve,

transfer  back to its original processor
and incrementcounter; otherwise, set
counterto 0;

(11) } while (searchstep++ < MAXSTEP and
counter< MARGIN);

(12) if BestSL > SL(NewSchedule)then
(13) BestSchedule = NewSchedule
(14) BestSL = SL(NewSchedule)
(15) endif
(16) NewSchedule = Randomly pick a node

from the CP and transfer it to another
processor; /* probabilistic jump */

(17) until  (searchcount++ > MAXCOUNT);

The total number of search-steps is
. While the number of search

steps in each iteration is bounded by MAXSTEP, the
algorithm will also terminate searching and proceed to the
step of probabilistic jump if the solution does not improve
within a specified number of steps, denoted as MARGIN.
This is done in order to further enhance the expected
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efficiency of the algorithm.

The reason of making MAXSTEP, MARGIN, and
MAXCOUNT as constants is two-fold. First, the prime
objective in the design of the algorithm is to keep the time-
complexity low even when the size of the input graph is
huge. Second, the major strength of the FAST algorithm
lies in its ability to generate a good initial solution by using
the CPN-Dominant List. As such, the likelihood of
improving the initial solution dramatically by using large
number of search steps is not high. Thus, we fix MARGIN
to be 2, MAXSTEP to be 8, and MAXCOUNT to be 64.

The time-complexity of the sequential FAST algorithm
is determined as follow. As discussed earlier, the
procedure InitialSchedule() takes  time. The
blocking-nodes list can be constructed in  time as the
IBNs and OBNs are already identified in the procedure
InitialSchedule(). In the main loop, the node transferring
step takes  time since we have to re-visit all the
edges once after transferring the node to a processor in the
worst case. Thus, the overall time-complexity of the
sequential algorithm is .

3.3  Parallel Probabilistic Search
The parallelization of the neighborhood search is based

on a partitioning of the blocking-nodes set intoq subsets,
whereq is the number of availablephysical processing
elements(PPEs), on which the PFAST algorithm is
executed. Each PPE then performs a neighborhood search
using its own blocking-nodes subset. The PPEs
communicate periodically to exchange the best solution
found thus far and start new search steps based on the best
solution. The period of communication for the PPEs is set
to be T number of search-steps, which follows an

exponentially decreasing sequence: initially , then

, , and so on, where . The

rationale is that at early stages of the search, exploration is
more important than exploitation. The PPEs should,
therefore, work independently for longer period of time.
However, at final stages of the search, exploitation is more
important so that the PPEs should communicate more
frequently.

The PFAST algorithm is outlined below.

The PFAST Algorithm:
(1) if myPPE() == masterthen
(2) Determine the initial schedule;
(3) Construct the blocking-nodes set;
(4) Partition the blocking-nodes set intoq

subsets which are ordered topologically;
(5) endif

(6) Every PPE receives a blocking-nodes subset
and the initial schedule;

(7) repeat
(8)
(9) repeat /* search */
(10) Run FAST to search for a better

schedule;

(11) until  searchcount > ;

(12) Exchange the best solution;
(13) until  total searchcount =MAXCOUNT;

In the PFAST algorithm, one PPE is designated as the
master, which is responsible for preprocessing work
including construction of an initial schedule, the blocking-
nodes set, and the subsets.

Since the total number of search-steps is evenly
distributed to the PPEs, the PFAST algorithm should have
linear speedup over the sequential FAST algorithm if
communication takes negligible time. However, inter-PPE
communication inevitably takes significant amount of
time and the ideal case of linear speedup is not achievable.
But the solution quality of PFAST can be better than that
of the sequential FAST algorithm. This is because the
PPEs explore different parts of the search space
simultaneously through different neighborhoods induced
by the partitions of the blocking-nodes set. The sequential
FAST algorithm, on the other hand, has to handle a much
larger neighborhood for the same problem size.

