
AUTOMATIC TUNING MATRIX MULTIPLICATION PERFORMANCE
ON GRAPHICS HARDWARE

BY

Changhao Jiang and Marc Snir

Department of Computer Science
University of Illinois Urbana Champaign

201 N. Goodwin Avenue
Urbana, IL 61801-2302
{cjiang, snir}@cs.uiuc.edu

Technical Report UIUC DCS-R-2005-2558
Department of Computer Science, UIUC

April, 2005



Automatic Tuning Matrix Multiplication
Performance on Graphics Hardware ∗

Changhao Jiang, Marc Snir
Department of Computer Science

University of Illinois Urbana Champaign
201 N. Goodwin Avenue
Urbana, IL 61801-2302
{cjiang, snir}@cs.uiuc.edu

April 25, 2005

Abstract

Graphics hardware’s performance is advancing much faster than the per-
formance of conventional microprocessor. In order to utilize the tremendous
computing power of these systems, it is critical to tune software to graphics
hardware’s architectural features. The frequent changes in GPUs’ architecture
and performance characteristics makes it very desirable for such tuning to be
automated.

This paper implements an automatic tuning system to generate high-performance
matrix-multiplication implementation on graphics hardware. The automatic
tuning system uses a parameterized code generator to generate multiple ver-
sions of matrix multiplication, whose performances are empirically evaluated by
actual execution on the target platform. An ad-hoc search engine is employed
to search over the implementation space for the version that yields the best per-
formance. In contrast to similar systems on CPUs, which utilize cache blocking,
register tiling, instruction scheduling etc. tuning strategies, this paper identifies
and exploits several tuning strategies that are unique for graphics hardware.
These tuning strategies include optimizing for multiple-render-targets, SIMD
instructions with data packing, overcoming limitations on instruction count and
dynamic branch instruction. The generated implementations have comparable
performance with expert manually tuned version in spite of the significant over-
head incurred due to the use of the high-level BrookGPU language. As the first
attempt in automatic generation of numerical libraries for graphics hardware,
the results from this paper are encouraging.

∗This work is supported by DARPA contract NBCHC-02-0056 and NBCH30390004.

1



1 Introduction

In the past decade, graphics hardware, a.k.a graphics processing unit (GPU)1, has
enjoyed a faster growth than what Moore’s law dictates. By utilizing extensive paral-
lel and vector processing units, modern graphics hardware dramatically outperforms
the most advanced CPU. As a result, a growing interest has been raised in perform-
ing general purpose GPU computation, namely GPGPU. GPGPU’s ultimate goal is
to enable the GPU as a powerful coprocessor to CPU and offload computationally
intensive tasks. GPU algorithms for dense matrix multiplication [1, 10, 12], FFT [15],
database operations [9], sparse matrix conjugate gradient solver [4], ray tracing [6, 17],
etc. have been studied and demonstrated to work on graphics hardware.

In order for general purpose computing to fully utilize the power of graphics hard-
ware, it is critical to tune software to cater to the underlying architecture. Tuning
software performance for a particular hardware architecture usually requires detailed
knowledge of that architecture. However this requirement is difficult to meet for
graphics hardware due to the following reasons: First, most GPU vendors do not
release their products’ architectural internal details, such as cache organization, ras-
terization algorithm. Second, programmers have only indirect control of the hardware
through a vendor supplied driver, which dynamically loads, compiles, optimizes and
executes the application supplied programs. The optimizations done by the dynamic
compiler inside the driver are transparent to the programmer. Third, graphics hard-
ware evolves fast. Every six months, GPU vendors introduce a new generation of
graphics cards. A well tuned program for a particular generation of architecture may
turn out to perform badly on its successor generation due to changes in the underlying
architecture.

The difficulty in tuning performance for a fast-evolving hardware architecture
makes self-adaptive software desirable. Automatic software tuning for general pur-
pose processors has been studied for some years. Previous research in this field cen-
tered around automatic generation of high-performance numerical routines, such as
dense and sparse matrix operations [3, 11, 20], sorting [13], FFT [8], signal process-
ing [18], by improving software’s spatial/temporal locality, instruction scheduling and
dynamic algorithm selection to cater to modern processors’ deep memory hierarchy
and pipeline design.

