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Abstract’ representing tasks and messages, respectively. The weight
In this paper, we propose a parallel randomized@ssociated with a node represents the amount of execution

algorithm, calledParallel Fast Assignment using Search time of the corresponding task and the weight associated
Technique (PFAST), for scheduling parallel programs with an edge represents the amount of communication
represented by directed acyclic graphs (DAGs) duringime. An example DAG is shown in Figured, (‘s are the
compile-time. The PFAST algorithm has(e) time indices of nodes). With suchssaticmodel, the scheduler
complexity wheree is the number of edges in the DAG. is invoked off-line during compile-time and thus can
This linear-time algorithm works by first generating an afford moderate time complexity in order to generate a
initial solution and then refining it using a parallel random better schedule. This form of multiprocessor scheduling
search. Using a prototype computer-aided parallelizatioProblem is calledtatic schedulingr DAG scheduling [1],
and scheduling tool called CASCH, the algorithm is found[4]. [6]. [8], [15]. Static scheduling, even with a very
to outperform numerous previous algorithms while takingsimple model, is an NP-complete problem [5], [7]. For
dramatically smaller execution times. The distinctive instance, the problem is NP-complete even in two models:
feature of this research is that, instead of simulations, outl) scheduling unit-weighted tasks to an arbitrary number
proposed algorithm is evaluated and compared with othepf processors [7], (2) scheduling one or two unit-weighted
algorithms using the CASCH tool with real applications tasks to two processors [5]. Optimal solutions exist only in
running on the Intel Paragon. The PFAST algorithm is alsdhree simple cases: (i) scheduling a tree-structured DAG
evaluated with randomly generated DAGs for which With identical node weights to an arbitrary number of
optimal schedules are known. The algorithm generatedrocessors [5], (ii) scheduling an arbitrary DAG with
optimal solutions for a majority of the test cases and closeldentical node weights to two processors [5], and (iii)
to-optimal solutions for the others. The proposedscheduling an interval-ordered DAG to an arbitrary
algorithm is the fastest scheduling algorithm known to ughumber of processors [5]. However, even in these cases, no

and is an attractive choice for scheduling under running@mmunication is assumed among the tasks of the parallel
time constraints. program. Thus, heuristic approaches are sought to tackle

Keywords: Compile-Time Scheduling, Task Graphs, the problem under more realistic cases in a reasonable
. . amount of time [8], [11], [15], [16].

Multiprocessors, Parallel Processing, Parallel - _ o

Programming Tool, Parallel Algorithm, Random Search. ~ While itis understood that static scheduling is doifie

1 Introduction line and therefore some extra time can be afforded in

o ) ) generating a better solution, the time-complexity of a
To efficiently exploit the tremendous potential of g-peqyling algorithm is an important issue from a practical
parallel architectures, the tasks of a parallel program m“%oint of view. Although there are a large number of
be carefully decomposed and scheduled to the processofghequling heuristics suggested in the literature and many
so that the program completion time is minimized. Wheny¢ hem can generate good solutions, few have a low time-
the charaqtensucs of the parallel program, su.ch “2%omplexity [6], [10], [13], [14], [18]. As such most of the
execution times of the tasks, amount of communication,iqsrithms may be inapplicable for practical purposes. In a
data, and task dependencies are knawmpriori, the  yocent study [2], we compared 21 recently reported
parallel program can be modeled as a node- and edggiqorithms and made a number of observations. For
weighteddirected acyclic grapHDAG) G = (V, B), in gyample, we found thata(v?)  algorithm may take more
which V is the set of nodésand E the set of edges, than an hour to produce a schedule for a DAG with 1,000

t. This research was supported by the Hong Kong Research Grants
Council under contract number HKUST179/93E. t. Throughout the paper we den¢té drtl  vhnde, respec-
tively.
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nodes, a typical size for many applications [2], [20].
Taking such a large amount of time to generate a solution
for an application is a major hurdle in incorporating these
algorithms in parallelizing compilers. On the other hand,
some algorithms have low time-complexity but their
solution quality is not satisfactory [2]. Thus, an algorithm
which meets the conflicting goals of high performance and
low time-complexity is highly desired. In this regard,
Yang and Gerasoulis [21] proposed some novel techniques
for reducing the time-complexity of scheduling
algorithms. Our objective is to design an algorithm that has
a comparable or lower complexity while producing better
solutions.

In this paper, we propose a low complexity scheduling
algorithm calledParallel Fast Assignment using Search
TechniquegPFAST) which has(e+ V) time-complexity Figure 1: A simple DAG.
and is a parallel algorithm. The PFAST algorithm is based
on an effective search technique. The linear-time2 Related Work and Motivation of a New
algorithm first generates an initial solution and then refinesApproach

it u§ing a rgndonj neighporhood sear'ch tgchnique. N Traditional DAG scheduling algorithms attempt to
addition to simulation studies, the algorithm is evaluated, . i i-o the schedule length through local optimizations

using "’? prototype computer-aided parallelizat.ion andof the scheduling of individual nodes. However, most of
scheduling tool called CASCH ComputerAided the local optimization strategies are not effective in

SCHeduling) [3], with real applications running on the general in that most algorithms minimize the start-time of

Intel Paragon.. The P',:AST algor.ithm outperfqrmsa node at each scheduling step. These algorithms differ
numerous previous algorithms while its execution tlmesonIy in the way of selecting a node for scheduling. Some
are _dramatlcally smaller. Indged, based on OUlbf them construct a list of nodes before scheduling starts
experimental results, the PFAST is the fastest schedullng;as in the list scheduling algorithms like the MCP

algorithm known to us. The algqrithm i_s also ev_aluatedalgorithm [20]) while some of them dynamically select
using random task graphs for which optimal solutions are, odes for scheduling (e.g., the DLS algorithm [19]).

known. The PFAST algorithm generated optimal SO|Uti0nSI—|owever, in an optimal schedule, some nodes may have to

for a significant portion of the test cases and close-t0g, |ater than the earliest possible time. Thus, like most

optimal sqlutions for .the othgr cases. Furthermorg, th%dgorithms of a greedy nature, these scheduling algorithms
algorithm is scalable in that it exhibits an almost IlnearCannot avoid making a local decision which may lead to a

spegdup. The PFAST e.llgorithrr.l is therefore an attraCtiV%ub—optimal schedule. As backtracking is not employed in
choice for generating high quality schedules in a paralle} yor not to incur high complexity, a mistake made in an

processing environment under running time constraints. earlier step may not be remedied in later steps.