4  A Scheduling Example
To see how the procedureInitialSchedule works,

consider the DAG shown earlier in Figure 1. The attributes
used by the other four algorithms are also shown in Figure
2. The CPN-Dominant List of the DAG is

. Note that  is considered
after  because  has a smaller value oft-level. Using
the CPN-Dominant List, the initial schedule produced by
InitialSchedule is shown in Figure 3(a). The schedule
length generated byInitialSchedule is already short,
despite its simple scheduling strategy.
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To illustrate the effectiveness of the neighborhood
search process, consider the initial schedule shown in
Figure 3(a). The blocking-nodes list of the DAG is

. We can notice that the node
blocks the CPN . In the random search process it is
highly probable that  is selected for transferring.
Suppose it is transferred from PE 1 to PE 3. The resulting
schedule is shown in Figure 3(b), from which we can see
that despite the increased start times of  and , the final
schedule length is nonetheless shortened.

5  Performance Results
In our study, by using a prototype computer-aided

scheduling tool called CASCH, we compared our
proposed algorithm with four related scheduling
algorithms: the Mobility Directed (MD) algorithm [20],
the Earliest Task First (ETF) algorithm [9], the Dynamic
Level Scheduling (DLS) algorithm [19], and the Dominant
Sequence Clustering (DSC) algorithm [21]. We chose the
DSC, MD, ETF, and DLS algorithms out of 14 algorithms
which we compared in a previous study [3]. The
comparison of FAST with these algorithms provides an
indirect comparison with the remaining 10 algorithms.

In this section we first present the performance results
of the sequential FAST algorithm and compare it with
those of DSC, MD, ETF, and DLS algorithms using a
prototype parallelization tool. In Section 5.3 we present

the performance results of the PFAST algorithm by using
two suites of random task graphs for which optimal
solutions are known. In Section 5.4 we present the results
of applying the algorithm to large DAGs. For comparison,
the results of the DLS, DSC, and ETF algorithms are also
shown.

5.1  CASCH
We performed experiments using the CASCH tool,

which generates a task graph from a sequential program,
uses a scheduling algorithm to perform scheduling, and
then generates the parallel code in a scheduled form for the
Intel Paragon. The timings for the nodes and edges on the
DAG are assigned through a timing database which was
obtained through profiling. CASCH also provides a
graphical interface to interactively run and test various
algorithms including the ones discussed in this paper.
Instead of only measuring the schedule length through a
Gantt chart, we measure the running time of the scheduled
code on the Paragon. Various scheduling algorithms,
therefore, can be more accurately tested and compared
through CASCH using real applications on an actual
machine. The reader is referred to [2] for details about the
tool.

In addition, in order to examine the performance of the
algorithm given very large graphs which can arise in
practice, we performed experiments with randomly
generated large DAGs consisting of thousands of nodes.

5.2  Parallel Applications
In our first experiment we tested the FAST algorithm

with the DAGs generated from three real applications:
Gaussian elimination, Laplace equation solver and Fast
Fourier Transform (FFT) [3]. The Gaussian elimination
and Laplace equation solver applications operate on
matrices. Thus, the number of nodes in the DAGs
generated from these applications are related to the matrix
dimensionN and is about . On the other hand, the
FFT application accepts the number of points as input. We
examined the performance in three aspects: application
execution time, number of processors used and the
scheduling algorithm running time.

The results for the Gaussian elimination are shown in
Figure 4. In Figure 4(a), we normalized the application
execution times obtained through all the algorithms with
respect to those obtained through the FAST algorithm. It
was shown that the programs scheduled by the FAST
algorithm are 3% to 15% faster than the other algorithms.
Note that the results of the DSC algorithm for matrix
dimensions 16 and 32 were not available because the DSC
used more than the available Paragon processors in
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scheduling the parallel program. This can be explicated by
the fact that the DSC algorithm uses  processors.
Concerning the number of processors used, the FAST,
ETF and DLS algorithms used about the same amount of
processors. The number of processors used by all the
algorithms is shown in Figure 4(b). The scheduling times
of all the algorithms are shown in Figure 4(c) indicating
that the DSC algorithm was the fastest algorithm with the
proposed FAST algorithm very close to it. On the other
hand, the ETF and DLS algorithms running times are
relatively large but they were much faster than the MD
algorithm. This is because the MD algorithm is about
times slower than the other algorithms.