Automatic tuning for graphics hardware presents new challenges. First, graphics
hardware uses a non-traditional programming model that complicates the mapping
of algorithms to the hardware. Second, as graphics hardware is vastly different from
general purpose processors, new tuning strategies are needed. Since performance tun-
ing for modern CPU’s has been well studied, programmers are familiar with common
optimization techniques such as cache blocking, register tiling, software pipelining,
loop unrolling, etc. However, these techniques rarely directly work for GPUs. Third,
due to the fact that graphics hardware’s architectural details and machine parameters

1In this paper, “graphics hardware” and “GPU” are used interchangeably.

2



are usually withheld by vendors, the use of performance models either to prune search
space of automatic tuning or to replace search is more difficult to realize on graphics
hardware.

To our knowledge, this paper is the first attempt to implement an automatic
tuning system to generate numerical libraries for graphics hardware. More specifi-
cally, it studies automatic generation of high-performance matrix multiplication on
graphics hardware, as matrix multiplication is the most important building block
for a variety of numerical libraries. In contrast to ATLAS [20], which utilizes regis-
ter tiling, cache blocking and instruction scheduling to achieve high performance on
pipelined processor with deep memory hierarchy, our approach automatically tunes
matrix multiplication to graphics hardware’s unconventional architecture features,
such as SIMD instruction with swizzling and smearing, multiple-render-targets, lim-
ited instruction count, limitation on branch instruction, varying shader models, etc.
Our automatic tuning system is capable to generate matrix multiplication implemen-
tations with comparable performance to expert manually tuned version despite the
significant overhead incurred due to the use of a high level language.

The remainder of this paper is organized as follows: section 2 introduces related
research. Section 3 introduces some special features of modern graphics hardware
architecture. Section 4 describes algorithms for matrix multiplication on graphics
hardware. Section 5 presents in details the automatic tuning system for matrix mul-
tiplication on graphics hardware. Section 5 explains and analyzes the performance
data. The paper is concluded by section 7 with future research.

2 Related Work

In this section, we introduce some representative automatic tuning systems for mi-
croprocessors in the field of dense/sparse matrix operations, signal processing and
sorting. We also briefly survey previous research on matrix multiplication on graph-
ics hardware.

PHiPAC [3] is an early prototype of an automatic matrix multiplication generation
system. ATLAS [20] extends PHiPAC’s idea to all of the other dense matrix kernels
that constitute the Basic Linear Algebra Subprograms (BLAS). Both projects employ
parameterized code generators that can generate multiple versions of matrix multi-
plication code according to input tuning parameter values. These tuning parameters
control different software transformations that affect L1-cache blocking, register tiling,
instruction scheduling. The generated code’s performance is empirically evaluated by
actual execution. A search engine is then used to search over the implementation
space for the version that yields the best performance. An alternative approach to
empirical-search based tuning is to use analytical model to determine the best tuning
parameter values [21].

FFTW [8] is the first automatic tuning system to generate one or multi-dimensional
complex Fourier transformations. It employs a high-level description of execution

3



plan for decomposing large Fourier transform into smaller specially optimized ker-
nels, named “codelet”. A dynamic programming based search process is performed
at runtime, when input transform size is known, to find the best execution plan. Ex-
tending FFTW’s idea to more general signal processing, the Spiral [18] system is built
on top of a symbolic algebra system. It allows users to enter customized transforms
in an interpreted environment using a high-level tensor notation, and uses a novel
search method based on genetic algorithms.

Sorting and sparse matrix operations are two examples of applications which need
to be tuned not only to the architecture but also to input data’s characteristics. Li
et al. [13] use a genetic algorithm and a classifier system to produce a hierarchically-
organized hybrid sorting algorithm that adapts to input data characteristics, and
has better performance than carefully tuned commercial sorting libraries. Sparsity
project [11] automatically tunes sparse matrix operations to both the architecture
and the sparse matrix’s non-zero structure. It combines traditional techniques such
as loop transformations with data structure transformations and optimization heuris-
tics that are specific to sparse matrices. It provides a novel framework for selecting
optimization parameters, such as block size, using a combination of performance
models and search.