! Th!s paper is organized as follows. In Sectlon. 2, we To obtain an optimal schedule, we have to tackle the
first discuss the trade-off between more complexuy andscheduling problem from a global perspective. However,
petter perfor.mance.. In the same section we. introduce th&lobal information is usually obtained at the expense of
idea Of, using neighborhood se_arch to |mproye thqﬂigh time-complexity. To obtain such global information,
scheduling performance. In Section 3 we describe thg o con yse the characteristics of the task graph such as the

proposed PFAST algorithm and its design principles. Ingraph structure and the relative magnitudes of the node and

Section 4 we present a detailed example to illustrate thgdge weights. Using such attributes, we can decide, from a
functionality of the algorithms. Sect|on_ 5 contains theglobal point of view, which nodes in the task graph deserve
perform.ance re_sults of the PFA_‘ST aIgonthm_s as well as @pecial attention so that eventually an optimal schedule
comparison _W'th other algorithms. The final section .o, pe constructed. For instance, some previously reported
concludes this paper. scheduling algorithms is based on a global characteristic
structure of the task graph, namely, thigical path (CP).
A CP is a path with the maximum sum of node and edge
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weights or simply, the maximurfength Thus, if an A simple neighborhood point of a schedule in the
unlimited number of processors are available, the length afolution space can be defined as another schedule which is
the CP provides an upper bound on the schedule length. wbtained by transferring a node from a processor to another
light of this attractive property, most scheduling processor. Inthe DAG scheduling problem, one method of
algorithms assign higher priorities to nodes of the CP foimproving the schedule length is to transfeblacking-
scheduling. For example, in most list schedulingnode from one processor to another. The notion of
algorithms, a node on the CP occupies an earlier positiohlockingis simple—a node is called blocking if removing

in the scheduling list. However, while the CP lengthit from its original processor can make the succeeding
provides an upper bound on the schedule length, makingodes start earlier. In particular, we are interested in
all the nodes on the CP start at the earliest possible timeansferring the nodes that block the CPNs (CP nodes)
does not guarantee an optimal schedule. In fact, if the eddeecause the CPNs are the more important nodes. However,
weights are much larger than the node weights in generahigh complexity will result if we attempt to locate the
such a strategy can even lead to a bad schedule [2]. actual blocking-nodes on all the processors. Thus, in our

To meet the conflicting goals of high performance and@PProach, we only generate a listpmitential blocking-
high efficiency, we employ an effective optimization nodes which are the nodes that may block the CPNs.

technique—neighborhood search [17]. In simple terms, if\9&iN, to maintain a low complexity, the blocking-nodes
a neighborhood search algorithm, an initial solution withlist is static and is constructed before the search process

moderate quality is quickly generated. Then, according ttarts. A natural choice of blocking-nodes list is the set of
some pre-defined  neighborhood, the aIgorithm'BNS and OBN$ (with respect to an initial CP) because

probabilistically selects and tests whether a near-by€se nodes have the potential to block the CPNs in the
In the schedule refinement phase, the

solution in the search space is better or not. If it is bettefFOCESSOrS. _ ( :
adopt it and start searching in the new neighborhood?'OCk'ng'nOdeS list defines the neighborhood that the

otherwise, select another solution point. Usually thef@ndom search process will explore. The size of such a

algorithm stops after a specified number of search step€ighborhood i(vp)  because there axe) blocking-

has elapsed or the solution does not improve after a fixe§OdeS ang processors.

number of steps. The success of such neighborhood sear8t2 Scheduling Serially

tec_hniques chiefly .relifa_f, on the construction of_the solution 14 generate an initial schedule, we employ the

neighborhood. A judiciously constructed neighborhoodyragitional list scheduling approach—construct a list and

can potentially lead the search to attain the global optimaychedule the nodes on the list one by one to the processors.

solution. The list is constructed by ordering the nodes according to

3 The Proposed Algorithm the node priorities. The list is static so that the order of
In this section, we present the proposed PFASTnOdeS on the list will not change during the scheduling

algorithm and its design principles. To facilitate process. The reason is that as the objective of our

understanding of the neighborhood search technique, W@Igorlthm Is to produce a good schedu!@(n_a v time,
first restrict the discussion to the sequential version of thdV® do _not re-compute the “‘?de prlor_|t|_e_s after each
PFAST algorithm, which is referred to as simply the FASTSChed_u“ng_ step while generating the_ |_n_|t|al schedul_e.
algorithm. We then describe the parallelization techniquecerta!nly' if the schedule length of the initial schedule is
leading to the PFAST algorithm. A detailed schedulingOpt'm'Zed' the subsequent random search process can start

example will be presented in Section 4. at a better solution point and thereby generate a better final

schedule.
3.1 A Solution Neighborhood Formulation In the FAST algorithm, we use the CPN-Dominant List

Neighborhood search is an old but effective 55 the scheduling list. The CPN-Dominant List can be

optimization technique. The principle of neighborhood .qnstructed ino(e+ 1) time since each edge is visited
search is to refine a given initial solution point in the only once.

