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Abstract

Automatic parallelization of recursive programs is still
an open problem today, lacking suitable and precise static
analyses. We present a novel reaching definition frame-
work based on context-free transductions. The technique
achieves a global and precise description of the data flow
and discovers important semantic properties of programs.
Taking the example of a real-world non-derecursivable pro-
gram, we show the need for a reaching definition analysis
able to handle run-time instances of statements separately.
A running example sketches our parallelizationscheme, and
presents our reaching definition analysis. Future fruitful re-
search, at the crossroad of program analysis and formal lan-
guage theory, is also hinted to.
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1. Introduction

This paper tackles the reaching definition problem for re-
cursive programs. There are several, related but different,
analyses of memory accesses. For instance, alias analyses
compute pairs of conflicting memory accesses, and depen-
dence analyses express conflicts with respect to program
statements (syntactic lines). Our purpose goes beyond: For
a given use (a read) of a memory cell, we are looking for
the identity of the write that defined the value currently as-
sociated to the memory cell. Reaching definition analysis
(RDA) is thus a special case of data-flow analysis [2].

Let us immediately stress a very important point. Clas-
sical RDAs tell, for a given read statement, whether a write
statement may be the reaching definition. In other words,
they tell whether there is a definition-free path connecting
a definition site to a use site. Our RDA, however, identifies
which run-time instance of some write statement defined the
value used by a given run-time instance. We stress this dif-
ference in calling our RDA: “Instance-wise reaching defini-
tion analysis” (IRDA) [8]. To describe the relation between
write instances and read instances, we first name all these in-
stances unambiguously, then find a mapping from names of
reads to names of writes.

Array data flow analyses [12, 18] are IRDAs for loop
nests with arrays. Applications are numerous, especially
in automatic parallelization of imperative programs: Ar-
ray expansion, conversion to single assignment form, etc.
However, most reaching definition analyses focuses on loop
nests, and recursive programs have received little interest.
The contributions of this article are:

� Formalizing instance-wise reaching definitions in re-
cursive programs. A suitable labeling scheme for run-
time instances of statements is introduced.

� Showing the use of context-free transductions to ade-
quately describe reaching definitions in recursive pro-
grams, at the run-time instance level.

� Advocating for the development of complex transfor-
mations techniques for recursive programs, and for in-
teresting applications of formal language theory to pro-
gram analysis.

Of course, the idea of using formal languages for program
analysis has been around for years. However, to the best of
our knowledge, this paper is the first to use formal languages
in an instance-wise reaching definition analysis.

The paper is organized as follows: Section 2 discusses
related work. Section 3 presents our running example and
show the use of reaching definitions in parallelization frame-
works. Then, still studying the motivating example, we de-
scribe in Section 4 the IRDA we want to design. Section 5
formalizes IRDA in a transduction-based model. To use this



transduction in a compiler we also need to construct the cor-
responding push-downtransducer. This is done in Section 6.
The method is applied in Section 7 to build the transducer for
the motivating example. Section 8 comments on our analy-
sis and describes future work.

2. Related Work

Many types of static analyses on data have been pro-
posed. Points-to analyses compute a store model using ab-
stract locations [5]. Jensen et al. [16] also developed an
access analysis where a first-order logic serves as a store
model (or, alternatively, a second-order one for sets of cells).
Adapting the respective store models—tailored for pointer
accesses—to array accesses with affine subscripts seems te-
dious. Alias analyses compute pairs of memory access paths
that are, or may be, aliased [11, 17]. Data dependences
describe conflicts between memory accesses in computing
pairs of dependent statements (or run-time instances). Some
of these analyses do handle arrays. They are yet basically
different from our reaching definition analysis since they do
not give the identity of the last defining write.