As one of the most important building blocks for numerical libraries, dense ma-
trix multiplication on graphics hardware has attracted great attention since the ap-
pearance of programmable graphics hardware. Larsen et al. [12] first presented a
single-pass matrix-multiplication algorithm for graphics hardware. Moravánszky [1]
and Hall et al. [10] introduced two algorithms, which extended Larsen’s algorithm
to utilize graphics hardware’s SIMD instruction with swizzling and smearing by data
packing. Fatahalian et al. [7] thoroughly studied the performance efficiency of pre-
viously proposed algorithms on a variety of graphics hardware and reached the con-
clusion that due to the limit of cache-to-processor bandwidth, it is not possible to
fully utilize the tremendous computing power of graphics hardware without changing
the underlying architecture. We will describe in more details the above algorithms in
section 4.

3 Graphics Architecture Features

In this section, we introduce the graphics hardware’s special features that are not
found in conventional microprocessors and are relevant to our work. Readers inter-
ested in deeper treatment of graphics hardware architecture are referred to [2, 14]
and to vendor specifications of graphics hardware products.

Most modern graphics hardware has multiple vertex processors and fragment
processors. Figure 1 depicts a conceptual view of a graphics hardware with sixteen
fragment processors and six vertex processors2. Vertex processors perform geometric

2Note that figure 1 ignores many graphics related components. It does not represent any real

4



to CPU

FP FP FP FP

L1 Cache

FP FP FP FP

L1 Cache

FP FP FP FP

L1 Cache

FP FP FP FP

L1 Cache

Frame Buffer

L2 Cache Rasterizer

VP VP VP VP VP VP

Memory
Texture

to display

System Bus

Figure 1: Architecture Model of Graphics Hardware

transformations and lighting operations on geometric primitives. After vertices have
been projected to screen space, the rasterizer calculates fragment3 information by
interpolating vertex information. Then rasterizer assigns fragment-rendering tasks to
fragment processors. A fragment processor renders one fragment at a time. After a
fragment has been rendered, the fragment processor writes the final color information
into the fragment’s designated location in the frame buffer for display.

The graphics hardware’s memory subsystem, namely texture memory, is mainly
designed to support texture mapping operations. Since texture mapping only requires
fragment processors to read from the texture memory, most modern GPUs do not
support write operations by fragment processors to the texture memory. Fragment
processors can only perform writes to the frame buffer. If a program needs to store
intermediate results to texture memory, it can either copy the intermediate results
from the frame buffer to texture memory, or use a render-to-texture technique, which
allows rendering results in the frame buffer to be used as input texture for further
computations. Since texture mapping is performed in the fragment processors, most
modern GPUs do not allow vertex processor to access texture memory 4.

In figure 1, four fragment processors share one L1 cache. The L2 cache is shared
by all sixteen fragment processors. Data organization in graphics hardware’s cache,
namely texture cache, is also designed to improve spatial locality of texture mapping
operation. Optimizations for temporal locality of texture mapping are implemented
in the rasterizer by rasterizing fragments in some special order. As cache organiza-
tion and rasterization algorithms used in GPU products are usually considered as
commercial secrets, there is little public knowledge about their internal details.

graphics hardware architecture but only serves to facilitate the understanding of general purpose
computing on GPU.

3In graphics terminology, “fragment” refers to screen element before shading, “pixel” refers to
screen element after shading.

4Latest GPUs start to add the support for vertex processors to access texture memory.

5



Constants

Temp Registers

Shader

Program

Output Register

Input Register

Textures

Figure 2: Programming model for GPU

Due to vertex processors’ inability to access texture memory and the rasterizer’s
lack of programmability, most GPGPU applications rely on fragment processors to
perform intensive computation. A program executed by a fragment processor is called
“fragment program” or “fragment shaders”; these are used interchangeably in the
context of this paper. Each execution of a “fragment program” renders one fragment.
Therefore, one can consider a GPU as a stream processor, which performs the same
kernel function (fragment program) on streams of data elements (fragments).

The programming model for fragment processors is illustrated in figure 2. A
fragment program reads input data from input registers filled by the rasterizer. It
can read a number of constant values set by the host application, read from texture
memory, and read and write a number of temporary registers. After the execution,
the result in the output registers is written into corresponding positions in the frame
buffer for display.

We describe below several additional features of fragment processors that are not
found in conventional microprocessors and that are relevant to our work.

SIMD instructions with swizzling and smearing. Fragment processors sup-
port four-way SIMD instructions. Each register has four components corresponding
to four color channels of a pixel (RGBA). Color channels can be permuted, which is
called “swizzling”, and can be replicated, which is called “smearing”. In the follow-
ing code, register R1 is used with “swizzling”, register R0 is used with “swizzling”
and “smearing”.