solution space by searching through the neighborhood of _ ) -

the initial solution point. To apply the neighborhood Cons;ructllor_l_orlthehCIT_N-_Domlnant'Ulstl.( . BN
search technique to the DAG scheduling problem, we have @) brgt'tar‘] g ’fitrs? rli)tdlg ?nrq?glista SeBtt)seiti?)?lt% (2:

to define a neighborhood of the initial solution point (i.e., ' '
the initial schedule). We can arrive at such a neighborhood t. An IBN (In-Branch Node) is an ancestor of a CPN but is not a

definition by using the observation discussed below. CPN in itself. An OBN (Out-Branch Node) is a node which is nei-
ther a CPN nor an IBN.
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Let n, be the next CPN. (2) Remove the first node from the list;
Repeat (3) Schedulen; to the processor, among the
(2) If n, has all its parent nodes in the tisen processors accommodating the parent nodes of
() Putn, atPositionin the list and increment n; together with a new processor (if any), that
Position allows the earliest start-time by checking 's
(4) else DAT with the ready-times of the processors;
(5) Let n, be the parent node of  which is Until the list is empty;

not in the sequence and has the larfpest
level'. Ties are broken by choosing the

are considered first.
(6) Repeat the above step until all the parent
nodes ofn, are in the list. Then put  at

(8) Maken, to be the next CPN.
Until all the CPNs are in the list.

(9) Append all the OBNs to the sequence in a
decreasing order di-level

The time-complexity ofnitialScheduleis derived as
parent with a smallgrlevel If n, has allits ~ follows. The first step take®(e+V)  time. In the repeat
parent nodes in the sequence, pyt atloop, the dominant step is the procedure to determine the
Position in the sequence and increment data arrival time of a node. The cumulative time-
Position Otherwise, recursively include all complexity of this step throughout the execution of the
the ancestor nodes of  in the sequence Sqepeat loop is als@(e+1) because each edge is visited
that the nodes with a larger valuebefevel  gnce. Thus, the overall ime-complexitylpitialSchedule

is alsoO(e+ V) .

Given the procedurénitialSchedulewe present the
Positionin the list. sequential version of our neighborhood search algorithm.
(7)  endif In order to avoid the algorithm being trapped in a local

optimal solution, we incorporate a probabilistic jump
procedure in the algorithm. The FAST algorithm is
outlined below.

Using the CPN-Dominant List, we can schedule theThe FAST Algorithm:

nodes on the list one after another to the processors. Again, (1) NewSchedule = InitialSchedule _
in order not to incur high complexity, we do not search for ) (;Coonrgméc;” 'H:g IBtl)\Ilgc;:]réggé)’c\jlg;s list  which
the earliest slot on a processor but simply schedule anode (3)  BestSL = infinity; searchcount = 0;
to the ready-time of a processor. Initially, the ready-time of ~ (4) repeat
all available processors is zero. After a node is scheduled  (9) searchstep: 0; counter =0;
to a processor, the ready-time of that processor is updated E% do {gicﬂeghggégonéd S?;r:gg m/ ly from the
to the finish-time of the last node. By doing so, a node is blocking-nodesl list:
scheduled to a processor that allows the earliest start-time, (g) Pick a processd? randomly;
which is determined by checking the processor’s ready-  (9) Transfern, tdP;
time with the node’s data arrival time (DAT). The DAT of (10) If schedule length does not improve,
a node can be computed by taking the maximum value transfern; back to its original processor
among the message arrival times across the parent nodes. and incrementounter otherwise, set
If the parent is scheduled to the same processor as the counterto 0;
node, the message arrival time is simply the parent's (11) éo"gmﬁfsmeﬁggsl}\lef < MAXSTER and
finish-time; otherwise it is equal to the parent’s finish-time (12) if BestSL > SL(NewSchedulé)en
(on aremote processor) plus the communication cost of the  (13) BestSchedule = NewSchedule
edge. Not all processors need to be checked in this process. (14) BestSL = SL(NewSchedule)
Instead, we can examine the processors accommodating 88 (Ia\lne(wSchedule = Randomly pick a node
the parent nodes together with an empty processor (if any). from the CP and transfer it to another
The procedure for generating the initial schedule can be processor; /* probabilistic jump */
formalized below. (17) until (searchcount++ > MAXCOUNT);

The total number  of  search-steps is

InitialSchedule:
(1) Construct the CPN-Dominant List;

Repeat

MAXSTEPx MAXCOUNT While the number of search
steps in each iteration is bounded by MAXSTEP, the
algorithm will also terminate searching and proceed to the

t. Theb-levelof a node is the length (sum of the computation and ~ Step of probabilistic jump if the solution does not improve
communication costs) of the longest path from this node to an exit \ithin a Specified number of steps denoted as MARGIN.

node. The-levelof a node is the length of the longest path from

an entry node to this node (excluding the cost of this node) This is done in order to further enhance the expected
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efficiency of the algorithm. (6) Every PPE receives a blocking-nodes subset

The reason of making MAXSTEP, MARGIN, and @) ?Qgetf:}e initial schedule;

MAXCOUNT as constants is two-fold. First, the prime (8) i =2

objective in the design of the algorithm is to keep the time-  (9) repeat /* search */

complexity low even when the size of the input graph is ~ (10) RL;lndFIAST to search for a better
schedule;

huge. Second, the major strength of the FAST algorithm

lies in its ability to generate a good initial solution by using ~ (11) until searchcount %w—q ?

the CPN-Dominant List. As such, the likelihood of (12) Exchange the best So,utioﬂ;

improving the initial solution dramatically by using large (13) until total searchcount MAXCOUNT

number of search steps is not high. Thus, we fix MARGIN  |n the PFAST algorithm, one PPE is designated as the

to be 2, MAXSTEP to be 8, and MAXCOUNT to be 64. master, which is responsible for preprocessing work
The time-complexity of the sequential FAST algorithm including construction of an initial schedule, the blocking-

is determined as follow. As discussed earlier, thenodes set, and the subsets.

procedure InitialSchedul€) takes O(e+V) time. The Since the total number of search-steps is evenly
blocking-nodes list can be constructedditv)  time as thejistributed to the PPEs, the PFAST algorithm should have
IBNs and OBNs are already identified in the procedureiinear speedup over the sequential FAST algorithm if
InitialSchedul€). In the main loop, the node transferring communication takes negligible time. However, inter-PPE
step takesD(e+ V) time since we have to re-visit all thecommunication inevitably takes significant amount of
edges once after transferring the node to a processor in thigne and the ideal case of linear speedup is not achievable.
worst case. Thus, the overall time-complexity of thepyt the solution quality of PEAST can be better than that
sequential algorithm i®(e+ V) . of the sequential FAST algorithm. This is because the
3.3 Parallel Probabilistic Search PPEs explore different parts of the search space

imultaneously through different neighborhoods induced
gy the partitions of the blocking-nodes set. The sequential
FAST algorithm, on the other hand, has to handle a much
larger neighborhood for the same problem size.

