
On the Efficiency of Reductions in p-SIMD Media Extensions

Jesus Corbal, Roger Espasa and Mateo Valero
Departament d’ Arquitectura de Computadors,

Universitat Polithcnica de Catalunya-Barcelona, Spain* ‘

Abstract

Many important multimedia applications contain a signif-
cant fraction of reduction operations. Although, in general,
multimedia applications are characterized for having high
amounts of Data Level Parallelism, reductions and accumu-
lations are dificult to parallelize and show a poor tolerance
to increases in the latency of the instructions. This is specially
signifcantfor p-SIMD extensions such as MMX or AltiVec. To
overcome the problem of reductions in p-SIMD ISAs, design-
ers tend to include more and more complex instructions able
to deal with the most common forms of reductions in multime-
dia. As long as the number ofprocessor pipeline stages grows,
the number of cycles needed to execute these niultimedia in-
structions increases with every processor generation, severelr
compromising performance.

This paper presents an in-depth discussion of how reduc-
tions/accumulations are pelformed in current p-SIMD archi-
tectures and evaluates the performance trade-offs for a near-
future highly aggressive superscalarprocessors with three dif-
ferent styles of p-SIMD extensions. We compare a MMX-like
alternative to a MDMX-like extension that has Packed accu-
mulators to attack the reduction problem, and we also com-
pare it to MOM, a matrix register ISA. We will show that while
packed accumulators present several advantages, they intro-
duce artipcial recurrences that severely degrade pe rfortnance
for processors with high number of registers and long latency
operations. On the other hand, this paper demonstrates that
longer SIMD media extensions such as MOM can take great
advantage of accumulators by exploiting the associative par-
allelism implicit in reductions.

1 Introduction

Given the increasing importance of media applications for
the desktop market, general-purpose microprocessor design-
ers keep including new and better p-SIMD (sub-word level)
ISA extensions in every processor generation. In fact, media
ISA extensions have become as natural as floating-point or

‘This work has been supported by the Ministry of Education of Spain
under contract CICYT TIC98-051 IoCO2-01 and by the CEPBA.

integer instructions. Since the first generation of media exten-
sions, with registers of limited width (32-64 bits) and only in-
teger arithmetic (MMX [I]), new extensions have introduced
wider p-SIMD registers (128 bits in Altivec [3] and SSE [5])
and p-SIMD floating point arithmetic (as in Motorola’s Al-
tiVec, AMD’s 3DNow! [4] and INTEL‘S SSE and SSE2 [SI).

Despite all these efforts, little has been made to solve the
problem of accumulations and other reduction operations. Re-
duction and accumulation operations are commonly found in
most media applications and severely limit the available data
level parallelism. Typical examples of media algorithms in-
volving reduction operations are the DCT, the MPEG2 Motion
Estimation, FIRJiltering or Viterbi’s Speech Recognition.

Reduction processes have been a field of research for a long
time in the supercomputing domain, specially for the general
case of linear recurrences. Linear recurrences, while not ob-
vious, contain parallelism that can be exploited by both vector
and mu1tiprocesso);architectures (using solvers based on lin-
ear bi-diagonal systems). Previous works dealing with this
problem are [14, 15, 161.

Two main problems arise when dealing with reduc-
tions/accumulations in p-SIMD architectures. First, when us-
ing sub-word level parallelism (as in MMX), operating to-
gether parts of a register requires overhead instructions to un-
pack the different bit fields. Second, niultiply&accun~ulute
instructions require higher precision for their intermediate re-
sults (even if the final result is eventually going to be trun-
cated, rounded and clipped). To accommodate this extra pre-
cision, data types are promoted to larger sizes and, as a con-
sequence, p-SIMD parallelism is reduced. Most solutions
to the reduction problem proposed so far for p-SIMD archi-
tectures are based on including certain reduction/accumulate
instructions useful for some few known algorithms. For in-
stance, MMX introduced PMADDWD (Packed Multiply and
Add) specifically dedicated for dot products, while SSE intro-
duced PMIN/PMAX (Packed Minh4ax of elements) for Viter-
bi’s speech recognition. Other instructions such as the S u m of
Absolute Differences (used for the MPEG2 Motion Estima-
tion) can be found in more than one multimedia ISA exten-
sion (namely, INTEL‘S SSE, SUN’S VIS [7] and Motorolas’s
AltiVec).

There are three main problems related to reductions and
accumulations in p-SIMD architectures:

83
0-7695-1363-8/01 $10.00 0 2001 IEEE

0 logical overhead: the amount of additional complex p-SIMD instruc-
tions required to manage reductions

0 purullelism expkoifarion: the way the ISA hidedshows the potential
parallelism in any given reduction process

0 latency sensitivity: the tolerance to increases in the latency of the p-
SlMD complex instructions

Interestingly, these three factors become even more rele-
vant if we take into account current trends in processor de-
sign. Analyzing the evolution of several well-known families
of processors (such as INTEL‘S Pentium, AMD’s Kx, or Com-
paq’s Alpha 21x64 families) we can identify two common
characteristics. First, an increase in the number of in-flight

S C d V

lo

MMX memory
i!

20 MMX logc

=
MMX mlhmeuc

MMX redurnon

Figure 1. Instruction breakdown for several media-
bench programs (percentage).

instructions than can be executed (thanks to bigger windows
and higher number of registers). Second, increasing working
frequencies helped partially by the over-segmentation of the
machine pipeline (which usually produces an increase of the
latency for the more complex instructions). Under this sce-
nario, the ideal p-SIMD ISA would be one which had both

I rycc.

3 C y C b

5 C y C b

high tolerance to increases in the latency of instructions and
the property of making explicit the potential parallelism to the
increasingly wider issue engine of the processor.