R2=R1.abgr * R0.ggab

Branch instruction. Early graphics hardware either does not support shaders
with branches, or supports branches indirectly through predicated instructions or
loop-unrolling. Latest graphics hardware starts to support dynamic branch instruc-
tions. However, using dynamic branch instructions can cause expensive performance
penalties.

6



Instruction count. Most graphics hardware has limit on the static number of
instructions a shader can contain. With branch instructions, it is possible that dy-
namic instruction count is vastly higher than static instruction count. Some graphics
hardware may have limit on dynamic instructions executed by a shader.

Outputs per shader. A shader is only able to output to designated pixels in
the frame buffer. With the introduction of multi-render-targets support in latest
graphics hardware, a shader is capable to write to a limited number of auxiliary
buffers in addition to the frame buffer.

4 GPU Algorithms for Matrix Multiplication

In this section, we present some matrix multiplication algorithms for GPU. To begin
with, we show the näıve three nested loop algorithm for multiplying two matrices on
CPU (assuming matrix C is initialized to zero).

for (i=0; i<M; i++)
for (j=0; j<N; j++)

for (k=0; k<L; k++)
c[i][j] += A[i][k] * B[k][j]

Larsen et al. [12] first described an algorithm to map the above code onto GPU.
Basically, they propose to store matrix A and matrix B as two textures and to compute
the result matrix C in the frame buffer. The shader program fetches one row from
texture A and one column from texture B, computes the dot product, and stores the
result into the frame buffer.

There are several caveats to this scheme. First, it fails to utilize the SIMD in-
structions of the fragment processor. Second, no data reuse is exploited. As matrix
multiplication performs O(n3) operations on O(n2) elements, exploiting data reuse
can significantly increase the computation to memory access ratio, thus resulting
in better register and cache usage and improved performance. Third, on fragment
processors that do not support dynamic branch instructions, the dot-product compu-
tation needs to be fully unrolled, which can easily exceed the instruction count limit
when the matrix is large.

To address those problems, Moravánszky [1] and Hall et al. [10] proposed two
multi-pass algorithms with data packing. Multi-pass techniques essentially use strip-
mining loop transformations to decompose the k-dimension loop into two nested loops.
The shader calculates a partial sum for an element of C. The outer-most loop accu-
mulates partial sums into the correct result for a C element. Data packing is used to
pack four elements of a matrix into four color channels of a texel (texture element)
so that each memory access operation can load/store four matrix elements instead of
just one element in Larsen’s algorithm. By packing four elements in one register, the
fragment processors are able to execute SIMD instructions.

7



Matrix C

1 x 4

2 x 2

Second pass

First pass

Matrix A

Matrix B

Figure 3: Matrix multiplication with MRT and Data packing

However, Hall [10] and Moravánszky [1] propose different data packing schemes.
Hall uses 2×2 scheme, which packs four elements from four sub matrices of the original
matrix. Whereas Moravánszky uses 1 × 4 scheme, which packs four consecutive
elements into one texel.

The 2×2 scheme allows each element loaded from memory to be used twice in the
shader. Thus, each execution of the shader reads from two rows of matrix A and two
columns of matrix B, and produces four elements of matrix C. The 1×4 scheme reads
from one row of matrix A and four columns of matrix B to generate four elements for
matrix C. The shader performs a few 1× 4 vector by 4× 4 matrix products. Hence,
elements from matrix A are used four times, whereas elements from matrix B are not
reused.

Data packing not only enables SIMD instruction but also improves data reuse in
the GPU. In this paper, we propose another technique that can further improve data
reuse beyond the previous two algorithms. The technique is based on multiple-render-
targets (MRT), which is supported in the latest graphics hardware. MRT allows a
shader to write multiple results. One of the results is written to the frame buffer, the
others are written to a number of auxiliary buffers. Figure 3 illustrates a multi-pass
matrix multiplication algorithm with the 1× 4 data packing scheme and 2× 2 MRT
scheme.