The parallelization of the neighborhood search is base
on a partitioning of the blocking-nodes set igtsubsets,
whereq is the number of availablghysical processing
elements(PPEs), on which the PFAST algorithm is
executed. Each PPE then performs a neighborhood searéh A Scheduling Example

using its own blocking-nodes subset. The PPES 14 gee how the proceduraitialSchedule works,
communicate periodically to exchange the best solution,gnsider the DAG shown earlier in Figure 1. The attributes

found thus far and start new search steps based on the bgskq py the other four algorithms are also shown in Figure
solution. The period of communication for the PPEsisseb  The CPN-Dominant List of the DAG is

to be T number of search-steps, which follows an { Ny, Ny, N, Ny N, N, N, N, N} . Note thatn,  is considered

exponentially decreasing sequence: initiaﬂlﬂ , thenafter n; because, has a smaller valué-level Using
the CPN-Dominant List, the initial schedule produced by
(TW (TW and so on, where = (MOUNW _The InitialScheduleis shown in Figure 3(a). The schedule

aq length generated bynitialSchedule is already short,
rationale is that at early stages of the search, exploration iespite its simple scheduling strategy.

more important than exploitation. The PPEs should,

therefore, work independently for longer period of time.  node SL t-level b-level ALAP
However, at final stages of the search, exploitation is more *M 12 0 37 0
important so that the PPEs should communicate more "2 S g ;g }i
N3
frequently. n, 9 3 20 17
The PFAST algorithm is outlined below. Ng 10 3 30 7
The PFAST Algorithm: o g ;g }g ;;
(1) if myPPE() == mastehen n 7 5 18 15 7
(2) Determine the initial schedule; o2 1 36 1 36
3) Construct the blocking-nodes set; Mo
(4) Partition the blocking-nodes set intp

; : . Figure 2: The static levels (SLsl;levels b-levels and
) end‘ci?bsets which are ordered topologically; ALAP times of the nodes (CPNs are marked by an asterisk).
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To illustrate the effectiveness of the neighborhoodthe performance results of the PFAST algorithm by using
search process, consider the initial schedule shown itwo suites of random task graphs for which optimal
Figure 3(a). The blocking-nodes list of the DAG is solutions are known. In Section 5.4 we present the results
{n, n,, n,ns ng, ngt . We can notice that the nodg of applying the algorithm to large DAGs. For comparison,
blocks the CPNny . In the random search process it ishe results of the DLS, DSC, and ETF algorithms are also
highly probable thatn, is selected for transferring. shown.

Suppose it is transferred from PE 1 to PE 3. The resultin%'l CASCH
schedule is shown in Figure 3(b), from which we can see

that despite the increased start times.of m@nd |, the final .We performed experiments using the CA_SCH tool,
schedule length is nonetheless shortened. which generates a task graph from a sequential program,
uses a scheduling algorithm to perform scheduling, and

0 — PEO.PELPE2PES 0 — PO PELPR3PES then generates the parallel code in a scheduled form for the
2"1 2"1 Intel Paragon. The timings for the nodes and edges on the
2 2 DAG are assigned through a timing database which was
g — | 3 = obtained through profiling. CASCH also provides a
5o ) EN=Ee " graphical interface to interactively run and test various
5] 4 D 5] 4 algorithms including the ones discussed in this paper.
H - H - Instead of only measuring the schedule length through a
o = TN o = " A Gantt chart, we measure the running time of the scheduled
o 1M 4 | code on the Paragon. Various scheduling algorithms,
— [ — 4 therefore, can be more accurately tested and compared
- f?s ) through CASCH using real applications on an actual
15— R R _5 machine. The reader is referred to [2] for details about the
) 5 tool.
H In addition, in order to examine the performance of the
0 | 0 | " algorithm given very large graphs which can arise in
< practice, we performed experiments with randomly
|| ﬁ generated large DAGs consisting of thousands of nodes.
24 || ] L | L | ﬁ 24 || ] L | L | j

5.2 Parallel Applications

In our first experiment we tested the FAST algorithm

Figure 3. (a) Schedules generated by the ; ot .
InitialSchedul§)’ (schedule length = 24): (b) The with the DAGs generated from three real applications:

final schedule after the local search process with Gaussian elimination, Laplace equation solver and Fast

(a) (b)

nodeng is transferred to PE 3 (schedule length = 23). Fourier Transform (FFT) [3]. The Gaussian elimination
and Laplace equation solver applications operate on
5 Performance Results matrices. Thus, the number of nodes in the DAGs

dgenerated from these applications are related to the matrix
dimensionN and is aboutD(N2) . On the other hand, the
FFT application accepts the number of points as input. We
examined the performance in three aspects: application
execution time, number of processors used and the
scheduling algorithm running time.