This paper presents an in-depth discussion of how reduc-
tions/accumulations are performed in current p-SIMD archi-
tectures and discusses two alternatives that tackle the accu-
mulation and reduction problem: the packed accumulators
introduced by MIPS in its MDMX extension and the matrix

Figure 2. Increase of the number of execution cycles
(normalized) when increasing the latency of MMX
non-memory instructions.

registers with accumulators introduced in the MOM ISA [8].
In particular, we will show that packed accumulators al-

low to reduce a large amount of logic overhead instructions
that have a big impact on performance for long latencies, but,
at the same time, this advantage is overridden by the artifi-
cial recurrences introduced by them. Therefore, neither of
the two alternatives (extensions with accumulators and exten-
sions with no accumulators) seem to fit very well in a sce-
nario with increasing number of registers and raising laten-
cies. On the other hand, we will show that when accumulators
are combined with longer (vector-like) matrix registers, we
can take full benefit of the advantages of the packed accumu-
lators while sidestepping their drawbacks.

2 Reductions in p-SIMD architectures

2.1 Are reductions really that important?

The first obvious approach to determine the relevance of
reduction operations for multimedia would be to perform a
basic count of every kind of instruction in a set of represen-
tative media benchmarks. Figure 1 shows the dynamic in-
struction breakdown for five benchmarks of the mediabench
suite [I O] re-written using MMX-style p-SIMD instructions.
Those MMX-style instructions have been divided into four
different categories: (a) reduction instructions (that is, p-
SIMD instructions directly involved in reductions), (b) arith-
metic instructions, (c) logical/overhead instructions (related to

p-SIMD overhead such as data promotion or sign conversion),
and (d) p-SIMD memory instructions. Looking at figure 1 , it
might seem that reductions are not very relevant for overall
performance, as they only account for 5 % of the overall num-
ber of instructions (in average).

However, reductions are actually a critical factor, due to
two main reasons. First, they introduce a high amount of logic
overhead (most of the MMX-like logic instructions in the fig-
ure, which account for 10-15% of the overall number of in-
structions). Second, they are highly sensitive to increases in
the latency of the instructions.

We have evaluated the performance of the same set of
benchmarks increasing the latency of all non-memory p-
SIMD instructions by 1, 3 and 5 cycles. The normalized ex-
ecution time can be seen in figure 2. The baseline architec-
ture is described later in section 4.1. Results show significant
performance slow-downs for most of the programs when the
latency offset exceeds 1 cycle.

Our claim is that the latency sensitivity of reduction opera-
tions will show up as a significant concern in designing media
processors. Recently, the lGHz frequency barrier has been
broken, partly thanks to super-pipelining (which helps allevi-
ate the critical paths of the architecture). While doing so, great
care has been taken in trying not to increase the latencies of
operations critical for performance such as memory or integer
basic arithmetic instructions. This is not the case, however,

84

operation

Pentium I1 (MMX)
Pentium I11 (SSE)
PentiumIV (SSE2)

int int SIMD fp SIMD
Alu Padd Pmul Pmadd Padd Pmul

1 1 3 3
I 1 3 3 4 s
1 2 8 8 4 6

16 bits

-+-+ 16 bits
32 btu

operation

Pentium I1 (MMX)
Pentium I11 (SSE)
PentiumIV (SSE2)

Table 1. Instruction latency evolution: (Ah), basic (4 (b)
arithmetic; (Padd), parallel SIMD add; (Pmul), parallel
SIMD multiply; (Pmadd), parallel multiply& add. Figure 3. Data promotion (a) and demotion (b) of 16-

bit unsigned integer data.

int int SIMD fp SIMD
Alu Padd Pmul Pmadd Padd Pmul

1 1 3 3
I 1 3 3 4 s
1 2 8 8 4 6

for the more complex p-SIMD instructions, and, as a result,
their latencies increase with every processor generation.

Table 1 shows latencies for different processor generations
and for different kinds of instructions. As we may observe,

using double precision (1 28-bits), the final result can be trun-
cated, clipped and stored back into the register file using the
usual register size (64-bits),

basic arithmetic instructions (such as integer add) do not in-
crease their already short latency. On the other hand, most of
p-SIMD instruction latencies tend to increase. Compare for
instance, SIMD instruction latencies for the AMD K6 proces-
sor and for AMD K7. The most evident case, though, is the
Pentium IV, as their extremely depth pipeline translates into
increases in the latency of up to 5 cycles.

In this paper we will demonstrate that by carefully dealing
with reduction processes we can greatly alleviate the perfor-
mance degradation associated with the latency increases of the
most complex p-SIMD instructions.

2.2 Reductions in conventional p-SIMD ISAs

As already mentioned, three major issues arise in p-SIMD
reductions: overhead, parallelism and sensitivity to the la-
tency. The first one, the overhead caused by reductions is
tightly related to two different aspects:

1 . Maintaining precision of intermediate results

2 . Intra-register dependences

The first problem typically arises when performing series
of additions over a large amount of input values or when mul-
tiplying small bit quantities, because the result of the opera-
tion may not fit within the allocated bits in the p-SIMD reg-
ister. For example, multiplying two registers that hold eight
8-bit quantities requires 128 bits of storage in the result regis-
ter if full precision is desired. Since each 8-bit product yields
a 16-bit result, the sub-word element slots of the p-SIMD reg-
ister are not large enough and precision is lost if the overall
size is kept at 64 bits. A very common example is the dot
product, where the results of several products must be added
together. Unless the output of each product is kept in its fully
expanded form (i.e., using twice the number of bits of the
source operands) and accumulated to the previous products
using this expanded form, the loss of precision may become
unacceptable. Only when all additions have been performed

U

Although some partial solutions exist to this problem, for
the general case programmers have to maintain the required
precision using dutci promotion and datu demotion. Data pro-
nzotiori stands for promoting the data to larger data sizes us-
ing packhnpack operations (see figure 3-(a)), while dura de-
motion stands for the inverse process (see figure 3-(b)). The
drawback of data promotion is that, after doubling the size of
the data, we halve the number of slots per SIMD register and,
hence, we also halve the number of operations executed per
SIMD instruction. This, coupled with the instruction over-
head that pacWunpack operations represent, ends up reducing
overall performance.

The second problem, operating parts of the same p-SIMD
register, also requires using packhnpack and other logic in-
structions to extract from the p-SIMD register the desired bit
slices and store them into general purpose registers. Once the
required bits have been extracted, they can be operated upon
using normal instructions.