Most RDA abstract the effects of a program by sets of
flow equations; These equations are then solved in general
by iterative schemes [2, 9]. They often require that a fix-
point can be reached in a finite (and hopefully small) num-
ber of iterations. These methods proved to be robust in the
case of intricate control flow. Some analyses explicitly han-
dle recursive programs [3]. However, they do not identify
the run-time instance of a definition site, i.e. the last write
in a given memory cell.

Analyses closer to our work were proposed in [7, 12, 18,
20], because they give the identity of definition instances
and because they precisely handle array accesses thanks to
symbolic simplifiers [12, 19]. However, none of these anal-
yses was developed for recursive programs. Our framework
subsumes these analyses because loop nests can be consid-
ered as nested recursive procedures. Notice that the oppo-
site does not hold: Recursive programs cannot in general be
written as a nest of loops (without explicit stack handling).

3. The Motivation: Automatic Parallelization

Let us consider a motivating example, as shown in Fig-
ure 1, accessing an array A. (Programs are written in C
but the method applies to any imperative language.) This
is an example of recursive program for which no simple
non-recursive version exists: Classical derecursivation al-
gorithms will not work since recursive calls and loop itera-
tions are mixed 1. This program computes all possible RAM
configurations for a computer, given the size of the memory
chips and the number of slots available. This program orig-
inally appeared in Java on Sun’s Web-site.

1Writing the outer loop recursively would make appear two mutually
recursive procedures.

int A[N+1];

void FillSlots (int n) {
A=a for (i = 0; i <= M; i++) {
s A[n] = � � � ;
I if (n == 0)
T { /* then */
B=b for (j = 0; j <= N; j++)
r � � � = � � � A[j] � � �;
E } else
p FillSlots (n-1);

}
}

int main () {
FillSlots (N);

}
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Figure 1. Procedure FillSlots and call tree

To expose as much parallelism as possible, our intent is
to expand the data structures (here, arrays) so as to get rid
of as many output, anti- and true dependences as possible.
In the extreme expansion case, we would like to convert the
program into single assignment form. This program trans-
formation is very similar to static single assignment form
(SSA) [10] or array expansion [12]. In single assignment
form, all output dependences, anti-dependences, and true
dependences due to memory reuse, are removed.

Let us look at the execution of FillSlots. Figure 1
displays the call tree, with some kind of “call string” as-
sociated to each node. Each call string is actually a spe-
cial kind of word over the statement labels, to be formally
defined later. As and AIEpAs are instances of statement s,
AaIEpAITBr and AaIEpAITBbr are instances of statement r.

Now, let us consider a word w pinpointing to one run-
time instance of statement r, and let us assume that an IRDA
gives a mapping �, from w (the read of A[j] for the appro-
priate loop-counter j) to the run-time instance �(w) of state-
ment s that defined the value. Then, we could expand array
A into a tree Twhose nodes are labeled by call strings. Since
this paper focuses on IRDA, we neither discuss construction
ofT nor implementationof the transformed program. There-
fore, we simply use the abstract syntax T[w] for the node
associated with call string w. The resulting program in sin-
gle assignment form appears in Figure 2.

Now every instance of statement s writes in a distinct
memory location, all these instances can be executed in par-
allel. Two instances of the inner loop—i.e. the block in-
troduced by B—can also be executed in parallel. Loop B

itself may also be parallelized, but we need more informa-
tion on statement r. We can sketch an abstract paralleliza-
tion scheme for FillSlots:

� First, execute all instances of s—i.e. all writes—inpar-
allel and wait for execution completion;

� Then, run all B loops in parallel, executing each one



void FillSlots (int n) {
A=a for (i = 0; i <= M; i++) {
s T[w] = � � � ;
I if (n == 0)
T { /* then */
B=b for (j = 0; j <= N; j++)
r � � � = � � � T[�(w)] � � �;
E } else
p FillSlots (n-1);

}
}

Figure 2. Transforming FillSlots.

sequentially.

4. An Intuitive Flavor of the Analysis

We have shown that IRDA is a critical point in automatic
parallelization of recursive programs likeFillSlots. Let
us now focus on the IRDA itself.