In our study, by using a prototype computer-aide
scheduling tool called CASCH, we compared our
proposed algorithm with four related scheduling
algorithms: the Mobility Directed (MD) algorithm [20],
the Earliest Task First (ETF) algorithm [9he Dynamic
Level Scheduling (DLS) algorithm [19], and the Dominant
Sequence Clustering (DSC) algorithm [21]. We chose the The results for the Gaussian elimination are shown in
DSC, MD, ETF, and DLS algorithms out of 14 algorithms Figure 4. In Figure 4(a), we normalized the application
which we compared in a previous study [3]. The€Xxecution times obtained through all the algorithms with
comparison of FAST with these algorithms provides anrespect to those obtained through the FAST algorithm. It
indirect comparison with the remaining 10 algorithms. ~ was shown that the programs scheduled by the FAST
algorithm are 3% to 15% faster than the other algorithms.
?\Iote that the results of the DSC algorithm for matrix

of the sequential FAST algorithm and compare 't. Wlthdimensions 16 and 32 were not available because the DSC
those of DSC, MD, ETF, and DLS algorithms using a . .
used more than the available Paragon processors in

prototype parallelization tool. In Section 5.3 we present

In this section we first present the performance result
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demonstrated similar performance with the DSC algorithm
again uses more processors than the other algorithms. For
Algorithm 4 8 16 32 the scheduling times, the FAST algorithm is the fastest
among all the algorithms. The MD algorithm is agaiw)

Matrix Dimension

FAST 1.00 1.00 1.00 1.00 : .
DSC 105 108 NA. NA. times slower than the other algorithms.
MD 1.00 1.03 1.08 1.10 Matrix Dimension
ETF 1.00 1.07 1.10 1.15
DLS 1.00 1.08 1.10 1.14 Algorithm 4 8 16 32
(a) Normalized execution times of FAST 1.00 1.00 1.00 1.00
Gaussian elimination on the Intel Paragon. DSC 1.00 1.09 113 121
Matrix Dimension MD 1.00 1.12 1.15 1.25
) ETF 1.00 1.11 1.14 1.24
Algorithm 4 8 16 32 DLS 1.00 1.10 1.13 1.23
FAST 4 8 16 32 (a) Normalized execution times of Laplace
DSC 5 22 95 128 equation solver on the Intel Paragon.
MD 2 3 4 7
ETF 3 7 16 32 Matrix Dimension
DLS 3 7 16 32
Algorithm 4 8 16 32
(b) Number of Processors used
for the Gaussian elimination. FAST 1 4 7 14
DSC 1 13 37 64
Matrix Dimension (Number of Tasks) MD 1 5 8 13
. ETF 1 5 8 16
Al h 4(2 4 16 (17 2 (594
gorithm (20) 8 (54) 6 (170) 32 (594) DLS 1 5 8 15
FAST 0.06 0.09 0.15 0.52
(b) Number of Processors used
DsC 0.04 0.06 0.09 021 for the Laplace equation solver.
MD 6.33 6.85 39.54 266.89
ETF 0.02 0.06 0.24 241 Matrix Dimension (Number of Tasks)
DLS 0.08 0.09 0.42 4.00 )
(c) Scheduling times (sec) on a SPARC Algorithm 4(18) 8 (66) 16 (258) 32 (1026)
Station 2 for the Gaussian elimination. FAST 0.05 0.09 0.35 1.8
Figure 4: Normalized execution times, number of DsC 0.07 0.11 0.40 4.29
processors used, and scheduling algorithm running times for MD 6.23 7.64 111.46 768.90
the Gaussian elimination for all the scheduling algorithms. ETF 0.04 0.05 0.28 3.06
scheduling the parallel program. This can be explicated by DLS 0.06 0.11 0.55 5.33
the fact that the DSC algorithm usexv) processors. (c) Scheduling times (sec) on a SPARC

. Station 2 for the Laplace equation solver.
Concerning the number of processors used, the FAST, P q

ETF and DLS algorithms used about the same amount of Figure 5: Normalized execution times, number of processors
processors. The number of processors used by all the US€d; and scheduling algorithm running times for the
algorithms is shown in Figure 4(b). The scheduling times Laplace equation solver for all the scheduling algorithms.

of all the algorithms are shown in Figure 4(c) indicating o

that the DSC algorithm was the fastest algorithm with the 1 "€ results for the FFT are shown in Figure 4. The
proposed FAST algorithm very close to it. On the otherFAST algo.nthm IS again bettgr 'Fhan all th.e ot'her four
hand, the ETF and DLS algorithms running times aredlgorithms in terms of the application execution times and
relatively large but they were much faster than the MDschedullng tmes.

algorithm. This is because the MD algorithm is alo) 5.3 Comparison against Optimal Solutions

times slower than the other algorithms. In this section, we present the performance results of
The results for the Laplace equation solver are showithe PFAST algorithm. We implemented the PFAST
in Figure 4, from which we can see that the percentagalgorithm on the Intel Paragon using the C language and
improvements of the FAST algorithm over the othertested it using different suites of synthetic task graphs. Our
algorithms is up to 25%. As to the number of processor&im is to investigate the absolute solution quality of the
used, the FAST, MD, ETF and DLS algorithms algorithm by applying it to two different sets of random
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times the specified value of CCR. Hereafter this suite of

Number of Points graphs is designated type-1 random task graphs.

Algorithm 16 64 128 512 To obtain optimal solutions for the task graphs, we
FAST 1.00 1.00 1.00 1.00 applied a parallel A* algorithm [12] to the graphs. Since
DSC 1.03 1.08 1.10 1.15 generating optimal solutions for arbitrarily structured task
MD 1.04 1.09 1.11 1.17 graphs takes exponential time, it is not feasible to obtain
ETF 1.02 1.08 110 1.15 optimal solutions for large graphs. On the other hand, to
DLS 1.03 1.07 1.09 114 investigate the scalability of the PGS algorithm, it is

(a) Normalized execution times of FFT on the Intel Paragon. desirable to test it with larger task graphs for which

optimal solutions are known. To resolve this problem, we

Number of Points employed a different strategy to generate the second suite

Algorithm 16 64 128 512 of random task graphs. Rather than trying to find out the
FAST 5 0 9 7 optimal solutions after the graphs are ran_domly g_enerated,
DSC 5 12 13 o5 we set out to generate task graphs vgihen optimal
MD 5 10 6 21 schedule lengths and number of processors used in the
ETF 3 10 11 11 optimal schedules.

