N

N

Instance-wise Reaching Definition Analysis for Recursive
Programs using Context-free Transductions
Albert Cohen, Jean-Francois Collard

» To cite this version:

Albert Cohen, Jean-Francgois Collard. Instance-wise Reaching Definition Analysis for Recursive Pro-
grams using Context-free Transductions. Parallel Architectures and Compilation Techniques (PACT),
1998, Paris, France. pp.332-340. hal-01257320

HAL Id: hal-01257320
https://hal.science/hal-01257320
Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01257320
https://hal.archives-ouvertes.fr

I nstance-wise Reaching Definition Analysisfor Recursive Programsusing
Context-free Transductions

Albert Cohen and Jean-Francois Collard
PRiSM, University of Versailles
45 avenue des Etats-Unis, 78035 Versailles, France
Al bert. Cohen@rismuvsq. fr, Jean-Francoi s. Col | ard@ri sm uvsq. fr

Abstract

Automatic parall€elization of recursive programsis till
an open problem today, lacking suitable and precise static
analyses. We present a novel reaching definition frame-
work based on context-free transductions. The technique
achieves a global and precise description of the data flow
and discovers important semantic properties of programs.
Taking the exampl e of a real-world non-derecursivabl e pro-
gram, we show the need for a reaching definition analysis
able to handle run-timeinstances of statements separately.
A running exampl e sketches our parallelizationscheme, and
presents our reaching definitionanalysis. Futurefruitful re-
search, at thecrossroad of programanalysisand formal lan-
guage theory, is also hinted to.

Keywords. Reaching Definition Analysis, Recursive Pro-
grams, Context-free Languages, Push-down Transducers.

Copyright 1998 |EEE. Published in the Proceedings of
PACT’ 98, 12-18 October 1998 in Paris, France. Personal
use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of thiswork in other works, must be obtained from
the IEEE. Contact: Manager, Copyrights and Permissions
| |IEEE Service Center / 445 Hoes Lane / PO. Box 1331
/ Piscataway, NJ 08855-1331, USA. Telephone: + Intl.
732-562-3966.

1. Introduction

This paper tacklesthereaching definition problemfor re-
cursive programs. There are severd, related but different,
analyses of memory accesses. For instance, dias analyses
compute pairs of conflicting memory accesses, and depen-
dence analyses express conflicts with respect to program
statements (syntactic lines). Our purpose goes beyond: For
a given use (aread) of a memory cell, we are looking for
the identity of the writethat defined the value currently as-
sociated to the memory cell. Reaching definition analysis
(RDA) isthusa specia case of data-flow analysis [2].

Let us immediately stress a very important point. Clas-
sical RDAstell, for agiven read statement, whether awrite
statement may be the reaching definition. In other words,
they tell whether there is a definition-free path connecting
adefinition siteto ause site. Our RDA, however, identifies
which run-timeinstance of some writestatement defined the
value used by a given run-timeinstance. We stress this dif-
ferencein calling our RDA: “Instance-wise reaching defini-
tionanalysis’ (IRDA) [8]. To describe the relation between
writeinstances and read instances, wefirst nameall thesein-
stances unambiguousdly, then find a mapping from names of
reads to names of writes.

Array data flow analyses [12,18] are IRDAS for loop
nests with arrays. Applications are numerous, especially
in automatic parallelization of imperative programs. Ar-
ray expansion, conversion to single assignment form, etc.
However, most reaching definition anayses focuses on loop
nests, and recursive programs have received little interest.
The contributionsof thisarticle are:

o Formalizing instance-wise reaching definitionsin re-
cursive programs. A suitable labeling scheme for run-
time instances of statementsis introduced.

¢ Showing the use of context-free transductions to ade-
quately describe reaching definitionsin recursive pro-
grams, a therun-timeinstancelevel.

¢ Advocating for the development of complex transfor-
meations techniques for recursive programs, and for in-
teresting applicationsof formal language theory to pro-
gram analysis.

Of course, the idea of using formal languages for program
analysis has been around for years. However, to the best of
our knowledge, thispaper isthefirst to useformal languages
in an instance-wise reaching definition analysis.

The paper is organized as follows: Section 2 discusses
related work. Section 3 presents our running example and
show theuse of reaching definitionsin parallelization frame-
works. Then, till studying the motivating example, we de-
scribein Section 4 the IRDA we want to design. Section 5
formalizesIRDA in atransduction-based model. To usethis



transduction in acompiler we also need to construct the cor-
responding push-downtransducer. Thisisdonein Section 6.
Themethod isappliedin Section 7 to build thetransducer for
the motivating example. Section 8 comments on our analy-
sisand describes future work.