The results for the Laplace equation solver are shown
in Figure 4, from which we can see that the percentage
improvements of the FAST algorithm over the other
algorithms is up to 25%. As to the number of processors
used, the FAST, MD, ETF and DLS algorithms

demonstrated similar performance with the DSC algorithm
again uses more processors than the other algorithms. For
the scheduling times, the FAST algorithm is the fastest
among all the algorithms. The MD algorithm is again
times slower than the other algorithms.

The results for the FFT are shown in Figure 4. The
FAST algorithm is again better than all the other four
algorithms in terms of the application execution times and
scheduling times.

5.3  Comparison against Optimal Solutions
In this section, we present the performance results of

the PFAST algorithm. We implemented the PFAST
algorithm on the Intel Paragon using the C language and
tested it using different suites of synthetic task graphs. Our
aim is to investigate the absolute solution quality of the
algorithm by applying it to two different sets of random
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(a) Normalized execution times of
Gaussian elimination on the Intel Paragon.

(b) Number of Processors used
for the Gaussian elimination.
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Figure 4: Normalized execution times, number of
processors used, and scheduling algorithm running times for
the Gaussian elimination for all the scheduling algorithms.
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O v( )

O v( )

O v( )

FAST
DSC
MD
ETF
DLS

1.00 1.00 1.00 1.00
1.00 1.09 1.13 1.21
1.00 1.12 1.15 1.25
1.00 1.11 1.14 1.24
1.00 1.10 1.13 1.23

4 8 16 32Algorithm

FAST
DSC
MD
ETF
DLS

1 4 7 14
1 13 37 64
1 5 8 13
1 5 8 16
1 5 8 15

4 8 16 32Algorithm

(b) Number of Processors used
for the Laplace equation solver.

FAST
DSC
MD
ETF
DLS

0.05 0.09 0.35 1.28
0.07 0.11 0.40 4.29
6.23 7.64 111.46 768.90
0.04 0.05 0.28 3.06
0.06 0.11 0.55 5.33

4 (18) 8 (66) 16 (258) 32 (1026)Algorithm

Matrix Dimension (Number of Tasks)

(c) Scheduling times (sec) on a SPARC
Station 2 for the Laplace equation solver.

Matrix Dimension

Matrix Dimension

(a) Normalized execution times of Laplace
equation solver on the Intel Paragon.

Figure 5: Normalized execution times, number of processors
used, and scheduling algorithm running times for the
Laplace equation solver for all the scheduling algorithms.
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task graphs for which optimal solutions are known. As no
widely accepted benchmark graphs exist for the DAG
scheduling problem, we believe using random graphs with
diverse parameters is appropriate for testing the
performance of the algorithm.

The first suite of random task graphs consists of three
sets of graphs with different CCRs: 0.1, 1.0, and 10.0. Each
set consists of graphs in which the number of nodes vary
from 10 to 32 with increments of 2, thus, totalling 12
graphs per set. The graphs within the same set have the
same value of CCR. The graphs were randomly generated
as follows: First the computation cost of each node in the
graph was randomly selected from a uniform distribution
with mean equal to 40 (minimum = 2 and maximum = 78).
Beginning with the first node, a random number indicating
the number of children was chosen from a uniform
distribution with mean equal to , thus, the connectivity
of the graph increases with the size of the graph. The
communication cost of each edge was also randomly
selected from a uniform distribution with mean equal to 40

times the specified value of CCR. Hereafter this suite of
graphs is designated type-1 random task graphs.