DLS 7 10 1 1 The method of generating task graphs with known
(b) Number of Processors used for the FFT. optimal schedules is as follows: Suppose that the optimal
Number of Points (Number of Tasks) schedule length of a graph and the number of processors
used are specified &l,,,  apdrespectively. For each

Algorithm 16 (14) 64 (34)  128(82) 512 (194) PEi, we randomly generate a number  from a uniform
FAST 0.06 0.10 0.12 0.19 distribution with mear. . The time interval between 0 and
DSC 0.07 0.08 0.07 0.10 SL, Of PEi is then ra%domly partitioned int¢p  sections.
MD 6.38 9.09 9.87 75.17 Each section represents the execution span of one task,
ETF 0.05 0.08 0.09 0.16

thus,x; tasks are “scheduled” to PEith no idle time slot.

In this manner,v tasks are generated so that every

processor has the same schedule length. To generate an

Figure 6: Normalized execution times, number of edge, two tasks, and, are randomly chosen such that

Bmes for FET for allihe stheduling sigorthma, 0 FT(W <ST(1). The edge is made to emerge from  to
n, - As to the edge weight, there are two cases to consider:

task graphs for which optimal solutions are known. As no(?.) the two tasks are scheduled to different processors, and
widely accepted benchmark graphs exist for the DAGIii) the two tasks are scheduled to the same processor. In
scheduling problem, we believe using random graphs wittihe first case the edge weight is randomly chosen from a

diverse parameters is appropriate for testing theuniform distribution with maximum equal to
performance of the algorithm. (ST(n)-FT(ny)) (the mean is adjusted according to the
iven CCR value). In the second case the edge weight can
e an arbitrary positive integer because the edge does not
. i : affect the start and finish times of the tasks which are
set consists of graphs in which the number of nodes varg

N : cheduled to the same processor. We randomly chose the
from 10 to 32 with increments of 2, thus, totalling 12 edae weiaht for this case according to the aiven CCR
graphs per set. The graphs within the same set have the 0 g 9 g

value. Using this method, we generated three sets of task
same value of CCR. The graphs were randomly generatea?aphs with three CCRs: 0.1, 1.0, and 10.0. Each set

as follows: First the computation cost of each node in th . . .
raph was randomly selected from a uniform distributionconSIStS of graphs in which the number of nodes vary from
g 50 to 500 in increments of 50; thus, each set contains 10

with mean equal to 40 (minimum = 2 and maximum = 78). L
Beginning with the first node, a random numberindicatinggraphs' The graphs within the same set have the same
' value of CCR. Hereafter we call this suite of graphs the

the number of children was chosen from a uniformt -2 random task h
distribution with mean equal t , thus, the connectivity ype-< random task grapns.
of the graph increases with the size of the graph. The Table 1 shows the results of the PFAST algorithm
communication cost of each edge was also randomlysing 1, 2, 4, 8, and 16 PPEs on the Intel Paragon. Using 1
selected from a uniform distribution with mean equal to 40PPE means that the algorithm is the sequential FAST

DLS 0.05 0.18 0.20 0.67
(c) Scheduling times (sec) on a SPARC Station 2 for FFT.

The first suite of random task graphs consists of thre(g
sets of graphs with different CCRs: 0.1, 1.0, and 10.0. Eac
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Table 1: Results of the PFAST algorithm compared against optimal solutions (% deviations) for
the type-1 random task graphs with three CCRs using 1, 2, 4, 8, and 16 PPEs on the Intel Paragon.

CCR 0.1 1.0 10.0
No. of PPEs 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
10 0.00 | 0.00 |0.00 0.00 |0.00 0.00 | 0.00 | 0.00 |0.00 |5.56 0.00 /0.00 |0.00 |0.00 |0.00
12 8.67 |8.67 18.67 8.67 |11.05 729 1729 (729 (729 12.92 0.00 /0.00 |0.00 |0.00 |5.05
14 0.00 | 0.00 |0.00 0.00 |8.07 7.76 |7.76 |7.76 | 7.76 1 10.01 0.00 10.00 [0.00 10.00 |14.12
16 13.64/ 13.64 13.64 13.64 13.64 0.00 | 0.00 | 0.00 |0.00 |0.00 29.26/29.2629.26 29.26 29.26
18 12.99/12.99 12.99 12.99 12.99 0.00 | 0.00 | 0.00 |0.00 |0.00 18.90/18.90/18.90/18.90|31.00
8 20 0.00 | 0.00 |0.00 0.00 |0.00 0.33 10.33 10.33 |/0.33 |0.33 0.00 /0.00 |0.00 |0.00 |0.00
%’_ 22 0.00 | 0.00 |0.00 0.00 |0.00 431 (431 431 4.31 431 796 796 796 |7.96 |10.95
S 24 13.50| 13.50 13.50 13.50/ 13.50 14.06 14.06| 14.06, 14.06, 14.06 21.35/21.35/21.3521.35|35.06
26 9.45 19.45 1945 |9.45 15.10 6.50 | 6.50 | 6.50 |6.50 [9.88 16.22/16.22/16.22|16.22|27.68
28 0.00 | 0.00 |0.00 0.00 |0.00 12.58/ 12.58| 12.58 12.58/ 12.58 23.00/23.0023.0023.00/23.00
30 10.01/ 10.01 10.01 10.01 15.28 19.86/ 19.86/ 19.86, 19.86/ 19.86 13.70/13.70/13.70/13.70|13.70
32 13.70 13.70| 13.70 13.70/ 17.67 10.44/10.44/ 10.44 10.44 10.44 29.60129.60(29.6029.6029.60
No. of Opt. 5 5 5 5 4 3 3 3 3 2 4 4 4 4 2
Avg. Dev. 11.71 11.71 11.71 11.71 13.41 9.24 19.24 19.24 |9.24 |10.00 20.00/20.0020.0020.0021.94