2. Related Work

Many types of static analyses on data have been pro-
posed. Points-to analyses compute a store model using ab-
stract locations [5]. Jensen et a. [16] aso developed an
access analysis where a first-order logic serves as a store
mode (or, aternatively, asecond-order onefor setsof cells).
Adapting the respective store model s—tailored for pointer
accesses—to array accesses with affine subscripts seems te-
dious. Aliasanalyses compute pairsof memory access paths
that are, or may be, aliased [11,17]. Data dependences
describe conflicts between memory accesses in computing
pairsof dependent statements (or run-timeinstances). Some
of these analyses do handle arrays. They are yet basically
different from our reaching definition analysis since they do
not give the identity of the last defining write.

Most RDA abstract the effects of a program by sets of
flow eguations; These equations are then solved in genera
by iterative schemes [2,9]. They often require that a fix-
point can be reached in afinite (and hopefully small) num-
ber of iterations. These methods proved to be robust in the
case of intricate control flow. Some analyses explicitly han-
dle recursive programs [3]. However, they do not identify
the run-time instance of a definition site, i.e. the last write
inagiven memory cell.

Analyses closer to our work were proposed in [7,12, 18,
20], because they give the identity of definition instances
and because they precisely handle array accesses thanks to
symbolic simplifiers[12, 19]. However, none of these anal-
yses was devel oped for recursive programs. Our framework
subsumes these analyses because 1oop nests can be consid-
ered as nested recursive procedures. Notice that the oppo-
sitedoes not hold: Recursive programs cannot in general be
written as anest of loops (without explicit stack handling).

3. The Motivation: Automatic Parallelization

Let us consider a motivating example, as shown in Fig-
ure 1, accessing an array A. (Programs are written in C
but the method applies to any imperative language.) This
is an example of recursive program for which no simple
non-recursive version exists: Classical derecursivation al-
gorithmswill not work since recursive calls and loop itera-
tionsare mixed *. Thisprogram computesall possible RAM
configurationsfor acomputer, given the size of the memory
chipsand the number of slotsavailable. This program orig-
inally appeared in Java on Sun’s Web-site.

IWriting the outer loop recursively would make appear two mutually
recursive procedures.

int Al N+1];

void FillSlots (int n) {
Afa for (i =0; i <= M i++) {

s Aln] = .-+ g v
I if (n==0) 1° Al
T { I* then */ Ay vy B
B/b for (j =0 J <= N j+) |
r o A[]] e E /,—'\ 14
. L else AIEpAs /
P FillSlots (n-1); !
) T
} B
int min () { :
§ X T
} FillSlots (N); Aal EpAITBr i
.
AalEpAITBbr

Figure 1. Procedure Fi | | Sl ot s and call tree

To expose as much paralelism as possible, our intent is
to expand the data structures (here, arrays) so as to get rid
of as many output, anti- and true dependences as possible.
In the extreme expansion case, we would liketo convert the
program into single assignment form. This program trans-
formation is very similar to static single assignment form
(SSA) [10] or array expansion [12]. In single assignment
form, al output dependences, anti-dependences, and true
dependences due to memory reuse, are removed.

Let uslook at the execution of Fi | | Sl ot s. Figure1
displays the call tree, with some kind of “call string” as-
sociated to each node. Each call string is actualy a spe-
cia kind of word over the statement labels, to be formally
defined later. As and AIEpAs are instances of statement s,
Aal EpAITBr and Aal EpAITBbr areinstances of statement .

Now, let us consider a word w pinpointing to one run-
timeinstance of statement r, and | et us assume that an IRDA
givesamapping o, from w (theread of A[ j ] for the appro-
priateloop-counter ;) totherun-timeinstance o (w) of state-
ment s that defined the value. Then, we could expand array
Aintoatree T whose nodes are labeled by cdll strings. Since
thispaper focuses on IRDA, we neither discuss construction
of T nor implementation of thetransformed program. There-
fore, we simply use the abstract syntax T[ w] for the node
associated with call string w. The resulting programin sin-
gle assignment form appearsin Figure 2.

Now every instance of statement s writes in a distinct
memory location, al these instances can be executed in par-
alel. Two instances of the inner loop—i.e. the block in-
troduced by B—can aso be executed in parallel. Loop B
itself may also be parallelized, but we need more informa:
tion on statement ». We can sketch an abstract paralldiza-
tionschemefor Fi I | Sl ot s:

o Firdt, executeal instancesof s—i.e. al writes—inpar-
alel and wait for execution completion;

e Then, run al B loopsin parallel, executing each one



void FillSlots (int n) {
Afa  for (i =0; i <= M i++) {

s T[w] = -+

I if (n==0)

T { I* then */

B/b for (j =0; j <= N j++)
E } else

p FillSlots (n-1);

Figure 2. Transforming Fi | | Sl ot s.

sequentially.
4. An Intuitive Flavor of the Analysis

We have shown that IRDA isacritica pointin automatic
parallelization of recursiveprogramslikeFi | | Sl ot s. Let
us now focus on the IRDA itself.