MRT based matrix multiplication algorithms naturally extend data-packing based
algorithms. The idea is to divide matrix C into m × n blocks of sub-matrices. One
of them will be assigned to the frame buffer, the other sub-matrices are distributed
to auxiliary buffers. a × b data-packing based algorithms effectively performs strip-
mining loop transformation on the i and j loops by factors a and b. The m×n MRT
based matrix multiplication further strip-mines the resulting i and j loops by m and

8



Search Engine

parameters

Generated
program

Performance
metrices

Code
Generator Evaluator

Tuning 

Figure 4: Components of automatic tuning

n. With MRT, elements loaded from matrix A can be reused n times further after
data packing, elements loaded from matrix B can be reused m times further after
data packing.

5 Automatic Tuning System

Typically, automatic tuning approach involves three components as shown in figure 4.
A code generator inputs the values of tuning parameters and outputs the program
version that is specified by these parameters. An evaluator empirically evaluates
the performance metrics of the generated code and feeds back the metrics to search
engine. A search engine searches over the implementation space by controlling the
tuning parameter values fed into the code generator according to some search strategy.
We will elaborate our tuning system with regarding to figure 4.

5.1 Code Generator

The code generator encapsulates several degrees of freedom in restructuring and trans-
forming program to generate different implementations of the same algorithm. In
designing our code generator, we adopt similar strategy as ATLAS [20]. We focus on
tuning the kernel routine for multiplying 1024 × 1024 matrices. Input matrices are
first divided into blocks of 1024× 1024 sub matrices. Then the matrix multiplication
is performed in terms of multiplying the block matrices with the tuned kernel rou-
tine. Matrices of size not multiples of 1024 will result in clean-up code, which can be
executed either by the CPU or by the GPU with code generated similarly. We choose
the particular value of 1024 because it yields the best performance.

The other issue to address in designing our code generator is what program-
ming language generated programs should be coded into. There are three levels of
programming language that can be used to program graphics hardware: assembly
level shading languages such as the “ARB fragment program” extension to OpenGL,

9



high-level shading languages such as the Cg language [16] from nVidia, and high-level
general purpose languages such as BrookGPU [5].

Assembly level shading languages require programmers to explicitly manipulate
registers and arithmetic instructions. Assembly programs are encoded in string vari-
ables in C/C++ programs that use OpenGL or Direct3D commands to maintain
graphics pipeline states and load/execute the assembly program.

High level shading languages like Cg and HLSL allow shaders to be written in C-
like language. Similar to assembly program, the C-like shading programs are encoded
in string variables in C/C++ programs that use OpenGL or Direct3D and the high
level shading language’s runtime library to explicitly control the graphics hardware
pipeline and to load/compile/execute the high-level shading code.

High-level general purpose languages go one step further by hiding the graph-
ics hardware characteristics. Programs written in the BrookGPU language are first
source-to-source translated into C++ programs containing fragment programs coded
in Cg that appear as string variables and wrapper C++ code for setting up and main-
taining graphics pipeline states. From this point, on top of the BrookGPU’s runtime
library, the generated C++ program will execute just as a normal graphics program
written in C++ with fragment programs encoded in Cg.

We decided to generate programs in the highest level language, specifically the
BrookGPU language, mainly for two reasons. First, generated code should be portable
to various architectures, even future architectures that are not yet defined. Gener-
ating high level program will permit fundamental changes in hardware and graphics
API as long as the compiler and runtime library for the high level language keep up
with those changes. Whereas, code generated in assembly language or Cg language is
tied to particular generation of hardware and may need to be modified to utilize new
features of the hardware or graphics API. Second, implementing the code generator
is a very tedious and error-prone process. The generator is easier to debug when its
output is high-level code. The downside of this decision is that the code compiled
from BrookGPU is less efficient than manually generated code. One can hope that as
high level languages for GPUs and their associated compilers and run-time libraries
mature, the performance penalty for the use of high level languages will shrink or
disappear, as it happened with conventional processors.

Our code generator is implemented in the Python script language to generate
BrookGPU programs according to input tuning parameter values.

5.2 Tuning Strategies and Parameters

Tuning strategies are heuristics of restructuring or transforming program to improve
the overall performance of the generated code. They have associated tuning parame-
ters that control various aspects of the generated code and embody the tuning strat-
egy. Usually, the optimum values of these tuning parameters are platform-specific
and therefore can not be determined a priori. This leads to the need for empirical

10



evaluation based search. In this subsection, we describe the tuning strategies and
their associated tuning parameters for our automatic tuning system.