algorithm. It should be noted that for graphs of smaller The average execution times and speedups of the
size, the blocking-nodes subsets of the PPEs are n®FAST algorithm are shown in Figure 7. These averages
disjoint so as to make each subset contain at least 2 nodegere computed across the three values of CCR. We notice
In the table, the total number of optimal solutionsthat the execution times of the PFAST algorithm using 1
generated and the average percentage deviations (from tRPE is already very short. Furthermore, the speedup
optimal solutions) for each CCR are also shown. Note thaturves are quite flat indicating that the speedup of the
the average percentage deviations are calculated bgigorithm is not affected by increasing graph sizes.
dividing the total deviations by the number of non-optimal Another observation is that the speedups are smaller than
cases only. These average deviations thus indicate motke ideal linear speedups by a considerable margin. An
accurately the performance of the PFAST algorithm wherexplanation for these two observations is that the sizes of
it is not able to generate optimal solutions. We notice thathe type-1 random graphs are small so that the amount of
the PFAST algorithm generated optimal solutions for ascheduling effort does not dominate the amount of inter-
significant portion of all the test cases. While the numbelPPE communication time. In other words, the inter-PPE
of optimal solutions is about the same for the three valuesommunication is a significant overhead that limits the
of CCR, the average deviations increase with the largeachievable speedups. However, even for such small
values of CCR. The most important observation is that thgraphs, the PFAST algorithm exhibited reasonable
deviations do not vary much with increasing numbers ofscalability.

PPEs used. For some of the graphs, the deviations do not 1541 2 shows the results of the PEAST algorithm for

change for any number of PPEs used. An explanation fojj, type-2 random task graphs using 1, 2, 4, 8, and 16 PPEs
this phenomenon is that the final solutions of such casegy the Intel Paragon. For these much larger graphs, the
can be reached within a few transferal of blocking-nodeSppasT aigorithm generated only one optimal solution (the
Another observation is that when 16 PPEs were used, the,se of CCR = 0.1. size = 50). However, an encouraging
deviations of some cases increased. This is presumablyhseryation is that the percentage deviations are small.
due to the small sizes of blocking-nodes subsets whiCly,jeeq, the best deviation is only 2.43% and the worst only
restrict the diversity of the random search. Finally we note;s g104 \which can be considered as close-to-optimal. The
that Ehe worst percgntilge deviation (foro the case Ofyerage deviations, which increase with increasing CCR,
CCR=10.0, graph size=16) is within 30% from the 5re gmaller than 30%. A very interesting observation is
optimal. Thus, the PFAST algorithm has shownhat for some cases of larger task graphs (e.g., sizes larger
reasonably high capability in generating near-to-optimaky,n 200), using more PPEs improve the schedule lengths.
solutions. For example, in the case of CCR = 0.1 and size = 300,
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Table 2: Results of the PFAST algorithm compared against optimal solutions (% deviations) for
the type-2 random task graphs with three CCRs using 1, 2, 4, 8, and 16 PPEs on the Intel Paragon.

1.0

10.0

1 2 4 8 16

1 2 4 8 16

534 |534 |534 |534 534
14.90/14.90/14.9014.90 14.90
16.83/16.83/16.83/16.83/16.83
19.02/19.02/19.02|18.08|16.07
26.97/26.9726.97|25.9922.11
25.30/25.30/25.30/23.28 20.12
25.11|25.11|25.11|25.01 | 24.62
15.03/15.03/15.03/13.37 11.64
26.38/26.38/26.38/25.5326.38
30.71/30.71/30.71/29.3125.98

29.26/29.26/29.26|29.2629.26
45.01/45.0145.01 45.0145.01
17.13|17.13|17.13|17.13|17.13
20.34/20.34/20.3415.28 | 13.57
34.06/34.06 34.06 25.6729.43
22.93/22.93/22.93/15.84 14.45
38.94/38.9438.9433.8622.53
26.58/26.5826.5818.79 |14.31
33.95/33.9533.95|24.65 19.46
35.97/35.97/35.97|32.66 31.65

0 0 0 0 0

0 0 0 0 0

17.13/17.13| 17.13| 16.47 14.98

25.35/25.35/25.35/21.51/19.23

CCR 0.1
No. of PPEs 1 2 4 8 16
50 0.00 | 0.00 | 0.00 |0.00 |0.00
100 5.57 |5.57 557 | 557 |5.57
150 17.80/ 17.80| 17.80, 17.80|17.80
200 13.69| 13.69| 13.69 13.69| 13.69
250 2.83 12.83 1283 |2.83 243
8 300 18.79 18.79| 18.79 16.56| 14.27
% 350 17.20, 17.20| 17.20 15.12|14.78
& 400 16.20/ 16.20| 16.20 14.43|14.20
450 7.04 |7.04 | 7.04 |6.22 |5.46
500 16.33 16.33| 16.33 13.92|14.18
No. of Opt. 1 1 1 1 1
Avg. Dev. 10.50 10.50 10.50 9.65 | 9.22
Graph Size Running Times (secs)
10 0.06
12 0.06
14 0.06
16 0.06
18 0.07
20 0.07
22 0.07
24 0.07
26 0.08
28 0.08
30 0.09
32 0.09
(a) Average running times using 1 PPE.
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]
. 1 B L 1 3
10
8 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Q
3
S
2 T e
(0]
4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

+2 PPEs
<4 PPEs
v-8 PPEs
16 PPEs

0
50 100 150 200 250 300 350 400 450 500

Figure 7: (a) The average running times of the PFAST
algorithm for the type-1 random task graphs with three
CCRs using 1 PPE on the Intel Paragon; (b) the average
speedups of the PFAST algorithm for 2, 4, 8, and 16 PPEs.
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(b) Average speedups.
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using 4 PPEs resulted in a deviation of 18.79% while using
8 PPEs gave a deviation of 16.56%. Using 16 PPEs further
decreased the deviation to 14.27%. This observation
implies that parallelization of a search algorithm can
potentially improve the solution quality. This is due to the
partitioning of the search neighborhood which lets the
search to explore different regions of the search space
simultaneously, thereby increasing the likelihood of
getting better solutions. There are a few cases in which
using more PPEs resulted in an increased deviations,
however. For example, for the case of CCR = 10.0 and size
= 300, using 4 PPEs gave a deviation of 34.06%, while
using 8 PPEs improved the deviation to 25.67%. However,
when 16 PPEs were used, the deviation was only 29.43%,
which is worse than that of using 8 PPEs but better than
that of using 4 PPEs.