4.1. A Few Definitions

An Alphabet of Labels Program statements have been la-
beled for easier reference. There are two operative state-
ments. s writesinto array A and » performs some read ac-
cessin A. Statement / is a conditiona whose branches are
T (t hen)and £ (el se), and statement p arecursivecall to
procedure Fi | | S| ot s. Loop statements are decomposed
into two sub-statementswhich are given distinct labels: The
first one denotes the loop entry—e.g. A or B—and the sec-
ond one denotes the loop iteration—e.g. @ or b.

We get an dphabet ¥ = {A,a,s,I,7T,E,B,b,r p}.
In English, words are ordered by the lexicographical order
generated by the dphabet order a <1 b <t ¢ < ---. Sim-
ilarly, in any program one can define a partial “textua” or-
der <1 over statements. Statements in the same basic block
are sorted in apparition order, and statements appearing in
different blocs are mutually incomparable. In our example:
r <1 b intheblock introduced by theinner loop, s < I < a
in the outer loop. And that'sall: 7" and £ are branches of a
conditional, B and p appear in different blocks. . .

Using <« we seethat instance w’ executes beforeinstance
w iff thefirst differing label in w’ and w are ordered by <:
l.e if o’ (resp. ') isthefirst label inw (resp. w') after the
greatest common prefix of w and w’, onemust havea’ < «.

Call Stringsand Control Words  Inthe previous section,
weintroduced an intuitivelabeling scheme for nodesin call
trees by so-called “call strings’. However, to be consistent
with formal language theory, we will talk about “words” in-
stead of “strings’. Second, call strings have a somewhat
different meaning in the literature: They usually capture
the matching of cal- and return-sites, and therefore build
context-freelanguages. In thispaper, control words capture

theflow of control: Each control word correspondsto a pos-
sible run-time instance of a program statement. (Whether
thisinstance is actualy executed or not depends on condi-
tionalsand loop bounds, which have not been taken into ac-
count.) They build a rational (ak.a. regular) control word
language: Inthecaseof Fi | | Sl ot s, weshow Section 5.1
and Figure4 that instances of s buildlanguage A(lEpA+a)*s
and instances of » build language A(IEpA+a)* 1 TBb*r.

Execution Order is Lexicographical Order on Control
Words Asaresult, the sequentia execution order over in-
stances is exactly the lexicographical order, over control
words, generated by <1. We write w’ <« w thefact that in-
stance w’ executes before w. In the following, trees of con-
trol words are sorted from left to right, according to <.

4.2. Reaching Definitions for Fill Sl ots

Let us compute “by hand” the instance-wise reaching
definitionsfor Fi | | SI ot s. We are concerned in read ac-
cessesto Al j ] performed by statement ». First, notice that
statement » can only be executed when n = 0, i.e. when
array A has been fully initialized by the successive callsto
Fi | | SI ot s. Moreover, the j loop-counter indexing array
Ainstatement » rangesbetween 0 and N. Asaresult, values
read by » have always been defined.

We want to compute, given the control word w of anin-
stance of statement r, the control word w’ of the reaching
definition, i.e. the control word of the last instance of s
which executes before w and writes into the array element
read by w. Thisreaching definitionis such that the value of
n a instance v’ is the same as the vaue of ; at instance w.
Since j is exactly the number of b in w and n isexactly N
minus the number of p in w’, we have |w|, = N — [u'],
where |w|, isthe occurrence number of o inword w.

J
/s I
A P A P

! A “}// A
T /l

T T
B B
PN A
r r 5
g AalEpAITBr L
r r
Aal EpAl TBbr

Figure 3.2 Studying AalEpAITBbr.  Figure 3.b. Studying AalEpAITBr.

Figure 3. Source examples for N = 1.



Suppose N = 1, and let us study instance Aal EpAl TBbr
as shown by a circle in Figure 3.a. AalEpAITBbr reads
Al 1] . Aas—the black square—also writesin A[ 1] . No
instance executing between Aas and AalEpAITBbr can as-
signA[ 1] sinceitscontrol word cannot hold any occurrence
of p. Moreover, we are sure that Aas is actually executed;
Therefore other instances writing in the same array element
such as definition As—thegray squarein Figure 3.a—cannot
reach theread, sincethey are dways“killed” by Aas. Aasis
thus the reaching definition of AalEpAITBbr. Similarly, the
definition reaching Aal EpAITBr in Figure 3.b is Aal EpAs—
the black square—since all other write instances—like the
gray square AlEpAs—are killed by AalEpAs.