To obtain optimal solutions for the task graphs, we
applied a parallel A* algorithm [12] to the graphs. Since
generating optimal solutions for arbitrarily structured task
graphs takes exponential time, it is not feasible to obtain
optimal solutions for large graphs. On the other hand, to
investigate the scalability of the PGS algorithm, it is
desirable to test it with larger task graphs for which
optimal solutions are known. To resolve this problem, we
employed a different strategy to generate the second suite
of random task graphs. Rather than trying to find out the
optimal solutions after the graphs are randomly generated,
we set out to generate task graphs withgiven optimal
schedule lengths and number of processors used in the
optimal schedules.

The method of generating task graphs with known
optimal schedules is as follows: Suppose that the optimal
schedule length of a graph and the number of processors
used are specified as  andp, respectively. For each
PE i, we randomly generate a number  from a uniform
distribution with mean . The time interval between 0 and

 of PEi is then randomly partitioned into  sections.
Each section represents the execution span of one task,
thus,  tasks are “scheduled” to PEi with no idle time slot.
In this manner,v tasks are generated so that every
processor has the same schedule length. To generate an
edge, two tasks  and  are randomly chosen such that

. The edge is made to emerge from  to
. As to the edge weight, there are two cases to consider:

(i) the two tasks are scheduled to different processors, and
(ii) the two tasks are scheduled to the same processor. In
the first case the edge weight is randomly chosen from a
uniform distribution with maximum equal to

 (the mean is adjusted according to the
given CCR value). In the second case the edge weight can
be an arbitrary positive integer because the edge does not
affect the start and finish times of the tasks which are
scheduled to the same processor. We randomly chose the
edge weight for this case according to the given CCR
value. Using this method, we generated three sets of task
graphs with three CCRs: 0.1, 1.0, and 10.0. Each set
consists of graphs in which the number of nodes vary from
50 to 500 in increments of 50; thus, each set contains 10
graphs. The graphs within the same set have the same
value of CCR. Hereafter we call this suite of graphs the
type-2 random task graphs.

Table 1 shows the results of the PFAST algorithm
using 1, 2, 4, 8, and 16 PPEs on the Intel Paragon. Using 1
PPE means that the algorithm is the sequential FAST

FAST
DSC
MD
ETF
DLS

1.00 1.00 1.00 1.00
1.03 1.08 1.10 1.15
1.04 1.09 1.11 1.17
1.02 1.08 1.10 1.15
1.03 1.07 1.09 1.14

16 64 128 512Algorithm

FAST
DSC
MD
ETF
DLS

5 12 9 23
5 12 13 25
5 10 6 21
3 10 11 11
7 10 11 11

16 64 128 512Algorithm

(b) Number of Processors used for the FFT.

FAST
DSC
MD
ETF
DLS

0.06 0.10 0.12 0.19
0.07 0.08 0.07 0.10
6.38 9.09 9.87 75.17
0.05 0.08 0.09 0.16
0.05 0.18 0.20 0.67

16 (14) 64 (34) 128 (82) 512 (194)Algorithm

Number of Points (Number of Tasks)

(c) Scheduling times (sec) on a SPARC Station 2 for FFT.

Number of Points

Number of Points

Figure 6: Normalized execution times, number of
processors used, and scheduling algorithm running
times for FFT for all the scheduling algorithms.

(a) Normalized execution times of FFT on the Intel Paragon.

v
10
------

SLopt

xi
v
p
---

SLopt xi

xi

na nb

FT na( ) ST nb( )< na

nb

ST nb( ) FT na( )–( )

Proceedings of the 1997 Conference on Parallel Architectures and Compilation Techniques (PACT '97) 
0-8186-8090-3/97 $10.00 © 1997 IEEE 