Certain reduction/accumulation patterns are so common
that most designers have included some instructions that alle-
viate the difficulties intrinsic to them. For example, figure 4-
(a) illustrates the semantics of instruction PMADDWD from
MMX. This instruction is extremely useful for dot products
because it solves the precision problem and because it adds
together slots from the same register in parallel. Another ex-
ample targeted at the intra-register operation problem, is il-
lustrated in figure 4-(b). The instruction shown is the Suni
of Absolute Differences, very useful for the MPEG2 motion
estimation.

Another of the relevant issues in p-SIMD reductions is the
sensitivity to increases in the latency. While conventional p-
SIMD ISAs suffer from the impact of the logical overhead,
significant parallelism can be achieved by taking advantage of
the associativity and commutativity properties that reductions
are characterized for. In order to illustrate so, we can study
a MMX-like implementation of a media-typical dot product
code:

85

I6 bits 16 bits

\ / \ /
-1 7 1

32 bits
+ _ _ _ _ - _ _ + + _ _ _ _ _ - _ -*

64 bits 64 bits

(4 (b)

Figure 4. Special p-SIMD instructions to manage
intra-dependences: (a) Multiply and Add (used for
DOT products, c u i x bi); (b) Sum of Absolute
Differences (used for MPEGS Motion Estimation, c la2 - b20.

@ Id mO. rl(0)
@ Id ml, r l l l) N I W = 4

@ Id m2. r l (2) I

@ Id m3. rl(3)
@ Id m4, r2lO)
@ Id m5, r211)

@ Id m6, r 2 (2)

@ Id ml. r 2 (3)

Q pmul mo, mo, m4
(iJ pmul ml, ml. m5
@ pmul m2, m2, m6

(iJ pmul m3, m3. m7

@ padd mO. mO, ml
@) padd m2, m2, m3

@ padd mO, 10, mO

A
I

Figure 5. MultiplytkAccumulate reduction process in
a MMX-like (no accumulators) architecture.

s = 0;
for(i=O; i<16; i++) {

s = s + a[il*b[il;
}

Figure 5 shows the implementation of the previous code
using a MMX-like ISA with 32 logical registers, as well as
the dependence graph of the instructions. In order to simplify
the example, we assume that no data promotion is required for
the operands. We may note that the execution of the code can
be divided into three different stages: (a) accessing memory,
(b) non-reduction stage (the operand multiplication), and (c)
reduction stage (the accumulation of the results of each multi-
ply). The first two stages can be executed totally in parallel as
there are no dependences between instructions. On the other
hand, the reduction stage is performed following a binary-tree
like dependence graph. Note that the last accumulation of the
elem’ents in the last p-SIMD register must be performed with
scalar instructions.

Therefore, if we assume that N is the number of individ-
ual elements that have to be accumulated down to a single
value (16 results from the multiplies in the example above),
that W,,, is the number of packed elements per p-SIMD
register (assuming 4 in the example), and that Lmem is the
latency of the memory instructions, LN is the latency of the
non-reduction instructions (the packed multiply) and LR the
latency of the reduction instruction (the packed add), then the
critical path is:

Note that this minimum execution time is extremely opti-
mistic. First, it does not take into account limits in the number
or resources (load ports and functional units). Second, it does
not account for the time required to perform data promotion
(which adds more instructions to the critical path) as well as
the time required to perform the last set of reduction opera-
tions via scalar instructions. Finally, due to data promotion,
W,,, would be typically half the potential r/v,,,, given the
fact that data promotion doubles the size of the packed ele-
ments.

Therefore, we have seen that conventional p-SIMD ISAs
such as MMX are able to exploit a fair amount of parallelism
from reductions if used efficiently, but suffer from the impact
of the high amount of the logic overhead involved in processes
such as data promotion.

2.3 Reductions using Packed Accumulators

A specific solution for the problems outlined in the previ-
ous section has been in use in DSP processors for many years.
Since DSP processors are usually targeted at a relatively nar-
row range of applications and have historically been character-
ized for their small-length registers (8- 16 bits), DSP architects
found that it pays off to offer specific hardware support for re-
ductions in the form of accumulators. These accumulators,
with extra bits to maintain precision correctly, are the base for
the multiply&accumulate instructions that almost every DSP
in the market offers today.

MDMX, the extension proposed by MIPS, adopted the idea
of accumulators. MDMX introduces a relatively standard set
of media instructions that operate on special p-SIMD regis-
ters and extends this set with one special 192-bit wide regis-
ter called the “Packed Accumulator”. The Packed Accumu-
lator is used to successively accumulate the results produced
by operations done on conventional p-SIMD registers. Fig-
ure 6 shows a block diagram illustrating how the accumulator
works. When performing normal MDMX operations, the re-
sult produced by the ALU is simply sent back to the multirne-
dia register file. However, the user can specify with a special
opcode that the output of the ALU will be added to the cur-
rent contents of the accumulator (in general, the user could
select among a set of several accumulators, although MDMX

86

48 htls *. ~..!?ZP!’s
L r

Figure 6. A block diagram of a hypothetical MDMX
implementation, and an example of application.

-

4x
~ + L R

in particular only offers a single one). After performing sev-
eral accumulations, there are instructions that allow us to take
the values contained in the packed accumulator(s), accumu-
late them down to a single value (if desired), truncate it, round
it and/or clip (saturate) it, and finally write it back into a nor-
mal MDMX register.

By having a wide accumulator, MDMX avoids using data
promotion, as the accumulator is wide enough to hold the out-
puts of the ALU with the required precision. The packed ac-
cumulator also deals partially with intra-register dependences,
as MDMX also introduces special instructions to perform ac-
cumulation of the different sub-word packed elements inside
the accumulator. The approach chosen by MDMX shows up
as a suitable alternative to overcome the problem that exhibit
more conventional p-SIMD ISAs, that is, the huge overhead
produced by the need to perform data promotion and to man-
age intra-register dependences.