The reaching definition computation for these two exam-
ples may actually be generalized. It can be proven—and we
will do this automatically in Section 7—that the definition
reaching someinstance w of r isan instance of s of theform
us where u isthe greatest prefix of w st. [w], = N — [ul,.
Let uscall o(w) thedefinitioninstancereaching w. Wehave
been able here to compute the unique reaching definitionfor
each instance of ». But in general, ¢ maps instances to sets
of possible reaching definitions, since extricate conditional
expressions may cause approximative results.

5. Formalization of the Analysis

Westart with somevocabulary informal languagetheory,
see [4] for details. A transduction is arelation over formal
languages. It isalso seen asafunctionfrom onelanguageto
subsets of an other. A transducer isthe “enging’ to “code”
thisrelation. A rational (resp. push-down) transducer is a
generalized finite (resp. push-down) automaton with out-
put. It implements a rationa (resp. push-down) transduc-
tion. Notice that arational transduction is also context-free.
See Figure 5 for simpletransducer examples. Inthefollow-
ing, we usetheshorter “transducer 7" for “transducer imple-
menting transduction 7.

5.1. Program Model

We handle programs with recursive calls, any loop (with
unrestricted bounds), and any conditiona statement (with
unrestricted predicates); got os are removed by classical
processing. We only consider scalars and one-dimensional
arrays. We call induction variables theinteger arguments of
aprocedurethat areinitialized, incremented or decremented
by a constant value at each recursive call. Loop counters
are also considered asinductionvariables sinceloopscan be
rewritten in terms of recursive calls. Moreover, we require
that all array subscriptsbe affine functionsof inductionvari-
ables and symbolic constants. For expository reasons, we
make thefollowing simplifications: We consider asinglear-
ray A, any number of read accesses, and only oneassignment
s writinginto array A.

For instance, procedure Fi | | SI ot s hastwo induction
variables appearing in array subscripts: » and j; j isincre-
mented at each inner loop iteration, and n is decremented at
each recursive call. (Notice that these conditions subsume
“traditiona” affine assumptions on loop nests.)

The aphabet of statement labels (see Section 4.1) is de-
noted with X. For aword w in X* and aletter o in X, |w|,,
denotes the number of occurrences of « in w.

Control words are formally defined as words recognized
by the control automaton of the program. It is afinite au-
tomaton whose states are blocks and statements in the pro-
gram. Anedgefromastateq; toastate g, expressthat state-
ment (or block) g, occursinblock gs; Itislabeled by thela
bel of g,. Operative statements yield termination states (see
Figure 4). L denotes the control word language.

I
FillSlots

total += A[j];

Figure 4. Control automaton for Fi | | Sl ot s.

5.2. Reaching Definitions as Transductions

The applicability of our transduction modd relies on the
two following properties:

o Without considering loop bounds and predicates, L is
arational (ak.a. regular) language. This result is
a straightforward application of I being the language
recognized by the control automaton.

e Now consider array subscripts. Due to our syntacti-
cal restrictions, asubscripting function f isaffine w.r.t.
the occurrence numbers of labelsin control words and
w.rt. symbolic constants. l.e, if ¥ = {ay,...,a,}
and if Ny, ..., N, are symbolic constants, then there
exist n + m numerica constantsas . . . an4m St

flw) = a; |w|a1 + ... +a, |w|an
+an+1N1+~~~+an+mNm~ (1)

Theformal proof of thisresult isnot given here, for lack
of space (A restricted case isstudied in [6]).

Let ¢ bethesubscript functionto array Aintheright-hand
side (theread) and f thefunction subscriptingarray Ainthe
left-hand side. Let us consider the read in A by an instance



w of 5. A read w isdegpendent oninstance w’ of s if thethree
conditions below hold.

Conflicting accesses: w and w’ hit the same memory cell:

g(w) = f(w'). 2

Ordering: The writew’ has to execute before the read w,
denoted by w' < w. Actualy, < isthe lexicographi-
cal order on control words, defined by:

wKw = w=uavAw =udv Ad o (3)

Execution: Obviously, writew’ hasto execute. Thisisde-
noted by e(w').

Then, the reaching definition of aread w isthelast write
instance, with respect to order <, satisfyingthesethree con-
ditions: max¢ {w' : g(w) = f(w') Aw' € wAe(w)}.