algorithm. It should be noted that for graphs of smaller
size, the blocking-nodes subsets of the PPEs are not
disjoint so as to make each subset contain at least 2 nodes.
In the table, the total number of optimal solutions
generated and the average percentage deviations (from the
optimal solutions) for each CCR are also shown. Note that
the average percentage deviations are calculated by
dividing the total deviations by the number of non-optimal
cases only. These average deviations thus indicate more
accurately the performance of the PFAST algorithm when
it is not able to generate optimal solutions. We notice that
the PFAST algorithm generated optimal solutions for a
significant portion of all the test cases. While the number
of optimal solutions is about the same for the three values
of CCR, the average deviations increase with the larger
values of CCR. The most important observation is that the
deviations do not vary much with increasing numbers of
PPEs used. For some of the graphs, the deviations do not
change for any number of PPEs used. An explanation for
this phenomenon is that the final solutions of such cases
can be reached within a few transferal of blocking-nodes.
Another observation is that when 16 PPEs were used, the
deviations of some cases increased. This is presumably
due to the small sizes of blocking-nodes subsets which
restrict the diversity of the random search. Finally we note
that the worst percentage deviation (for the case of
CCR=10.0, graph size=16) is within 30% from the
optimal. Thus, the PFAST algorithm has shown
reasonably high capability in generating near-to-optimal
solutions.

The average execution times and speedups of the
PFAST algorithm are shown in Figure 7. These averages
were computed across the three values of CCR. We notice
that the execution times of the PFAST algorithm using 1
PPE is already very short. Furthermore, the speedup
curves are quite flat indicating that the speedup of the
algorithm is not affected by increasing graph sizes.
Another observation is that the speedups are smaller than
the ideal linear speedups by a considerable margin. An
explanation for these two observations is that the sizes of
the type-1 random graphs are small so that the amount of
scheduling effort does not dominate the amount of inter-
PPE communication time. In other words, the inter-PPE
communication is a significant overhead that limits the
achievable speedups. However, even for such small
graphs, the PFAST algorithm exhibited reasonable
scalability.

Table 2 shows the results of the PFAST algorithm for
the type-2 random task graphs using 1, 2, 4, 8, and 16 PPEs
on the Intel Paragon. For these much larger graphs, the
PFAST algorithm generated only one optimal solution (the
case of CCR = 0.1, size = 50). However, an encouraging
observation is that the percentage deviations are small.
Indeed, the best deviation is only 2.43% and the worst only
45.01%, which can be considered as close-to-optimal. The
average deviations, which increase with increasing CCR,
are smaller than 30%. A very interesting observation is
that for some cases of larger task graphs (e.g., sizes larger
than 200), using more PPEs improve the schedule lengths.
For example, in the case of CCR = 0.1 and size = 300,

10
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22
24
26
28
30
32
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Avg. Dev.

Table 1: Results of the PFAST algorithm compared against optimal solutions (% deviations) for
the type-1 random task graphs with three CCRs using 1, 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR

No. of PPEs

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 5.05
0.00 0.00 0.00 0.00 14.12
29.26 29.26 29.26 29.26 29.26
18.90 18.90 18.90 18.90 31.00
0.00 0.00 0.00 0.00 0.00
7.96 7.96 7.96 7.96 10.95
21.35 21.35 21.35 21.35 35.06
16.22 16.22 16.22 16.22 27.68
23.00 23.00 23.00 23.00 23.00
13.70 13.70 13.70 13.70 13.70
29.60 29.60 29.60 29.60 29.60

1 2 4 8 16

10.0

4 4 4 4 2

20.00 20.00 20.00 20.00 21.94

0.00 0.00 0.00 0.00 5.56
7.29 7.29 7.29 7.29 12.92
7.76 7.76 7.76 7.76 10.01
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.33 0.33 0.33 0.33 0.33
4.31 4.31 4.31 4.31 4.31
14.06 14.06 14.06 14.06 14.06
6.50 6.50 6.50 6.50 9.88
12.58 12.58 12.58 12.58 12.58
19.86 19.86 19.86 19.86 19.86
10.44 10.44 10.44 10.44 10.44

1 2 4 8 16

1.0

3 3 3 3 2

9.24 9.24 9.24 9.24 10.00

0.00 0.00 0.00 0.00 0.00
8.67 8.67 8.67 8.67 11.05
0.00 0.00 0.00 0.00 8.07
13.64 13.64 13.64 13.64 13.64
12.99 12.99 12.99 12.99 12.99
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
13.50 13.50 13.50 13.50 13.50
9.45 9.45 9.45 9.45 15.10
0.00 0.00 0.00 0.00 0.00
10.01 10.01 10.01 10.01 15.28
13.70 13.70 13.70 13.70 17.67