The average execution times and speedups of the
PFAST algorithm for the type-2 random task graphs are
shown in Figure 8. Compared with the speedup plots
shown earlier in Figure 7, the speedups for type-2 task
graphs are considerably higher. This is due to the fact that
inter-PPE communication for larger task graphs is not a
significant overhead. Again the PFAST demonstrated
reasonably good scalability even for task graphs with 500
nodes.

Based on the above results we can conclude that the
PFAST algorithm is suitable for finding high quality
schedules for large task graphs under strict running times

requirements.

5.4 Large DAGs
To test the scalability and robustness of the FAST



effective  parallelization, the PFAST algorithm

Croph oe i Times () outperforms the DSC algorithm both in terms of solution
= 012 quality and complexity. These results of large DAGs
150 0.98 indeed provide further evidence to the claim that the
20 298 PFAST algorithm is suitable for finding high quality
b e schedules for huge DAGs.

400 7.12
0 o5 Graph types (Number of Nodes)

Gauss Laplace FFT Random
Algorithm  (10728) (10000) (12287) (10000)

(a) Average running times using 1 PPE.

16 PFAST 1.00 1.00 1.00 1.00
. DSC 1.12 1.23 1.21 1.15
g : ETF 1.08 1.20 1.18 1.12
T R ' o . ' DLS 1.07 1.20 1.18 1.10
(a) Normalized schedule lengths for large DAGs; the
@ 10 +2 PPEs PFAST algorithm used 16 PPEs on the Intel Paragon.
é Bl 4 PPES Graph types (Number of Nodes)
g v V-8 PPEs
S L e e e S oo * 16 PPES Gauss Laplace FFT Random
Algorithm  (10728)  (10000)  (12287)  (10000)
SR o PFAST 3024  31.68 4888  40.68
Y R e S S CE T TS frgo] DSC 298.34 228.23 600.23 463.42
0 ETF 6059.69 823523 10234.21 9324.82
DLS 16377.28 22877.40 29877.35 21908.43
0 100 150 200 250 300 350 400 450 500 (b) Scheduling times (sec) on the Intel Paragon; the PFAST
Graph Size algorithm used 16 PPEs while other algorithms used 1 PPE.
(b) Average speedups. Figure 9: Normalized schedule lengths and scheduling

. . . times for the large DAGs for all the scheduling algorithms.
Figure 8: (a) The average running times of the PGS

algorithm for the type-2 random task graphs with three
CCRs using 1 PPE on the Intel Paragon; (b) the average ;
speedups of the PGS algorithm for 2, 4, 8, and 16 PPEs. 6 Concludlng Remarks

In this paper we have presented a low complexity
algorithm we performed experiments with very large parallel algorithm, called the PFAST algorithm, to meet
DAGs. These DAGs include a 10728-node Gaussianhe conflicting goals of high performance and low time-
elimination graph, a 10000-node Laplace equation solvecomplexity. Instead of using sophisticated methods to
graph, a 12287-node FFT graph, and a 10000-nodeptimize the scheduling of individual nodes, the PFAST
random graph. For these graphs we simply measured tragorithm first generates an initial schedule and then
schedule length produced by an algorithm. We applied theefines it in parallel using an effective probabilistic search
DLS, DSC, ETF, and PFAST algorithms to these graphsechniques.
on the Intel Paragon. We ran the PFAST algorithm using We have compared the algorithm with a number of

16 PPEs and other algorithms 1 PPE. well-known efficient scheduling algorithms using real

The schedule lengths for the large DAGs, normalizedapplications and randomly generated task graphs. The
with respect to that of the PFAST algorithm, are shown irresults obtained demonstrate that the proposed algorithm is
Figure 9(a). Note that the MD algorithm was excludedsuperior to existing algorithms in terms of both solution
from the comparison because it took more than 8 hours tquality and complexity. Based on the comparison study in
produce a schedule for a 2000-node DAG. An encouraginghis paper and the comparison of 14 algorithms in [3], we
observation is that the PFAST algorithm outperformed allfind the PFAST algorithm to be the fastest algorithm
the algorithms in all the test cases. The percentagknown to us.

improve_men_t ranges from.8% tq 23%. CO”CG”’“”Q the  ap interesting observation of the PFAST algorithm is
scheduling times, we can immediately note from Figuréy ¢ parallelization can sometimes improve solution
9(b) that the ETF and DLS algorithms were conS|deranyqu‘,i"ty in that for some cases the PFAST algorithm

slower than the PFAST and DSC algorithms. By usingyenerated better solutions when using more PPEs. This is
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due to the partitioning of the blocking-nodes set, which Int'l Parallel Processing Symposiumpr. 1997, pp. 152-
implies a partitioning of the search neighborhood. The  156.
partitioning causes the algorithm to explore the searctilS] C. McCreary, A.A. Khan, J.J. Thompson, and M.E.

space simultaneously, thereby enhancing the likelihood of ~ MCArdie, “A Comparison of Heuristics for Scheduling
. . DAG’s on Multiprocessors,” Proceedings loternational
getting better solutions.

Parallel Processing Symposiuif94, pp. 446-451.
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