Clearly, thismaximum isuniquein thecourse of program
execution. However, since we make no assumption on re-
cursion guards, we cannot prove nor disprove, a priori, that
an instance executes. So, we have to approximate this max-
imum as a set o(w) of possible reaching definitions. This
approximation may be more or less precise, depending on
the knowledge on e(w') and on how well this knowledge
fitsthe context-freetransductionframework. This(compile-
time) knowledge may come from structural propertiesof the
program, analysis of conditional expressions, etc. At first,
loop bounds and conditional predicates (such as recursion
guards) are not taken into account. We thus restrict our-
selves to the transduction built from (2) and (3):

S(w) ={uw' €Xs: f(v')=g(w) AN €< w} 4

Transduction ¢ captures the true dependences of the pro-
gram. We will provein the next section that ¢ is a context-
free transduction. But our aim is still to perform areaching
definition analysis; And true dependences are no good ap-
proximation, in general. Our IRDA scheme applies various
rewriting rules to 4, using compile-time knowledge on the
existence condition e(w’):

o If we can prove that some statement instance does not
execute, and if adding thisinformation keepsthe trans-
duction context-free, some true dependences can be
removed. The remaining instances are described by
predicate eyay (w') (instances that may execute).

¢ Ontheopposite, supposewe can provethat some state-
ment instance w” doesexecute, and that adding thisin-
formation keeps the transduction context-free. Then,
writes executing before w” are “killed”: They cannot
reach an instance w such that w” € J(w). Instances
that are effectively executed are described by predicate
emust(w') (instances that must execute).

The number and complexity of these rules depends on the
program and on the precision required. Thisissueisstudied
in more detail in the next sections.

At last, theresult of our IRDA isanew transduction, call
it 7, which is an over-gpproximation of o: o(w) C 7(w).
Formally, an instance w' isin r(w) iff it isin dependence
with w, It executes (according to the static knowledge we
have), and it is not killed by an other dependence:

T(w) = {w' : W' € d(w) A epay(w)
A Au” €d(w) : w' < w” Aeyysr(w”))}  (5)

Let us now give aconstructive proof that = is context-free.

6. Building the Context-Free Transducer

We first present a construction of the dependence trans-
ducer J, then show how to refine its output, in order to get a
precise description of reaching definition instances.

6.1. The Dependence Transducer

I mplementing thelexicographical order with atransducer
(3) iseasy, itisawell known example of rational transducer.
Suppose we have just read a prefix « of w: Let w = vav €
Liu € ¥, € ¥andv € ¥*. To sdtisfy the lexico-
graphica order, we have to output any word w’ = ua’v’
st. o/ < a. Seeexamplein Figure5.a

Satisfying the conflicting access condition (2) is done
using a counter. The counter, therefore, checks whether
g(w) — f(w') isequal to zero. To comply with the standard
definition of push-down transducers, the counter is imple-
mented asastack inanatural way [4, 15]. Such apush-down
transducer allows the following counter arithmetic:

¢ Initializationto a constant, noted CNT : = cst;
¢ Adding a constant, noted CNT += cst or CNT - = Cst;
e Comparing with zero, noted CNT = 0 or CNT # 0.

Figure 5.b isan example of conflict equation transducer.
Intersecting the lexicographical order and conflict equa
tion transducersis easy: Thefirst oneis essentialy “state-
based” and the second one is “stack-based” 2. It yields a
three-state transducer checking the counter in three stages.

1. Read and writeacommon prefix: Transitionsare of the
formav/av, 0 € X, v € X5,

2. Readtheinput suffix: Transitionsareof theformaw/¢.

3. Write an output suffix that zeroes the counter: Transi-
tionsare of theforme/awv.

Therefore the result is a push-down transducer.

The last stage consists in restricting input words to in-
stances of read statements, and output words to instances
of s. We need the following notations: Let INPUT (resp.
OUTPUT) be the transducer build from the finite automaton
recognizing instances of read statements (resp. statement s)

2Theintersection of arational transduction and an context-freeoneisin
general not context-free.



in copying itsinput to its output—i.e., when an edge in the
finite automaton is labeled by «, the corresponding edge in
INPUT islabeled by «/«. Composing theinput of our trans-
ducer with INPUT and the output by ouTPUT, we get the
dependence transducer . We can apply Elgot and Mezei’s
theorem [4] since we compose two rationa transducers—
INPUT and ouTPUT—Wwith acontext-freeone. It provesthat
d isacontext-freetransducer. Noticethat Elgot and Mezei’s
theorem is constructive: Building § is done automatically
from INPUT, OUTPUT, <, ¢ and f.