1 2 4 8 16

0.1

5 5 5 5 4

11.71 11.71 11.71 11.71 13.41
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using 4 PPEs resulted in a deviation of 18.79% while using
8 PPEs gave a deviation of 16.56%. Using 16 PPEs further
decreased the deviation to 14.27%. This observation
implies that parallelization of a search algorithm can
potentially improve the solution quality. This is due to the
partitioning of the search neighborhood which lets the
search to explore different regions of the search space
simultaneously, thereby increasing the likelihood of
getting better solutions. There are a few cases in which
using more PPEs resulted in an increased deviations,
however. For example, for the case of CCR = 10.0 and size
= 300, using 4 PPEs gave a deviation of 34.06%, while
using 8 PPEs improved the deviation to 25.67%. However,
when 16 PPEs were used, the deviation was only 29.43%,
which is worse than that of using 8 PPEs but better than
that of using 4 PPEs.

The average execution times and speedups of the
PFAST algorithm for the type-2 random task graphs are
shown in Figure 8. Compared with the speedup plots
shown earlier in Figure 7, the speedups for type-2 task
graphs are considerably higher. This is due to the fact that
inter-PPE communication for larger task graphs is not a
significant overhead. Again the PFAST demonstrated
reasonably good scalability even for task graphs with 500
nodes.

Based on the above results we can conclude that the
PFAST algorithm is suitable for finding high quality
schedules for large task graphs under strict running times
requirements.

5.4  Large DAGs
To test the scalability and robustness of the FAST
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Table 2: Results of the PFAST algorithm compared against optimal solutions (% deviations) for
the type-2 random task graphs with three CCRs using 1, 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR

No. of PPEs

29.26 29.26 29.26 29.26 29.26
45.01 45.01 45.01 45.01 45.01
17.13 17.13 17.13 17.13 17.13
20.34 20.34 20.34 15.28 13.57
34.06 34.06 34.06 25.67 29.43
22.93 22.93 22.93 15.84 14.45
38.94 38.94 38.94 33.86 22.53
26.58 26.58 26.58 18.79 14.31
33.95 33.95 33.95 24.65 19.46
35.97 35.97 35.97 32.66 31.65

1 2 4 8 16

10.0

0 0 0 0 0

25.35 25.35 25.35 21.51 19.23

5.34 5.34 5.34 5.34 5.34
14.90 14.90 14.90 14.90 14.90
16.83 16.83 16.83 16.83 16.83
19.02 19.02 19.02 18.08 16.07
26.97 26.97 26.97 25.99 22.11
25.30 25.30 25.30 23.28 20.12
25.11 25.11 25.11 25.01 24.62
15.03 15.03 15.03 13.37 11.64
26.38 26.38 26.38 25.53 26.38
30.71 30.71 30.71 29.31 25.98

1 2 4 8 16

1.0

0 0 0 0 0

17.13 17.13 17.13 16.47 14.98

0.00 0.00 0.00 0.00 0.00
5.57 5.57 5.57 5.57 5.57
17.80 17.80 17.80 17.80 17.80
13.69 13.69 13.69 13.69 13.69
2.83 2.83 2.83 2.83 2.43
18.79 18.79 18.79 16.56 14.27
17.20 17.20 17.20 15.12 14.78
16.20 16.20 16.20 14.43 14.20
7.04 7.04 7.04 6.22 5.46
16.33 16.33 16.33 13.92 14.18

1 2 4 8 16

0.1

1 1 1 1 1

10.50 10.50 10.50 9.65 9.22
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0
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2 PPEs
4 PPEs
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16 PPEs

Figure 7: (a) The average running times of the PFAST
algorithm for the type-1 random task graphs with three
CCRs using 1 PPE on the Intel Paragon; (b) the average
speedups of the PFAST algorithm for 2, 4, 8, and 16 PPEs.

(a) Average running times using 1 PPE.