5.2.1 Tuning Multi-Render-Targets

Today’s most advanced GPU offers up to three auxiliary buffers in addition to the
frame buffer known as multiple render targets (MRT). The MRT strategy can help
improve data reuse and therefore reduce the number of memory accesses and improve
performance. However, MRT necessitates the copying of intermediate results stored
in auxiliary buffers into texture memory for further passes. Furthermore, MRT re-
quires more temporary registers by the shader, which reduces the performance of the
fragment processors. Hence the optimal scheme to decompose matrices to use MRT
needs to be tuned to the target platform.

[mrt w, mrt h]: The matrix C is divided into mrt w×mrt h sub-matrix blocks
to utilize MRT. The valid values for these two parameters are limited by the number
of auxiliary buffers supported in hardware. Since latest hardware supports up to 3
additional buffers, the possible values of these two parameters range over 8 cases,
which have the product of mrt w and mrt h less or equal to 4.

5.2.2 Tuning Data Packing

This is the strategy of utilizing SIMD instructions with data packing. As introduced
in section 4, the two data-packing schemes 1× 4 and 2× 2 have different advantages
and disadvantages. Our automatic tuning system relies on actual execution to decide
which one is better on target platform.

[mc w, mc h]: Tuning parameters “mc w” and “mc h” decide how to pack con-
secutive elements into one texel. mc w×mc h block of elements are packed into one
texel. As there are only four available channels (RGBA) for each texel, the product
of mc w and mc h must be less or equal to 4. Hence, there are totally 8 cases.

5.2.3 Tuning Number of Passes

It would be nice to have a long shader that calculates the resulting matrix C in one
pass, which can eliminate the expensive texture-copy or render-to-texture operation
for intermediate results. However, due to fragment processor’s limit on instruction
count and temporary registers, a shader can not be too long. Even within the valid
range of instruction count limit, longer shader may perform worse than shorter shader.
As a result, the number of k-loop iterations to be executed in a shader needs to be
tuned to the target platform.

[np] Tuning parameter “np” determines how many iterations in k-dimension loop
are executed by the fragment shader. We observed from experiments that np larger
than 256 is either not supported by hardware or has already started to suffer from

11



performance penalty. Hence, in our tuning system, we limit the range of np from 1
to 256.

5.2.4 Tuning for Branch Instruction

Latest graphics hardware adds support for dynamic branch instruction. This allows
implementing a loop-based shader without having to fully unroll it as is the case for
earlier generation of graphics hardware, which does not have dynamic branch instruc-
tions. Using loop-based shader could help reduce static instruction count. However,
as branch instructions come with an expensive performance penalty, whether to use
branching or loop unrolling needs to be tuned on actual hardware.

[unroll] Tuning parameter “unroll” decides whether or not to use branch instruc-
tion to implement a loop-based shader. The valid values of unroll are either 0 or 1.
If unroll equals 1, the inner loop of the generated code will be fully unrolled.

5.2.5 Other Tuning Parameters

[compiler] BrookGPU resorts to either “cgc” or “fxc”, which are compilers from
nVidia’s Cg Toolkit and Microsoft’s DirectX9 respectively, to compile Cg program
into assembly fragment program. Since these two compilers might perform different
optimizations, the generated code might execute differently. We use a tuning para-
meter “compiler” to determine which compiler to use to compile shader. The valid
values of compiler are either “cgc” or “fxc”.

[profile] This tuning parameter originates from the options of shader models in
interfacing with graphics hardware. Currently, there are two popular graphics API’s,
namely Direct3D and OpenGL. They provide somewhat equivalent functionalities
through different programming API. BrookGPU is able to use either of them as
the back end API to interact with GPU. For both Direct3D and OpenGL, there are
several shader profiles. Specifically, Direct3D has four shader profiles, “ps20”, “ps2a”,
“ps2b” and “ps30”. OpenGL has three profiles “arb”, “fp30”, “fp40”. The profiles
provide different capabilities to shader programs. For example, “fp40” and “ps30”
support dynamic branch instruction. Also, different profiles have different limits on
instructions count and number of temporary registers. We use a tuning parameter
“profile” to choose among back-ends and shader models. The valid values of profile
are “ps20”, “ps2a”, “ps2b”, “ps30”, “arb”, “fp30” and “fp40”.