6.2. The Reaching Definitions Transducer

Here comes afew examples of rewriting rulesthat can be
applied to refine the set of possible reaching definition in-
stances. Any statement instance us where v isa strict pre-
fix of some control word w is called an ancestor of w. E.g.,
AalEpAsisan ancestor of AalEpAIBr (see Figure 3.b).

TheLAD property (Left of Ancestor in Dependence).
Let w be some read instance and w’ in dependence with w.
Suppose an ancestor u’s of v’ isalso in dependence and ex-
ecutes before w’. If w’ executes, v’ executes too, and then
u’'s does. Therefore w’s kills every instance executing be-
foreit, including w’. (w’ may execute or not, but when it
does, itisnecessarily killed.) See[6] for details.

LAD <= (Ja € X: a as).

Rule LAD then applies: If some word u’s isin dependence
with w, no words prefixed by «’« with o <1 s can be reach-
ing definitions of w. Formally, transitionse/av (v € X*)
with o < s aretransformed intos/av : CNT # 0.

TheMSsF property  (Monotonic Subscript Function).

A non-decreasing function f isst. Yuv € Lyju,v €
* : f(uwv) > f(u); Non-increasing functions are de-
fined similarly. A function is monotonic when it is either
non-decreasing or non-increasing.

Suppose the write access function f to array A (in s) is
monotonic, s < « and av/aw isatransition that does not
modify the counter. Let w be some read instance and us an
ancestor of w, in dependence with w. Weknow that uawvs is
executed—being an ancestor of w. And uaws isin depen-
dence with w, since transition av/«v does not modify the
counter; Thus uawvs killsus.

MSF <= f ismonotonic.

Foradla € ¥andv € ¥* st. s < « and av/«v does not
modify the counter: Rule MSF consistsin following transi-
tion cv /v as much as possible before outputting s (to get
the biggest ancestor). Formadly, transition «/s is removed,
if not the only transition that outputs s. Application of this
ruleis shown at Section 7.

3More precisely, a generalization to context-freetransductions.

Thevpa property (Values are Produced by Ancestors).
This property comes from the common observation about
recursive programsthat “val ues are produced by ancestors.”
Indeed, alot of sort, tree, or graph-based al gorithmsperform
in depth explorations where values are produced by ances-
tors. Thisbehavior is also strongly assessed by scope rules
of local variables. Formally,

VPA <— (v

=o(w) = (Fu,v: w=uv Aw = us)).
RuleVvPa then consistsinremoving al transitionsproducing
non-ancestors. Formally, al transitions a/a’ st. o/ < «

and o/ # s areremoved.

The okA property (OneKilling Ancestor).

Let w be aread instance. If it can be proven that at |east

one ancestor us of w isin dependence, it killsall writesex-
ecuting before (since it does executes when w does).
OKA <= (J(w) # 0= (Fu,v: w=uvAus €d(w))).
Property checking Satisfaction of property LAD iseasily
obtained from <. Checking property MsSF is done by exam-
inating transitions of the form av/av in § and coefficients
in f (their sign must be the same). Property OKA can be
discovered usinginvariant propertieson induction variables
(see Section 7). Checking for property vPa isdifficult (au-
tomatically or not), but we have the following result:

When both okA and MSF hold, vPA also holds.
Suppose 4’ is the transducer after application of the MsF
rule, and—Dby application of OKA—suppose us € ¢'(w) is
an ancestor of w. Any word uawvs withs <t e andv € £*
isst. f(uavs) £ f(us), by definitionof us. Therefore, no
instances in dependence execute after us: Property VPA is
satisfied. This result allowsto apply rule vra from proper-
ties MSF and OKA.

To summary this section: Our IRDA checks for prop-
erties LAD, MSF and OKA—possibly using external classic
analyses, Then appliesrulesLAD, MSFand v PA accordingly.

More properties can probably be useful that can be ob-
tained by moreinvolved analyses[9]. The problemistofind
arelevant and efficient rewritting rule for each one.

6.3. Algorithm for TRDA

In this section, we integrate the precedent techniquesin
ageneral IRDA dgorithm.

Input: X, f, ¢, L (from the control automaton), and <.
Step 1: Build the lexicographical order transducer <.
Step 2: Build the transducer checking g(w) = f(w’).
Step 3: Intersect the two, yielding a three-state transducer.
Step 4: Compute transducers INPUT and OUTPUT from L.

Step 5: Compose the input by INPUT and the output by
OUTPUT. Hereistransducer §.



Step 6: Check properties LAD, MSF and OKA using exter-
nal static analyses. Asking the user for help may be
useful for vPA or other properties not described here.

Step 7: Apply rewritting rules accordingly. The result is
the reaching definition transducer.

Output: Return dependence and reaching definition trans-
ducersé and 7.