(b) Average speedups.
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algorithm we performed experiments with very large
DAGs. These DAGs include a 10728-node Gaussian
elimination graph, a 10000-node Laplace equation solver
graph, a 12287-node FFT graph, and a 10000-node
random graph. For these graphs we simply measured the
schedule length produced by an algorithm. We applied the
DLS, DSC, ETF, and PFAST algorithms to these graphs
on the Intel Paragon. We ran the PFAST algorithm using
16 PPEs and other algorithms 1 PPE.

The schedule lengths for the large DAGs, normalized
with respect to that of the PFAST algorithm, are shown in
Figure 9(a). Note that the MD algorithm was excluded
from the comparison because it took more than 8 hours to
produce a schedule for a 2000-node DAG. An encouraging
observation is that the PFAST algorithm outperformed all
the algorithms in all the test cases. The percentage
improvement ranges from 8% to 23%. Concerning the
scheduling times, we can immediately note from Figure
9(b) that the ETF and DLS algorithms were considerably
slower than the PFAST and DSC algorithms. By using

effective parallelization, the PFAST algorithm
outperforms the DSC algorithm both in terms of solution
quality and complexity. These results of large DAGs
indeed provide further evidence to the claim that the
PFAST algorithm is suitable for finding high quality
schedules for huge DAGs.

6  Concluding Remarks
In this paper we have presented a low complexity

parallel algorithm, called the PFAST algorithm, to meet
the conflicting goals of high performance and low time-
complexity. Instead of using sophisticated methods to
optimize the scheduling of individual nodes, the PFAST
algorithm first generates an initial schedule and then
refines it in parallel using an effective probabilistic search
techniques.

We have compared the algorithm with a number of
well-known efficient scheduling algorithms using real
applications and randomly generated task graphs. The
results obtained demonstrate that the proposed algorithm is
superior to existing algorithms in terms of both solution
quality and complexity. Based on the comparison study in
this paper and the comparison of 14 algorithms in [3], we
find the PFAST algorithm to be the fastest algorithm
known to us.

An interesting observation of the PFAST algorithm is
that parallelization can sometimes improve solution
quality in that for some cases the PFAST algorithm
generated better solutions when using more PPEs. This is

50 100 150 200 250 300 350 400 450 500
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8 PPEs
16 PPEs

Figure 8: (a) The average running times of the PGS
algorithm for the type-2 random task graphs with three
CCRs using 1 PPE on the Intel Paragon; (b) the average
speedups of the PGS algorithm for 2, 4, 8, and 16 PPEs.

(a) Average running times using 1 PPE.

(b) Average speedups.
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0.12
0.49
0.98
1.83
2.98
4.43
5.98
7.12
9.15
11.23

Running Times (secs)

(a) Normalized schedule lengths for large DAGs; the
PFAST algorithm used 16 PPEs on the Intel Paragon.

(b) Scheduling times (sec) on the Intel Paragon; the PFAST
algorithm used 16 PPEs while other algorithms used 1 PPE.

Figure 9: Normalized schedule lengths and scheduling
times for the large DAGs for all the scheduling algorithms.

PFAST
DSC
ETF
DLS

1.00 1.00 1.00 1.00
1.12 1.23 1.21 1.15
1.08 1.20 1.18 1.12
1.07 1.20 1.18 1.10

Gauss Laplace FFT Random
(10728) (10000) (12287) (10000)Algorithm

Graph types (Number of Nodes)

PFAST
DSC
ETF
DLS

30.24 31.68 48.88 40.68
298.34 228.23 600.23 463.42
6059.69 8235.23 10234.21 9324.82
16377.28 22877.40 29877.35 21908.43

Gauss Laplace FFT Random
(10728) (10000) (12287) (10000)Algorithm

Graph types (Number of Nodes)
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due to the partitioning of the blocking-nodes set, which
implies a partitioning of the search neighborhood. The
partitioning causes the algorithm to explore the search
space simultaneously, thereby enhancing the likelihood of
getting better solutions.
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