4.1. A Few De�nitions

An Alphabet of Labels Program statements have been la-
beled for easier reference. There are two operative state-
ments: s writes into array A and r performs some read ac-
cess in A. Statement I is a conditional whose branches are
T (then) andE (else), and statement p a recursive call to
procedure FillSlots. Loop statements are decomposed
into two sub-statements which are given distinct labels: The
first one denotes the loop entry—e.g. A or B—and the sec-
ond one denotes the loop iteration—e.g. a or b.

We get an alphabet � = fA; a; s; I; T; E;B; b; r; pg.
In English, words are ordered by the lexicographical order
generated by the alphabet order a C b C c C � � � . Sim-
ilarly, in any program one can define a partial “textual” or-
der C over statements. Statements in the same basic block
are sorted in apparition order, and statements appearing in
different blocs are mutually incomparable. In our example:
r C b in the block introduced by the inner loop, s C I C a

in the outer loop. And that’s all: T and E are branches of a
conditional,B and p appear in different blocks : : :

UsingCwe see that instancew0 executes before instance
w iff the first differing label in w

0 and w are ordered by C:
I.e. if �0 (resp. �0) is the first label in w (resp. w0) after the
greatest common prefix ofw andw0, one must have�0 C �.

Call Strings and Control Words In the previous section,
we introduced an intuitive labeling scheme for nodes in call
trees by so-called “call strings”. However, to be consistent
with formal language theory, we will talk about “words” in-
stead of “strings”. Second, call strings have a somewhat
different meaning in the literature: They usually capture
the matching of call- and return-sites, and therefore build
context-free languages. In this paper, control words capture

the flow of control: Each control word corresponds to a pos-
sible run-time instance of a program statement. (Whether
this instance is actually executed or not depends on condi-
tionals and loop bounds, which have not been taken into ac-
count.) They build a rational (a.k.a. regular) control word
language: In the case of FillSlots, we show Section 5.1
and Figure 4 that instances of s build language A(IEpA+a)�s
and instances of r build language A(IEpA+a)�ITBb�r.

Execution Order is Lexicographical Order on Control
Words As a result, the sequential execution order over in-
stances is exactly the lexicographical order, over control
words, generated by C. We write w0

� w the fact that in-
stance w0 executes before w. In the following, trees of con-
trol words are sorted from left to right, according to �.

4.2. Reaching De�nitions for FillSlots

Let us compute “by hand” the instance-wise reaching
definitions for FillSlots. We are concerned in read ac-
cesses to A[j] performed by statement r. First, notice that
statement r can only be executed when n = 0, i.e. when
array A has been fully initialized by the successive calls to
FillSlots. Moreover, the j loop-counter indexing array
A in statement r ranges between 0 andN . As a result, values
read by r have always been defined.

We want to compute, given the control word w of an in-
stance of statement r, the control word w

0 of the reaching
definition, i.e. the control word of the last instance of s
which executes before w and writes into the array element
read by w. This reaching definition is such that the value of
n at instance w0 is the same as the value of j at instance w.
Since j is exactly the number of b in w and n is exactly N

minus the number of p in w

0, we have jwj
b

= N � jw

0

j

p

where jwj
�

is the occurrence number of � in word w.
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Figure 3.a. Studying AaIEpAITBbr.

AaIEpAITBr

r

B

b

T

r

I

A

s

p

E

I

a

A

I

E

p

A

I

s

Figure 3.b. Studying AaIEpAITBr.

Figure 3. Source examples for N = 1.



Suppose N = 1, and let us study instance AaIEpAITBbr
as shown by a circle in Figure 3.a. AaIEpAITBbr reads
A[1]. Aas—the black square—also writes in A[1]. No
instance executing between Aas and AaIEpAITBbr can as-
signA[1] since its control word cannot hold any occurrence
of p. Moreover, we are sure that Aas is actually executed;
Therefore other instances writing in the same array element
such as definitionAs—the gray square in Figure 3.a—cannot
reach the read, since they are always “killed” by Aas. Aas is
thus the reaching definition of AaIEpAITBbr. Similarly, the
definition reaching AaIEpAITBr in Figure 3.b is AaIEpAs—
the black square—since all other write instances—like the
gray square AIEpAs—are killed by AaIEpAs.