Nevertheless, if we turn now to the problem of extracting
parallelism, MDMX faces the problem of introducing artifi-
cial recurrences as any packed accumulator operation needs
its previous value as an input. For long latency operations,
this translates into low IPC. Therefore, the nature of the ac-
cumulator itself hides the associative property of reductions,
failing to exploit the maximum parallelism available.

Figure 7 shows the implementation of the same example of
code using a MDMX-like ISA with 32 logical registers and
a single accumulator. As we can observe, thanks to the par-
allel multiply&add instruction that can be performed over the
packed accumulator, the number of instructions drop consid-
erably. On the other hand, the latency to execute a whole par-
allel rnultiply&add instruction is higher (LN cycles for the
multiply and LR for the addition). Therefore, if we assume
again that N is the number of individual elements that have to
be reduced/accumulated down to a single value, and W m d m z

is the number of elements per MDMX register, then the criti-
cal path of the graph can be expressed as:

@ Id mO, rl(0)
@ Id ml, rlll)

@ Id m2, r l (2)

(@ Id m 3 , r l (3)

@ I d m4, r 2 (O)
@ Id m5, r 2 (1)

@ Id m6, r 2 L 2)

@ Id m7, r 2 (3)

Q pmul&acc acco,
@ pmul&acc acco,
@ pmul&acc acco,

Q pmul&acc acco,

mO, m4
ml, m 5

m2, m 6

m 3 , m7

N I W = 4

Figure 7. Multiply&Accumulate reduction process in
a MDMX-like (with accumulators) architecture.

Compared to the previous model, we can observe that the
MDMX accumulator introduces several factors that decrease
potential ILP: first, due to the serialization forced by the be-
havior of the accumulator, we have lost a ‘‘loy~” factor in
the number of elements to be reduced; second, we have in-
creased the proportional latency factor due to joining together
the non-reduction and the reduction operations. However, we
now benefit from being Wmdmz up to two times bVnLmz, from
avoiding data promotion, and from having additional support
to perform the last series of accumulations over the same reg-
ister.

Summarizing, MDMX-style of execution brights where
other more conventional p-SIMD ISAs fail; that is, in reduc-
ing the number of instructions required to perform the reduc-
tion. However, i t is unable to extract the potential ILP avail-
able. thus being hardly a suitable choice for aggressive out-of-
order processors.

A possible solution that might offset the drawbacks of the
MDMX-like style of execution would be to implement more
than one packed accumulator and then split the reduction pro-
cess between them. Note however, that we would be forced
to finish the reduction from the results of every accumulator
using scalar instructions.

2.4 Reductions using Matrix ISAs

In [8] we proposed MOM, a matrix ISA that is basically
a hybrid between traditional vector and p-SIMD ISAs, able
to exploit up to two different dimensions of parallelism (par-
allel loops). MOM can be viewed as a conventional vector
ISA where each of its computation operations are ,U-SIMD
MDMX-like instructions. In fact, every MOM register holds
16 p-SIMD registers of 64-bits each (as shown in figure 8).

The rationale and the benefits of matrix ISAs are beyond
the scope of this paper and we refer to [8] for an in-depth

87

Matrix p-SIMD register file

.

Figure 8. A block diagram of a hypothetical matrix ISA implementation, and an example of application.

N N = 4 -

T

Figure 9. Multiply&Accumulate reduction process in
the matrix ISA architecture.

discussion. The focus of this paper is on showing how ma-
trix ISAs, by using packed accumulators, can solve the la-
tency/ILP problem.

When a MOM matrix instruction that uses one accumula-
tor is launched, it will perform up to 16 accumulations over
the same accumulator register (8 in figure 8). Because the
accumulation is associative, we can hide the latency of the
accumulator by pipelining it and maintaining several shadow
accumulations in flight simultaneously in the pipeline. This is
a very common technique used in traditional vector architec-
tures. As a result, the set of operations described in a matrix
reduction instruction is executed following a perfect schedul-
ing that minimizes execution time.

Figure 9 shows a scheme of the whole accumulation pro-
cess using matrix p-SIMD instructions. As we may observe,
we only need three instructions to perform the whole dot prod-
uct (plus an instruction to set the matrix length to four and

another to reset the accumulator) : two matrix loads and one
matrix parallel multiply&add over accumulator 0. Again, we
assume N elements contained in every matrix register to be
reduced, and Wmatris packed elements in every sub-register
within the matrix register. Thanks to the fact that all the infor-
mation about the reduction process is contained in a single in-
struction, the pipeline may take advantage of the same binary-
tree style parallelism that our MMX-like example exploited
before. As a result, the minimum execution time required to
finish the whole reduction process in a matrix pipeline would
be:

which is only slightly longer than the critical time for the
MMX case due to the writing of the final result over the accu-
mulator.

Overall, the matrix architecture is able to take benefit from
the advantages of the two previous alternatives: it is able to
extract parallelism almost as well as common p-SIMD ISAs
while at the same time exhibit the same reduction of logic
overhead typical of other y S I M D ISAs with packed accumu-
lators such as MDMX.

3 ISA comparison

In the previous sections we have seen analytical models
that show the critical path of a given reduction process for
three p-SIMD philosophies. These previous analytical mod-
els are useful to understand the advantages and the drawbacks
of every alternative. However, several factors have been over-
looked in these easy examples that actually affect the real per-

88

formance of the different architectures: the limit in the num-
ber of resources, the use of special instructions, the impact
of data promotion, and the opportunities to overlap reduction
processes with other instructions concurrently.

In this section we will make a more exhaustive study of the
three styles of ISA under the scenario of a near-future aggres-
sive out-of-order superscalar processor. Particularly, we will
analyze the impact of increasing the number of registers (as
a measurement of potential parallelism exploitation) and the
impact of increasing the latency of the p-SIMD instructions.