Notice  and § are both useful to compilers. Section 8 dis-
cusses decidability results on describing dependences and
reaching definitions with push-down transducers.

7. Back toprocedureFi | | Sl ot s

Let us show how to compute the transducer 7 describing
thedataflow of Fi | | Sl ot s. Herewe have g(w) = |w|,
and f(w') = N — [w’|,: The conflict equationis

g(w) = f(w') = Jwl, + [v'|, = N.

Intersecting the lexicographical order and the conflict equa-
tion, then applying composition with INPUT and OUTPUT,
we get the dependence transducer in Figure 5.c.

Figure 5.a Transducer for lexicographical order.

VYaeX: ala
VoeX—{b.pl: ofe,z/a
m b/s,es/p:éNT!i: 1 fexcl
Qa/[,a/&.[/s @

O

YaeX: aje,cfa

)
e O@/s:CNTzO@

TEpA[IlpA : CNT += 1
ala TB/s

CNT:= —N /\

S
AQA/A QJ/S
afT afe, TEpAjs

bfe i CNT +=1

afs: =0
QITB/s 87‘/Ep41 (CNT +=1 Q -

v,

afe IKpAls bf/e:CNT+=1 f?/f‘j/}.-‘\ D CNT += 1
/e

Figure 5.c: Transducer §.

Figure 5. Computing the dependence trans-
ducer for Fill Sl ot s.

Rule LAD does not apply since no label precedes s for <.
Rule MsF applies since f(w') isanon-increasing function
(asthelengthof w’ increases). Transitiona/a doesnot mod-
ify the counter, therefore edge a/s is removed; But transi-
tion I EpA/IEpA increments the counter thus 7/s iskept.

We have seen in Section4.2that0 < j < Nandn =0
holdsfor all instances of statement ». These properties can
be easily discovered using classicd techniques[2,9]. Asa
consequence, if w isan instance of r there exists a prefix
of wst. [us|, = N — |w'|,. Property OKA is satisfied.
We have seen that combined propertiesok A and M SF forces

Figure 5.b: Transducer for conflict equation.

QE;JA/S QU'B/C- gr/s {CNT = 0@

reaching definitionsto be ancestors: Rule vPA thus applies.
It consistsin strippingout a/ I (and subsequent unreachable
states and edges). The result is shown in Figure 6.

ITEpA/IEpA : CNT += 1
ala TB/e

m /\
Q /s QI‘J});—'\/E Q/'/‘H/s Qr/s:CNT:(l @
U,

aje, IEpAfe

CNT:=—N

#QA/A

b/e: CNT +=1

Figure 6. Reaching definitions for Fi | | Sl ot s
after application of vPa and MSF.

Thisisour resultfor 7. It computesinfact auniquereach-
ing definition for every instance: We achieved—in an auto-
mated way—the best precision possible. We also gave afor-
mal description of the result of Section 4.2.

8. Discussion on This Approach

The present framework can be extended to programswith
severa arrays and assignments. The weakest solution to
handle several assignmentsto the same array consistsintak-
ing the union of context-free languages, which is context-
free. We aso believe that this transduction-based frame-
work can be extended to support IRDA over more gen-
eral data structures, such as trees [13]. Formal languages
seem very natura for compile-time analysis of recursive
programs. Moreover, using context-free transducers has the
following benefits:

o It can be decided whether aword is areaching defini-
tion of another one.

o It is decidable whether a language of reaching defini-
tions is empty or not, and therefore, whether an in-
stance reads an uninitialized value. This makes our
IRDA useful to precise program checking.

o Computing the cardinality of a set of reaching defini-
tionsis also possible. This is useful to detect when
IRDA gives exact results (sets are singletons).

o Context-free languages are closed under intersection
with rational languages. Any decidable property onthe
reaching definitions of a given read is thus decidable
for arationa set of read instances.

We have seen on example Fi | | S| ot s that instance-
wise reaching definitions can be of great help in paralleiz-
ing recursive programs. Indeed, benefits of IRDA have al-
ready been studied in the case of Fortran loops [12, 18],
but we advocate for an extension to recursive programs.
First, IRDA alows to remove dependences due to memory
reuse—via single assignment form transformation; Second,
since it works on a per-instance basis, both fine-grain and
coarse-grain paralelism can be discovered. Severa prob-
lems obviously remain. Two of them are studied bel ow.



1. The exact language of possible reaching definitionsis
not context-free. Obviously, many properties on the
existence condition e(w’) cannot be taken into account
in our framework. More precise IRDAS require more
powerful classes of languages. Indexed grammars [1]
arean extension of context-free grammars useful to our
context. Thisresearch isleft for future work.