The reaching definition computation for these two exam-
ples may actually be generalized. It can be proven—and we
will do this automatically in Section 7—that the definition
reaching some instance w of r is an instance of s of the form
us where u is the greatest prefix of w s.t. jwj

b

= N � juj

p

.
Let us call �(w) the definition instance reachingw. We have
been able here to compute the unique reaching definition for
each instance of r. But in general, � maps instances to sets
of possible reaching definitions, since extricate conditional
expressions may cause approximative results.

5. Formalization of the Analysis

We start with some vocabulary in formal language theory,
see [4] for details. A transduction is a relation over formal
languages. It is also seen as a function from one language to
subsets of an other. A transducer is the “engine” to “code”
this relation. A rational (resp. push-down) transducer is a
generalized finite (resp. push-down) automaton with out-
put. It implements a rational (resp. push-down) transduc-
tion. Notice that a rational transduction is also context-free.
See Figure 5 for simple transducer examples. In the follow-
ing, we use the shorter “transducer �” for “transducer imple-
menting transduction �”.

5.1. Program Model

We handle programs with recursive calls, any loop (with
unrestricted bounds), and any conditional statement (with
unrestricted predicates); gotos are removed by classical
processing. We only consider scalars and one-dimensional
arrays. We call induction variables the integer arguments of
a procedure that are initialized, incremented or decremented
by a constant value at each recursive call. Loop counters
are also considered as induction variables since loops can be
rewritten in terms of recursive calls. Moreover, we require
that all array subscripts be affine functions of induction vari-
ables and symbolic constants. For expository reasons, we
make the following simplifications: We consider a single ar-
rayA, any number of read accesses, and only one assignment
s writing into array A.

For instance, procedure FillSlots has two induction
variables appearing in array subscripts: n and j; j is incre-
mented at each inner loop iteration, and n is decremented at
each recursive call. (Notice that these conditions subsume
“traditional” affine assumptions on loop nests.)

The alphabet of statement labels (see Section 4.1) is de-
noted with �. For a word w in �� and a letter � in �, jwj

�

denotes the number of occurrences of � in w.
Control words are formally defined as words recognized

by the control automaton of the program. It is a finite au-
tomaton whose states are blocks and statements in the pro-
gram. An edge from a state q1 to a state q2 express that state-
ment (or block) q2 occurs in block q1; It is labeled by the la-
bel of q2. Operative statements yield termination states (see
Figure 4). L denotes the control word language.
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Figure 4. Control automaton for FillSlots.

5.2. Reaching De�nitions as Transductions

The applicability of our transduction model relies on the
two following properties:

� Without considering loop bounds and predicates, L is
a rational (a.k.a. regular) language. This result is
a straightforward application of L being the language
recognized by the control automaton.

� Now consider array subscripts. Due to our syntacti-
cal restrictions, a subscripting function f is affine w.r.t.
the occurrence numbers of labels in control words and
w.r.t. symbolic constants. I.e., if � = f�

1

; : : : ; �

n

g

and if N
1

; : : : ; N

m

are symbolic constants, then there
exist n+m numerical constants a

1

: : :a

n+m

s.t.:

f(w) = a

1

jwj

�

1

+ : : :+ a

n

jwj

�

n

+ a

n+1

N

1

+ : : :+ a

n+m

N

m

: (1)

The formal proof of this result is not given here, for lack
of space (A restricted case is studied in [6]).

Let g be the subscript function to arrayA in the right-hand
side (the read) and f the function subscripting array A in the
left-hand side. Let us consider the read in A by an instance



w of s. A readw is dependent on instancew0 of s if the three
conditions below hold.