3.1 Benchmarks and Code Generation

We have selected six full applications from the Medi-
abench suite [101 that are representative of video, image
and audio applications: mpeg2 encode, mpeg2 decode,
jpeg encode, jpeg decode,gsm encode and gsm

h2v2 comp addblock

rgb2ycc idcl

decode. As discussed in [SI, use of full applications to eval-
uate proposals in the multimedia domain is paramount due
to the large difference in behavior between kernels and full
applications. However, we will start by using a set of ker-
nels and an idealistic memory system. The reason is that we

ILP extraction and register usage between the three ISAs un-

in isolation. Of course, section 4.5 will present final perfor-
mance results for the full applications and realistic memory
models.

._a

a $'"'

$
want to help highlighting the differences in latency tolerance, <m

/m

der study and, thus, we want to study the effect of reductions hlUX Ml>MX 11111111 MLIX hlllhlX iimanl M U 1 MI>MX >mans

111,1111111 I morlun2 Ilpcllll

Figure 10. Operation count of the ISAs under study.

The most relevant parts of each application have been iden-
tified using profiling and have been rewritten in assembly lan-
guage using the three styles of ISA under study: conventional
(MMX-like), with accumulators (MDMX-like), and matrix-
ISAs with accumulators (MOM). The resulting programs are
a mixture of plain Alpha instructions and the special multi-
media instructions defined in each of the three architectures.
To achieve this effect, we have used the emulation libraries
described in [SI running under ATOM [111. We have taken
a few liberties in the definitions of the SIMD ISAs (i.e., they
are not exact replicas of MMX and MDMX). The most impor-
tant difference is that, in order to allow aggressive scheduling
optimizations in the assembly programming, we assumed 32
logical MMX registers (instead of 8). We also assumed 4 log-
ical accumulators for MDMX (instead of one in the real defi-
nition) and 16 matrix registers and 2 logical accumulators for
the MOM ISA. For the MMX-like version of code we have
used the re-association optimization similar to the one found
in figure 5. For The MDMX-like version, whenever possi-
ble, we have mapped independent reduction operations onto
different logical accumulators.

Of all the pieces re-written in assembly in each appli-
cation, we have selected a few to be analyzed in-depth in
the following sections. These are: idct, which performs
an fnverse Discrete Cosine Trarzsfornz over 8x8 matrices of
data; motionl, which performs a Sum of absolute differ-
ences between two 16x I6 image chunks (found in the MPEC2

motion estimation) and motion2, which performs the Sum
of quadratic differences; addblock and compensation,
which are used for saturated blending of images in the
Motion Compensation algorithm; 1 tpparameters and
ltpf iltering, which are special dot products used to cal-
culate the long term filter parameters and the filtering itself in
the gsm encoding/decoding process; h2v2 which performs a
2x2 zoom over the whole image in JPEG decoding; and lastly,
rgb2ycc, which performs an image conversion from RGB
to YCC format.

3.2 Operation count

Figure 10 shows the dynamic operation count for every
ISA under study (note we present operations rather than in-
structions because every MOM instruction can encode up to
16 different ,U-SIMD MDMX-like instructions). Operations
are decoupled into two main groups: scalar (conventional) in-
structions, and vector (p-SIMD) operations. Each group is
further divided into memory and non-memory operations. In
order to study the characteristics of every kernel, we have also .
broken down non-memory vector operations into three main
groups: logic operations, arithmetic operations and reduction
operations.

From data on the figure, we can observe that the number of
scalar instructions executed for the MMX-like and MDMX-

89

operation MMX MDMX matrix
pert% log I nri I red log I ari I red log I ari I red 1
motion1 49 I 36 I 15 IO 1 50 1 40 10 I SO I 40
motion2 23 I 61 I IS 20 I 72 I 9 20 I 72 I 9

Table 2. Percentage of the different types of non-
memory vector operations (namely, vector logic
overhead, vector arithmetic operations, and vector
reductions operations).

like codes are fairly similar. However, the matrix ISA reduces
the number of both memory and non-memory scalar instruc-
tions (45% less instructions on average). The reason is that,
as the matrix ISA can pack several p-SIMD instructions into a
single matrix instruction (thus, replacing multiple instances of
a loop) there is an elimination of instructions involved in loop
control (i.e., branches, loop indexes, and address arithmetic).

Accumulators are extremely useful in reducing the over-
all number of non-memory vector operations. Note that five
of the kernels under study have implicit reduction operations
(MDMX uses accumulators in 1 tps f i 1 t but not because
there is a real reduction properly) while four do not. For those
kernels where accumulators are not used (addblock, c o m p ,
h2v2, and 1 tps f i 1 t for the matrix EA), the overall num-
ber of non-memory vector operations is the same. On the
other hand, for the rest of the benchmarks, MDMX-like and
MOM codes have an average of 50% less non-memory vector
operations. This overhead reduction is due to the elimination
of almost all data promotioddemotion instructions and other
related logic overhead.

MDMX versions of code, in sharp contrast with the other
two ISA styles, are dominated by scalar instructions. This
is due to the fact that Packed Accuniulators reduce the over-
all number of vector instructions. On the other hand, MOM
is not dominated by scalar instructions (despite having also
Packed Accumulators) because the it also reduces the overall
number of scalar instructions thanks to its second dimension
in the matrix registers that allows getting rid of loop overhead
instructions.

In order to gain further insight into which kind of opera-
tions have been removed by MOM and MDMX, we can look
at table 2. Table 2 shows the predominance of the three dif-
ferent types of non-memory vector operations, namely, vec-
tor logic operations, vector arithmetic operations and vec-
tor reduction operations. Vector logic operations are those
involved in p-SIMD managing overhead (such as data pro-
motion/demotion, matrix transpose, sign conversion or data
re-arranging), as well as those operations involved in preci-
sion conversion for fixed-point arithmetic (basically, packed

shifts). Vector arithmetic operations are those that process
data in a purely SIMD style, performing operations such as
alpha-blending, image average or offset adds. Lastly, reduc-
tion operations are those involved in reduction processes (that
is, characterized for having sub-word level intra-dependences
and for computing a scalar value from a set of vector data).