5.3 Performance Evaluator

The performance evaluator uses MFLOPS (million floating point operations per sec-
ond) as the performance metric to evaluate the quality of generated code. Graphics
hardware typically supports fused multiply-add instruction, which allows a multiply
and an add to complete in one instruction. In order to compare with matrix mul-
tiplication performance on a CPU, we consider this single instruction operation as

12



two floating operations. The performance evaluator returns zero MFLOPS for invalid
generated programs, e.g. programs that exceed the instruction count limit.

5.4 Search Engine

The search engine is responsible for searching over the implementation space to find
the version with the best performance. As optimization in multi-dimensional discrete
space is generally an NP-hard problem, hence there is no general algorithm that can
solve this discrete optimization without exhaustive search. In our case, exhaustive
search over all possible versions would require 8 × 8 × 256 × 2 × 2 × 7 = 458752
evaluations. If each evaluation takes 10 seconds, the whole search would take 53
days, which may not be acceptable.

We implement an ad-hoc search algorithm specifically for our tuning problem. We
employ two techniques to limit our search to around four hours without sacrificing too
much performance. The first technique is to employ some problem specific heuristics
to prune the search space of tuning parameters. The second technique is to search
tuning parameters in some predetermined order to effectively decompose the high-
dimensional search space into multiple lower-dimensional spaces.

5.4.1 Space Pruning

According to the symmetric property of mc w and mc h parameters, we impose an
additional constraint that mc w ≤ mc h. Since the matrix size is 1024 × 1024,
we also limit mc w and mc h to powers of two. Now we have only four possible
cases (mc w, mc h) ∈ {(1, 1), (1, 2), (1, 4), (2, 2)}. Similarly mrt w and mrt h can be
limited to four cases: (mrt w,mrt h) ∈ {(1, 1), (1, 2), (1, 4), (2, 2)}.

Parameter np decides the number of iterations in k-loop to be executed in the
shader. Intuitively, as np increases, the performance will first improve due to fewer
number of passes. When np exceeds some optimum value, the instruction count issue
and excessive use of temporary registers start to outweigh the benefits of fewer passes.

The search problem essentially boils down to finding the maximum value of a
unimodal function. Theoretically, the best algorithm has complexity of O(log(n)).
However, for our particular problem, since the np value range is rather small and
we believe the optimum np value should be near power of two values, we designed
algorithm 1 for finding optimum np value. The idea of algorithm 1 is to exponentially
increase stride and evaluate the performance at corresponding np until either the end
of interval is reached or the performance is less than the minimum of the previous
two evaluated performances. The procedure is then recursively invoked on both sides
of the best np found in the exponential search until the length of interval is less or
equal to a predetermined threshold. Its theoretical worst case complexity complies
with the following recursion.

f(n) = f(
n

2
) + f(

n

4
) + log(n)

13



Solving this recursion gives the algorithm’s worst case complexity of O((log2n)
√

5+1
2 ).

In our tuning system, it is often the case that the loop at step 8 of algorithm 1 is exited
prematurely because performance goes below the previously evaluated two values.
Therefore, algorithm 1 practically has better performance than generic O(log(n))
algorithms for our problem.

Algorithm 1 Finding Optimum np

Input: start – starting value of np in the interval
length – length of the interval
direction – left(-1) or right(1)

Output: update global variable storing the best np

procedure find np(start, length, direction)
1: if (length ≤ threshold) return;
2: Initialize p, last two, max mflops, best np
3: repeat
4: Evaluate mflops at np = start + direction ∗ p
5: if (mflops > max flops)
6: update max mflops, best np
7: exponentially increase stride p
8: until out of range or performance ≤ min(last two).
9: find np(best np, left size, left)
10: find np(best np, right size, right)
11: return;

5.4.2 Search in Phases

In addition to space pruning, search in phases can further reduce the search space by
decomposing the high dimensional space into several lower dimensional spaces. The
assumption is that the optimal values of some tuning parameters are independent of
each other, so that we can search the best values for some tuning parameters while
fixing the others. Formal proof of independence relationship between parameters of
multi-variate function is difficult. In our case, from experiment results, we speculate
np parameter is independent of mc ∗ and mrt ∗ parameters to some extent, there-
fore we decouple the nested search for np and mrt ∗, mc ∗ into a sequential search.
Algorithm 2 describes the search order of tuning parameters we use in our tuning sys-
tem. The search for np parameter is further divided into two stages. In step 4, only
power of two values are searched. In step 8, after mc ∗ and mrt ∗ are determined,
algorithm 1 is applied to pin down the best np.