Conflicting accesses: w and w

0 hit the same memory cell:

g(w) = f(w

0

): (2)

Ordering: The write w0 has to execute before the read w,
denoted by w

0

� w. Actually, � is the lexicographi-
cal order on control words, defined by:

w

0

� w () w = u�v ^ w

0

= u�

0

v

0

^�

0

C �: (3)

Execution: Obviously, write w0 has to execute. This is de-
noted by e(w

0

).

Then, the reaching definition of a read w is the last write
instance, with respect to order�, satisfying these three con-
ditions: max

�

fw

0

: g(w) = f(w

0

) ^ w

0

� w ^ e(w

0

)g.
Clearly, this maximum is unique in the course of program

execution. However, since we make no assumption on re-
cursion guards, we cannot prove nor disprove, a priori, that
an instance executes. So, we have to approximate this max-
imum as a set �(w) of possible reaching definitions. This
approximation may be more or less precise, depending on
the knowledge on e(w

0

) and on how well this knowledge
fits the context-free transduction framework. This (compile-
time) knowledge may come from structural properties of the
program, analysis of conditional expressions, etc. At first,
loop bounds and conditional predicates (such as recursion
guards) are not taken into account. We thus restrict our-
selves to the transduction built from (2) and (3):

�(w) = fw

0

2 �

�

s : f(w

0

) = g(w) ^ w

0

� wg (4)

Transduction � captures the true dependences of the pro-
gram. We will prove in the next section that � is a context-
free transduction. But our aim is still to perform a reaching
definition analysis; And true dependences are no good ap-
proximation, in general. Our IRDA scheme applies various
rewriting rules to �, using compile-time knowledge on the
existence condition e(w0

):

� If we can prove that some statement instance does not
execute, and if adding this information keeps the trans-
duction context-free, some true dependences can be
removed. The remaining instances are described by
predicate eMAY(w

0

) (instances that may execute).

� On the opposite, suppose we can prove that some state-
ment instance w00 does execute, and that adding this in-
formation keeps the transduction context-free. Then,
writes executing before w00 are “killed”: They cannot
reach an instance w such that w00

2 �(w). Instances
that are effectively executed are described by predicate
eMUST(w

0

) (instances that must execute).

The number and complexity of these rules depends on the
program and on the precision required. This issue is studied
in more detail in the next sections.

At last, the result of our IRDA is a new transduction, call
it � , which is an over-approximation of �: �(w) � � (w).
Formally, an instance w

0 is in � (w) iff it is in dependence
with w, It executes (according to the static knowledge we
have), and it is not killed by an other dependence:

� (w) = fw

0

: w

0

2 �(w) ^ eMAY(w
0

)

^ ( 6 9w

00

2 �(w) : w

0

� w

00

^ eMUST(w
00

))g (5)

Let us now give a constructive proof that � is context-free.

6. Building the Context-Free Transducer

We first present a construction of the dependence trans-
ducer �, then show how to refine its output, in order to get a
precise description of reaching definition instances.

6.1. The Dependence Transducer

Implementing the lexicographical order with a transducer
(3) is easy, it is a well known example of rational transducer.
Suppose we have just read a prefix u of w: Let w = u�v 2

L, u 2 �

�, � 2 � and v 2 �

�. To satisfy the lexico-
graphical order, we have to output any word w

0

= u�

0

v

0

s.t. �0 C �. See example in Figure 5.a.
Satisfying the conflicting access condition (2) is done

using a counter. The counter, therefore, checks whether
g(w)� f(w

0

) is equal to zero. To comply with the standard
definition of push-down transducers, the counter is imple-
mented as a stack in a natural way [4, 15]. Such a push-down
transducer allows the following counter arithmetic:

� Initialization to a constant, noted CNT := cst;

� Adding a constant, noted CNT += cst or CNT -= cst;

� Comparing with zero, noted CNT = 0 or CNT 6= 0.