As we can observe, MMX-like architectures tend to be
dominated by this logic overhead (around 50% by average of
the overall number of non-memory vector instructions). On
the other hand, the use of accumulators allows to greatly re-
duce the amount of logic operations required for the MDMX-
like and MOM ISAs (35% on average), while the number of
arithmetic operations remains similar. As a result, the ISAs
that use packed accumulators end up being dominated by re-
duction operations.

As a conclusion, we have seen that non-memory vector
operations in p-SIMD ISAs without packed accumulators (as
our model of MMX) are dominated by the logic overhead in-
volved in reduction processes, while non-memory vector op-
erations in p-SIMD ISAs with packed accumulators (as our
MDMX-model or the matrix ISA) are dominated by the real
vector reduction operations. Attending to the number of oper-
ations to execute, MDMX-style ISAs should outperform their
MMX-style counterparts; however, as we will see in the next
section, the way potential parallelism is exploited has a great
impact on the overall performance.

4 Performance Comparison

In this section we will evaluate how the different ISA styles
exploit parallelism in reduction processes. First, we are going
to describe the architectures used to perform our evaluations.
Then, we will evaluate performance versus the number of p-
SIMD physical registers available. Finally, we will analyze
the effects of increasing the latency of the p-SIMD functional
units.

4.1 Modeled Architecture

The three architectures under study model a hypothetical 8-
way MIPS RlOOOO processor with the addition of a multime-
dia unit that has its own register file. Table 3 summarizes the
major parameters for the three architectures. The reader will
notice that the configurations are fairly aggressive. The rea-
son is that we wish to stress the ILP available in each kernel to
clearly show which architecture can extract more parallelism
from its ISA.

Note that the MOM SIMD pipeline has one single func-
tional unit, composed of 4 vector pipes, so that it is able to
execute up to 4 p-SIMD MDMX-like instructions per cycle
from the same MOM instruction. Additionally, the matrix
SIMD processor memory sub-system is able to either provide
2 independent scalar memory references or up to 4 elements
from the same vector memory reference per cycle (in contrast

90

p-SIMD RF ports
ACC RF ports

Overall RF storage (KB)
Estimated RF area cost (wt')
Estimated RF access time (ns)

4
SIMDFUs 11

memory issue 11

MMX MDMX MOM
20 20 4 x 5
0 8 2

OS0 0,68 4.04
2.260.992 2.463.744 2.382.336

1,476 1,416 1.362

memory ports 4 I 2 / 1 x 4
LoadStorequeue (1 32 1 32 1 16

-,

Fetch rate
graduation window
INT issue/# FUs

SIMD issue

Table 3. Processor configurations.

MMX MDMX matrix
8 8 8

I28 128 128
4 4 4
4 4 I

_ - _ _ _ _
7READPonr ,
2 WRITE Puns I

Figure 11. The register file and FU configuration of
our models of (a) MMX, (b) MDMX and (c) MOM archi-
tectures.

with the 4 independent memory ports for both the MMX-like
and MDMX-like processor models).

4.2 Register file organization and cost

A common misconception that often arises when describ-
ing the MOM matrix registers is that they require a much
larger chip area than their MMX counterparts. The purpose
of this section is to show that thanks to the organization of
the MOM register file into separate lanes, we heavily reduce
the number of ports required in each slice of the MOM reg-
ister file. This reduction in number of ports translates into a
smaller die area and a faster cycle time than its MMX and
MDMX rivals.

Figure 11 shows the SIMD register file and FU configura-
tion for our different models. The MDMX-like architecture
is similar to the MMX-like one, plus the addition of a packed
accumulatorregister file. Note that we have 4 read and 4 write
ports for the Accumulator register file because we can perform

up to 4 operations over 4 different accumulators (assuming 4
logical packed accumulators and I-cycle latency operations).
Note that MOM architecture has a limited connection between
lanes to perform the last series of reductions. Only one of the
lanes needs to read and write the packed accumulator register
file and thus fewer ports are required. This lane is responsible
of performing the last reduction operation and writing back to
the source/destination accumulator.

Table 4 shows the number of ports of the p-SIMD and
packed accumulator register files, the overall storage size (in
Kbytes), an estimation of the overall area cost and a lower
bound of the access time. We have used the models described
in [121 to estimate the area (in square wire tracks) and time (in
ns), assuming a 0.18pm CMOS process and assuming twice
the number of physical registers than logical registers. From
the results of the table, we observe that vector pipes are a very
efficient way of providing high bandwidth at a very reduced
cost. Despite having up to 8 times more storage, the ma-
trix model overall register file size is similar to our models
of MMX and MDMX, and slightly faster. As seen in [12],
this is due to the special relevance that the number of ports
has over the area and delay of a register file. MOM is able
to distribute the register elements in a smart way, minimizing
communications between clusters.

4.3 Influence of the number of physical registers

In this section we want to establish how many physical reg-
isters are required to support high ILP in each of the three ar-
chitectures under study. We take as baseline the performance
of the MMX architecture with 36 physical registers and'eval-
uate the performance of MMX, MDMX and MOM as we in-
crease the number of available physical registers. Note that
we are not varying the number of physical accumulators avail-
able. Although not shown here, we did several studies and
found that for MDMX, 8 physical packed accumulators were
enough to support the maximum ILP. For MOM, simulations
showed that 4 physical packed accumulators were also suffi-
cient.

Figure 12 shows the Speed-up of the different ISAs under
study as a function of the number of p-SIMD physical regis-
ters. Note that the graphs on the left are related to the kernels
where we can find reduction operations while the graphs on
the right are related to the kernels without any reduction pro-

91

idct qb2ycc

I-_i

-Matrix mSIMD
--.--. MMX-like mSIMD
---.MDMX-like mSIMD

,.,;' :I f,,,. 8 : ../ '.

motion1 motion2

comp addblock

ltpsfilt h2v2

Figure 12. Speedup of the different ISAs under study as a function of the number of physical registers (baseline:
MMX-like performance with 36 physical registers).

cess.
The results in figure 12 show that our MMX-like model

achieves increases in performance between 1.9X and 4.75X
when increasing the number of physical registers from 36 to
80- 100. Beyond that number, performance saturates. Inter-
estingly, our MDMX model has a behavior completely dif-
ferent for those programs where it can take advantage of the
packed uccunzulutors (for the rest, the performance is identical
to the MMX one, since our MDMX ISA model is a superset
of the MMX one). In the 40 to 60 range, MDMX clearly out-
performs MMX. However, past 64 physical registers, MMX
wins in three benchmarks, MDMX in two and motion2 can
be declared a draw. This is very surprising since in the previ-
ous section we saw that MDMX executes much fewer opera-
tions than MMX. For example, in ltppar, MDMX executes
28% less instructions but MMX achieves a performance 35%
higher. The reason was already discussed back in section 2.
The use of accumulators (no matter how many physicals back
it up) severely limits the amount of ILP available to MDMX
kernels. Despite eliminating most of the logic overhead, the
packed accumulators hide the potential ILP inside reduction
processes.