2. Multidimensional arrays could be handled by intersect-
ing reaching definitionslanguages. Unfortunately, nei-
ther context-free languages nor indexed grammars are
closed under intersection. Scattered context grammars
[14] are an extension of context-free languages closed
under intersection; Studying the applicability of this
classis|eft for future work too.

9. Conclusion

This article presents a novel application of formal lan-
guages to the automatic discovery of some semantic prop-
erties of programs; Reaching definitions. When programs
are recursive and no property is known at compile-time on
recursion guards, only a conservative approximation can be
hoped for. In our case, we approximate the set of possi-
ble reaching definitions of a given read by a context-free
language. The relation between reads and their respective
languages of possible reaching definitions is context-free,
by construction. The result of the analysis is thus a push-
down transducer mapping control words of read instancesto
control words of writeinstances. Decidability propertieson
context-free languages and transductions allow severa ap-
plications of our framework, especialy in automatic paral-
Ielization of recursive programs. These applicationsinclude
array expansion, parallelism extraction, and aggressive op-
timization and verification techniques.

Acknowledgments The authors are supported by the
French Ministére de I'Enseignement Supérieur et de la
Recherche (MESR), the Centre National de la Recherche
Scientifiqgue(CNRS), INRIA project AAA, and the German-
French ProCoPe program.

We would like to thank Yvan Djdlic, Paul Feautrier, and
Martin Griebl for their help and fruitful comments about this
topic.

References

[1] A.V. Aho. Indexed grammars— an extension to context free
grammars. J. ACM, 15:647-671, 1968.

[2] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniquesand Tools. Addison-Wesley, Reading, Mass,
1986.

[3] M. Alt and F. Martin. Generation of efficient interprocedu-
ral analyzerswith PAG. In A. Mycroft, editor, Int. Symp. on
Satic Analysis, SAS 95, volume 983 of LNCS, pages 33-49,
Glasgow, UK, Sept. 1995. Springer Verlag.

[4] J. Berstel. Transductions and Context-Free Languages.
Teubner, 1979.

[5] D.R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. In SGPLAN Conf on Programming
Language Design and Implementation, volume 25, pages
296-310, June 1990.

[6] A. Cohen. Analyse de flot de données pour programmes
E)éé:atgrsifs al’aide de langages algébriques. TS, 1998. To ap-

[7] J-F Collard, D. Barthou, and P. Feautrier. Fuzzy array
dataflow analysis. In Proc. of 5th ACM SIGPLAN Symp. on
Principlesand Practice of Parallel Programming, pages 92—
102, SantaBarbara, CA, July 1995.

[8] J-F. Collard and J. Knoop. A comparative study of reach-
ing definitionsanalyses. Technical report, PRiSM, U. of Ver-
sailles, 1998.

[9] P Cousot. ProgramFlow analysis: theory and applications,
chapter Semantic foundations of programs analysis, pages
303-342. Prentice-Hall, 1981.

[10] R.Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451-490, Oct.
1991.

[11] A. Deutsch. Interprocedural may-alias analysisfor pointers:
beyond &-limiting. In ACM SIGPLAN Conf. on Program-
ming Language Design and |mplementation, pages 230241,
Orlando, June 1994.

[12] P. Feautrier. Dataflow analysis of scalar and array refer-
ences. Int. Journal of Parallel Programming, 20(1):23-53,
Feb. 1991.

[13] P Feautrier. A parallelization framework for recursive tree
programs. In EuroPar. LNCS, 1998. To appear.

[14] S. Greibach and J. Hopcroft. Scattered context grammars. J.
of Computer and System Sciences, 3:233-247, 1969.

[15] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation.  Addison-Wesley,
1979.

[16] J. L. Jensen, M. E. Jorgensen, M. |. Schwartzbach, and
N. Klarlund. Automatic verification of pointer porgrams us-
ing monadic second-order logic. In ACM SIGPLAN Conf on
Prog. Lang. Design and Implem. (PLDI), 1997.

[17] W. A. Landi, B. G. Ryder, and S. Zhang. Interprocedural
modification side effect analysis with pointer aliasing. In
ACM SIGPLAN Conf on Prog. Lang. Design and Implem.
(PLDI), pages 5667, June 1993.

[18] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array
dataflow analysisand its use in array privatization. In ACM
Symp. on Principles of Programming Languages, pages 2—
15, Jan. 1993.

[19] W. Pugh. A practical algorithm for exact array dependence
analysis. Communications of the ACM, 35(8):27-47, Aug.
1992,

[20] W. Pugh and D. Wonnacott. Eliminating false data depen-
dencesusing the omegatest. In ACM SSGPLAN PLDI, 1992.