Figure 5.b is an example of conflict equation transducer.
Intersecting the lexicographical order and conflict equa-

tion transducers is easy: The first one is essentially “state-
based” and the second one is “stack-based” 2. It yields a
three-state transducer checking the counter in three stages.

1. Read and write a common prefix: Transitions are of the
form �v=�v, � 2 �, v 2 �

�.

2. Read the input suffix: Transitions are of the form�v=".

3. Write an output suffix that zeroes the counter: Transi-
tions are of the form "=�v.

Therefore the result is a push-down transducer.
The last stage consists in restricting input words to in-

stances of read statements, and output words to instances
of s. We need the following notations: Let INPUT (resp.
OUTPUT) be the transducer build from the finite automaton
recognizing instances of read statements (resp. statement s)

2The intersection of a rational transduction and an context-free one is in
general not context-free.



in copying its input to its output—i.e., when an edge in the
finite automaton is labeled by �, the corresponding edge in
INPUT is labeled by �=�. Composing the input of our trans-
ducer with INPUT and the output by OUTPUT, we get the
dependence transducer �. We can apply Elgot and Mezei’s
theorem 3 [4] since we compose two rational transducers—
INPUT and OUTPUT—with a context-free one. It proves that
� is a context-free transducer. Notice that Elgot and Mezei’s
theorem is constructive: Building � is done automatically
from INPUT, OUTPUT, �, g and f .

6.2. The Reaching De�nitions Transducer

Here comes a few examples of rewriting rules that can be
applied to refine the set of possible reaching definition in-
stances. Any statement instance us where u is a strict pre-
fix of some control word w is called an ancestor of w. E.g.,
AaIEpAs is an ancestor of AaIEpAIBr (see Figure 3.b).

The LAD property (Left of Ancestor in Dependence).
Let w be some read instance and w

0 in dependence with w.
Suppose an ancestor u0s ofw0 is also in dependence and ex-
ecutes before w0. If w0 executes, u0 executes too, and then
u

0

s does. Therefore u

0

s kills every instance executing be-
fore it, including w

0. (w0 may execute or not, but when it
does, it is necessarily killed.) See [6] for details.

LAD () (9� 2 � : � C s):

Rule LAD then applies: If some word u

0

s is in dependence
with w, no words prefixed by u

0

� with � C s can be reach-
ing definitions of w. Formally, transitions "=�v (v 2 �

�)
with � C s are transformed into "=�v : CNT 6= 0.

The MSF property (Monotonic Subscript Function).
A non-decreasing function f is s.t. 8uv 2 L; u; v 2

�

�

: f(uv) � f(u); Non-increasing functions are de-
fined similarly. A function is monotonic when it is either
non-decreasing or non-increasing.

Suppose the write access function f to array A (in s) is
monotonic, s C � and �v=�v is a transition that does not
modify the counter. Let w be some read instance and us an
ancestor ofw, in dependence withw. We know that u�vs is
executed—being an ancestor of w. And u�vs is in depen-
dence with w, since transition �v=�v does not modify the
counter; Thus u�vs kills us.

MSF () f is monotonic:

For all � 2 � and v 2 �

� s.t. s C � and �v=�v does not
modify the counter: Rule MSF consists in following transi-
tion �v=�v as much as possible before outputting s (to get
the biggest ancestor). Formally, transition �=s is removed,
if not the only transition that outputs s. Application of this
rule is shown at Section 7.

3More precisely, a generalization to context-free transductions.

The VPA property (Values are Produced by Ancestors).
This property comes from the common observation about
recursive programs that “values are produced by ancestors.”
Indeed, a lot of sort, tree, or graph-based algorithms perform
in depth explorations where values are produced by ances-
tors. This behavior is also strongly assessed by scope rules
of local variables. Formally,

VPA () (w

0

= �(w)) (9u; v : w = uv ^ w

0

= us)):

Rule VPA then consists in removing all transitionsproducing
non-ancestors. Formally, all transitions �=�0 s.t. �0 C �

and �

0

6= s are removed.