By contrast, MOM is able to take advantage of the over-
head reduction capabilities of Packed Accumulators while, at
the same time, exploiting effectively the potential parallelism
of a whole reduction process. As a result, the matrix ISA
outperforms the other two ISAs with performance gains rang-
ing from 1.1X to 2.5X for MMX and from 0.9X to 2.2X for
MDMX (1.5X on average for both ISAs). The only exception
is rgb2ycc where the MDMX-like architecture outperforms
the matrix ISA for aggressive configurations due to short vec-
tor lengths in MOM second dimension. We can observe that
the matrix ISA saturates beyond 20-30 registers. We must
realize that every matrix register contains 16 MDMX-like p-

SIMDregisters. Therefore, the matrix ISA is effectively ex-
ploiting between 160 and 480 MDMX-like registers on aver-
age, clearly stressing the theoretical parallelism limits of the
kernels.

4.4 Influence of instruction latency

Figure 13 shows the performance impact of increasing the
latency of the vector functional units for every instruction and
each ISA under study. The x-axis shows the offset added to
the original instruction latencies while y-axis shows execu-
tion time. Again, the graphs on the left relate to kernels with
reduction operations while the graphs on the right relate to
kernels with none. For the MOM architecture, four different
cases have been evaluated. These cases reflect the effect of
two different assumptions that can be made about the matrix
pipeline:

0 Whether the latency increase applies to the regular or the
reduction component of the instruction (for instance, in
a multiply&accumulate operation, whether we increase
the latency of the multiplication or rather the latency of
the addition).

0 Whether we fully pipeline or not the last stage of the
reduction operation, where the vector pipes communi-
cate together, reducing the last series of values follow-
ing a binary-tree organization. If no pipelining support
is given to this stage, an additional functional unit con-
tention of log2 (P) x LR cycles are introduced (where P
is the number of lanes and LR is the reduction latency).

The first main conclusion that may be inferred from the fig-
ure is that p-SIMD architectures are very latency sensitive in
the presence of reductions. The MMX average performance

92

"L
motion1

"'1

rgb2ycc

- MMX-like SIMD

..+.. MOM Reduction Latency (no intra-lane pipelining)

+- MDMX-hke SIMD
-+- MOM Regular Latency (no intra-lane pipelining)

+MOM Regular Latency
-*- MOM Reduction Latency

ltpsfilt h2v2
"-

morion2

Figure 13. Speedup of the different ISAs under study as a function of the vector functional unit latency

slow-down for the kernels with reduction operations is 2.3X
while the performance slow-down for the kernels without re-
ductions is only of 1 S X . This enforces our claim that reduc-
tion operations are a sensible issue for performance under a
scenario of increasing functional uni t latencies.

Another interesting fact that can be observed from fig-
ure 13 is that MMX execution time grows slightly faster than
MDMX execution time. The sensitivity to the latency is de-
pendent on mainly two factors: the percentage of instruc-
tions to which we are increasing the latency, and the ability
to overlap the latency by exploiting instruction level paral-
lelism. While MMX-style of programming can take higher
parallelism from the reduction process, the additional chain
dependences produced by operations needed to perform data
promotion and such, end up dominating execution. On the
other hand, MDMX is dominated by scalar instructions (in
sharp contrast with MMX, which is dominated by the p-SIMD
instructions). Therefore, as scalar instructions become the
bottleneck for MDMX, it becomes more likely that increased
latencies over vectors instructions can be tolerated.

In sharp contrast with the previous results, MOM is clearly
characterized for having a high tolerance to increases in
the latency of the instructions. If we look at performance
slow-downs when the intra-lane communication stage is fully
pipelined, we may observe that MOM execution time grows
slower than MMX and MDMX execution times.

This better behavior is observed not only when we increase
the regular component of the latency but also when we in-
crease the reduction component of the latency. Nevertheless,
as already observed in our previous mathematical model (sec-
tion 2.4), the execution time grows faster when we increase
the reduction component than when we increase the regular
component of the latency. For example, those benchmarks
that do indeed have reduction operations see an average in-
crease in execution time of only a factor of 1.4X when we

increase the regular component of the latency in 4 cycles. For
i d c t , motion1 and ltppar the increase is almost flat. On
the other hand, this factor raises to 1.6X when the component
being increased is the reduction latency. However, this higher
slow-down still compares positively with the MDMX (1.9X
slow-down factor) and MMX (2.3X slow-down factor) coun-
terparts. The only exception to this trend is, again, rgb2ycc.
Due to the low matrix register lengths achieved in this kernel,
the advantages of MOM when performing reductions cannot
be exploited at their full potential.

When we assume that no pipelining support is provided
to the intra-lane communication hardware of the MOM func-
tional units, we can observe a radically different behavior
when we increase the reduction component of the latency. In
that case, MOM execution time grows at a similar rate than
MDMX -even higher for two of the benchmarks, motionI and
idcr. This is a clear proof of the effect of functional uni t con-
tention over the final performance. While MOM is still able
to tolerate latencies, for higher enough reduction latencies, the
contention (log2(P) x LR) exceeds the number of elements
inside a MOM register, and, thus, the functional uni t usage
drops radically.