The OKA property (One Killing Ancestor).
Let w be a read instance. If it can be proven that at least

one ancestor us of w is in dependence, it kills all writes ex-
ecuting before (since it does executes when w does).

OKA () (�(w) 6= ; ) (9u; v : w = uv ^us 2 �(w))):

Property checking Satisfaction of property LAD is easily
obtained fromC. Checking property MSF is done by exam-
inating transitions of the form �v=�v in � and coefficients
in f (their sign must be the same). Property OKA can be
discovered using invariant properties on induction variables
(see Section 7). Checking for property VPA is difficult (au-
tomatically or not), but we have the following result:

When both OKA and MSF hold, VPA also holds.
Suppose �

0 is the transducer after application of the MSF

rule, and—by application of OKA—suppose us 2 �

0

(w) is
an ancestor of w. Any word u�vs with s C � and v 2 �

�

is s.t. f(u�vs) 6= f(us), by definition of us. Therefore, no
instances in dependence execute after us: Property VPA is
satisfied. This result allows to apply rule VPA from proper-
ties MSF and OKA.

To summary this section: Our IRDA checks for prop-
erties LAD, MSF and OKA—possibly using external classic
analyses; Then applies rules LAD, MSF and VPA accordingly.

More properties can probably be useful that can be ob-
tained by more involved analyses [9]. The problem is to find
a relevant and efficient rewritting rule for each one.

6.3. Algorithm for IRDA

In this section, we integrate the precedent techniques in
a general IRDA algorithm.

Input: �, f , g, L (from the control automaton), and C.

Step 1: Build the lexicographical order transducer �.

Step 2: Build the transducer checking g(w) = f(w

0

).

Step 3: Intersect the two, yielding a three-state transducer.

Step 4: Compute transducers INPUT and OUTPUT from L.

Step 5: Compose the input by INPUT and the output by
OUTPUT. Here is transducer �.



Step 6: Check properties LAD, MSF and OKA using exter-
nal static analyses. Asking the user for help may be
useful for VPA or other properties not described here.

Step 7: Apply rewritting rules accordingly. The result is
the reaching definition transducer.

Output: Return dependence and reaching definition trans-
ducers � and � .

Notice � and � are both useful to compilers. Section 8 dis-
cusses decidability results on describing dependences and
reaching definitions with push-down transducers.

7. Back to procedure FillSlots

Let us show how to compute the transducer � describing
the data flow of FillSlots. Here we have g(w) = jwj

b

and f(w

0

) = N � jw

0

j

p

: The conflict equation is

g(w) � f(w

0

) = jwj

b

+ jw

0

j

p

� N:

Intersecting the lexicographical order and the conflict equa-
tion, then applying composition with INPUT and OUTPUT,
we get the dependence transducer in Figure 5.c.

Figure 5.a: Transducer for lexicographical order. Figure 5.b: Transducer for conflict equation.

8� 2 � : �=�

b="; "=p : CNT += 1

8� 2 �� fb; pg : �="; "=�

8� 2 � : �="; "=�

"=" : CNT = 0

CNT := �N

a=I; a=s; I=s

a=I a="; IEpA="

ITB="EpA="A=A

a=a

IEpA=IEpA : CNT += 1

TB="

ITB="

r=" : CNT = 0

CNT := �N

b=" : CNT += 1

r=EpA : CNT += 1

"=a

"=IEpA : CNT += 1a="; IEpA=" b=" : CNT += 1

"=s : CNT = 0

Figure 5.c: Transducer �.

I=s

a=s

Figure 5. Computing the dependence trans-
ducer for FillSlots.

Rule LAD does not apply since no label precedes s forC.
Rule MSF applies since f(w

0

) is a non-increasing function
(as the length ofw0 increases). Transitiona=a does not mod-
ify the counter, therefore edge a=s is removed; But transi-
tion IEpA=IEpA increments the counter thus I=s is kept.

We have seen in Section 4.2 that 0 � j � N and n = 0

holds for all instances of statement r. These properties can
be easily discovered using classical techniques [2, 9]. As a
consequence, if w is an instance of r there exists a prefix u

of w s.t. jusj
p

= N � jw

0

j

b

. Property OKA is satisfied.
We have seen that combined properties OKA and MSF forces

reaching definitions to be ancestors: Rule VPA thus applies.
It consists in stripping out a=I (and subsequent unreachable
states and edges). The result is shown in Figure 6.

a=a

A=A

IEpA=IEpA : CNT += 1

b=" : CNT += 1

TB="

I=s EpA="

a="; IEpA="

ITB=" r=" : CNT = 0

CNT := �N

Figure 6. Reaching definitions for FillSlots
after application of VPA and MSF.

This is our result for � . It computes in fact a unique reach-
ing definition for every instance: We achieved—in an auto-
mated way—the best precision possible. We also gave a for-
mal description of the result of Section 4.2.

8. Discussion on This Approach

The present framework can be extended to programs with
several arrays and assignments: The weakest solution to
handle several assignments to the same array consists in tak-
ing the union of context-free languages, which is context-
free. We also believe that this transduction-based frame-
work can be extended to support IRDA over more gen-
eral data structures, such as trees [13]. Formal languages
seem very natural for compile-time analysis of recursive
programs. Moreover, using context-free transducers has the
following benefits:

� It can be decided whether a word is a reaching defini-
tion of another one.

� It is decidable whether a language of reaching defini-
tions is empty or not, and therefore, whether an in-
stance reads an uninitialized value. This makes our
IRDA useful to precise program checking.

� Computing the cardinality of a set of reaching defini-
tions is also possible. This is useful to detect when
IRDA gives exact results (sets are singletons).

� Context-free languages are closed under intersection
with rational languages. Any decidable property on the
reaching definitions of a given read is thus decidable
for a rational set of read instances.

We have seen on example FillSlots that instance-
wise reaching definitions can be of great help in paralleliz-
ing recursive programs. Indeed, benefits of IRDA have al-
ready been studied in the case of Fortran loops [12, 18],
but we advocate for an extension to recursive programs.
First, IRDA allows to remove dependences due to memory
reuse—via single assignment form transformation; Second,
since it works on a per-instance basis, both fine-grain and
coarse-grain parallelism can be discovered. Several prob-
lems obviously remain. Two of them are studied below.



1. The exact language of possible reaching definitions is
not context-free: Obviously, many properties on the
existence condition e(w0

) cannot be taken into account
in our framework. More precise IRDAs require more
powerful classes of languages. Indexed grammars [1]
are an extension of context-free grammars useful to our
context. This research is left for future work.

2. Multidimensional arrays could be handled by intersect-
ing reaching definitions languages. Unfortunately, nei-
ther context-free languages nor indexed grammars are
closed under intersection. Scattered context grammars
[14] are an extension of context-free languages closed
under intersection; Studying the applicability of this
class is left for future work too.

9. Conclusion

This article presents a novel application of formal lan-
guages to the automatic discovery of some semantic prop-
erties of programs: Reaching definitions. When programs
are recursive and no property is known at compile-time on
recursion guards, only a conservative approximation can be
hoped for. In our case, we approximate the set of possi-
ble reaching definitions of a given read by a context-free
language. The relation between reads and their respective
languages of possible reaching definitions is context-free,
by construction. The result of the analysis is thus a push-
down transducer mapping control words of read instances to
control words of write instances. Decidability properties on
context-free languages and transductions allow several ap-
plications of our framework, especially in automatic paral-
lelization of recursive programs. These applications include
array expansion, parallelism extraction, and aggressive op-
timization and verification techniques.
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