4.5 Full application performance comparison

In the previous sections we have studied kernels in isola-
tion to better analyze the effect of reductions. Now we ad-
dress the issue of evaluating the performance for full appli-
cations and with highly accurate memory model simulation
(a 32 Kb multi-ported, multi-banked direct-mapped LI data
cache, backed up with a IMb, 2-way set associative L2 cache).
Figure 14 shows the evolution of normalized execution cycles
when we increase the regular latency of the p-SIMD instruc-
tions 1 ,3 and 5 cycles for both MMX-like and MOM architec-
tures. For the latter, we have assumed non-pipelined intra-lane
communication. Clearly, from the results in the figure, we can

93

Figure 14. Increase of the number of execution cy-
cles (normalized) when increasing the regular com-
ponent of the latency of MMX and MOM non-memory
instructions (no intra-lane pipelining).

corroborate that the observed behaviors at kernel level are also
shown in complete programs.

As we can observe, while the MMX-style ISA can suffer
severe increases in the execution time (up to a 40% of slow-
down) the matrix p-SIMD architecture exhibits very low per-
formance slow-downs (less than 5%) even for increases in the
latency exceeding 5 cycles. Therefore, MOM appears as a
suitable alternative for next-generation of media processors as
it overcomes the problem of the latencies of complex ,U-SIMD
style instructions. MOM shows a high robustness to increases
in both the regular and reduction components of the latency of
any instruction, provided that full pipelining support is given
to all the stages of the matrix functional unit.

5 Summary

In this paper, we have studied the problems associated with
reductions found in current multimedia applications. Reduc-
tions pose a particular problem for p-SIMD architectures such
as MMX or AltiVec, where issues such as the size of the sub-
word data types or intra-register dependencies are critical for
performance.

Data presented have shown that although reductions ac-
count for a small percentage of total instructions (less than
5%), their impact on final application performance can be
much larger (up to 40% degradation in j peg decode) when
latencies are increased.

Given the current trend towards ever-increasing clock
frequencies and hyper-pipelining, we believe latencies of
complicated multimedia instructions are bound to increase.
Hence, this paper has studied two potential solutions to the
reduction problem.

First, we have described and studied the performance
achieved by packed accumulators (as found in MDMX).
Packed accumulators solve the packing and unpacking prob-
lem typically associated with reductions and thereby reduce
instruction overhead by as much as 30%. Unfortunately, they
introduce artificial recurrences that hide potential ILP, pro-
viding diminishing returns for aggressive configurations. We

have seen that even with the fact that MDMX-like ISAs can
execute up to 30% less instructions, MMX-like versions can
outperform them by a up to 35%.

Second, we have described and evaluated a combination
of the packed-accumulator idea and the matrix ISA described
in [8]. The longer registers present in the matrix architecture
allow using packed accumulators without incurring into the
recurrence penalties. By properly scheduling operations onto
the accumulator, the matrix ISA can hide the intrinsic latency
of the accumulator and exploit operation parallelism. Our
simulations show that the matrix ISA outperforms the other
two ISAs under study by an average of I S X . Furthermore, as
we advance into the future and longer latencies become the
norm, matrix ISAs turn even more attractive: for example,
when increasing latency by 4 cycles, our model of matrix ISA
speedups increase to 2.2X over MDMX and MMX.

References

[I] A. Peleg and U. Weiser. MMX technology extension to the intel archi-
tecture. IEEE Micro, pages 33-45, August 1996.

[2] Mips extension for digital media with 3D. Technical Report
http://www.mips.com. MIPS technologies, Inc., 1997.

[3] K. Diefendorff, P.K. Dubey, et. al. Altivec extension to powerPC accel-
erates media processing. IEEE Micro, March-April 2000.

[4] 3DNow! technology manual. Technical Repon http://www.amd.com,
Advanced Micro Devices, Inc., 1999.

[5] Pentium I11 processor: Developer's manual. Technical Report

[6] http://developer.intel.com/design/processor/index.htm. Willaniette Ar-

http://developer.intel.com/drsign/PentiumllI, INTEL. 1999.

chitecture Software Developer Manuals. Intel, 2000.

171 M. Tremblay, J.M. O'Connor. V. Narayanan, and L. He. VIS speeds
new media processing. IEEE Micro. August 1996.

[XI JKSUS Corhal, Roger Espaa, and Mate0 Valero. Exploiting a new level
of DLP in multimedia applications. MICRO, 1999.

191 Jesus Corbal, Roger Espasa, and Mateo Valero. MOM: Instruction set
architecture. Technical report, UPC, 1999.

[IO] C. Lee, M. Potkonjak, and W.H. Magione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communication sys-
tems. MICRO 30, 1997.

[1 I] A. Srivastava and A. Eulace. Atom: A system for building customized
program analysis tools. PLDI, ACM SIGPLAN'94

[I21 S. Rixner, W.J. Dally, B. Khnilany, P. Mattson, U. Kapasi, and J.D.
Owens. Register organization for media processing. High Perfiirriiuirce
Contpirier Architecture. HPCA-5, pages 3755386,2000.

[131 R.E. Kessler. The Alpha 2 I264 microprocessor. IEEE Micro, pages
24-36, March-April 1999.

[141 James E. Smith. Notes on First Order Linear Recurrences. Technical
report, Cray Supercomputers, 1993.

1151 Y. Tanaka, K . Iwasawa, et. al. Compiling techniques for first-order lin-
ear recurrences on a vector computer. Supercoiitprrriii~"88

[161 D.J.Kuck and R.A.Stokes. The Burroughs Scientific Processor (hsp).
IEEE Trunsucrions on Computers, pages 363-376, May 1982.

[171 H. Zima and B. Chapman. Sirpercompilersfor P u r u M and Vector Corn-
pulers. Addison-Wesley Publishing Company, 199 I .

[IS] A. Kunimatsu, N. Ide, and T. Sato et. al. Vector unit architecture for
emotion synthesis. IEEE Micro, pages 85-95, March-April 2000.

94

http://www.mips.com
http://www.amd.com
http://developer.intel.com/design/processor/index.htm
http://developer.intel.com/drsign/PentiumllI