After applying the above two techniques, the typical evaluation running time
reduces to around 4 hours.

14



Algorithm 2 Search Order of Tuning Parameters

1: For each compiler value
2: For each profile value
3: For each unroll value
4: Search np in power of two values
5: For each mc * value
6: For each mrt * value
7: Evaluate Performance
8: Recursively search np in both sides of

best np found in step 4.

6 Performance Evaluation

We run the automatic tuning system on four graphics cards. Their configurations
are given in table 1. The host CPU and operating system are 2.6Ghz Pentium 4 and
Windows XP.

G6800U G6800G QF3400 G5800U
Model GeForce GeForce Quadro GeForce FX
Name 6800 Ultra 6800 GT FX 3400 5800 Ultra

Pixel Processor 16 16 16 4
Core Frequency 400 MHz 350 MHz 350 MHz 500 MHz
Mem Frequency 1100 MHz 1000 MHz 900 MHz 1000 MHz

Mem Width 256 bit 256 bit 256 bit 128 bit
Bandwidth 35.2GB/s 32.0GB/s 28.8GB/s 16GB/s

Driver 6693 7568 6176 6693
GPU NV40 NV40 NV45GL NV30

DirectX 9.0c 9.0c 9.0c 9.0c
OpenGL 1.5.2 2.0.0 1.5.1 1.5.2

Table 1: Four GPU platforms

We conducted experiments only on nVidia cards. We did not test on ATI cards
mainly because no ATI cards truly support 32-bit floating point. The most advanced
ATI cards, ATI Radeon X800 XT only supports 24-bit floating point data operations
in pixel processors.

We benchmarked the performance of multiplying two matrices of size 1024×1024,
whose elements are randomly generated. Timing operations performed by a GPU is
difficult because the GPU and the CPU work asynchronously. We work around this
problem by measuring the time from the start of the multiplication until one element
of the result matrix is read from the GPU to the CPU. This potentially could involve
an overhead of moving large matrices between GPU and CPU and the serial overhead
of setting up graphics pipeline states. In order to reduce the impact of this overhead,

15



we force the GPU to perform the same matrix multiplication operation ten times
and use the average as the execution time. Our experiments show that the overhead
is typically below 10% of measured performance, and the error range of measured
performance is below 3%.

6.1 Manually Tuned Implementation

Fatahalian et al. [7] thoroughly studied the performance efficiency of matrix multi-
plication algorithms on a variety of graphics hardware and presented two hand-tuned
implementations as the most efficient implementations. They included these two im-
plementations in GPUBench [19], which is a benchmark suite designed to analyze
performance of programmable graphics processor for GPGPU. To test the effective-
ness of our automatic tuning approach, we compare the performance of our automatic
tuned version with these two expert hand-tuned implementations.

Table 2 summarizes the high level structure of these two implementations in
terms of our tuning parameters described in section 5.2. We use the same names
“NV Single” and “NV Multi” as in [7] to refer to these two implementations.

mrt * mc * np unroll profile compiler
NV Single 1× 1 2× 2 128 1 fp30 NA
NV Multi 1× 1 1× 4 6 1 arb NA

Table 2: High level structure of the two implementations

It is important to note that these two implementations are implemented in C++
and OpenGL API with fragment program written in carefully crafted assembly code.
Whereas, our automatic tuning system generates high level BrookGPU code. The
generated BrookGPU code is first translated into C++ code with fragment programs
encoded in Cg language, which in turn will be compiled into lower level assembly code
by “cgc” or “fxc” compiler according to chosen shader model. The graphics pipeline in
generated BrookGPU code is transparently managed by BrookGPU language’s run-
time library to provide a high level generic programming model. As we will see later,
the difference in implementation level has significant impact on the performance.

6.2 Experiment Results

In this subsection, we present the experiment results. We first compare the perfor-
mance of our automatically generated matrix multiplication implementations with
the manually tuned versions on four platforms. Then we study the sensitivities of the
tuning parameters to overall performance. In all figures shown in the subsection, Y
axis represents MFLOPS (million floating point operations per second).

16



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

G6800U G6800G QF3400 GF5800

M
F

LO
P

S

NV_multi
NV_single

Search

Figure 5: Performance on four platforms

6.2.1 Automatic Vs. Manual

Figure 5 shows the performances of the two hand-tuned implementations and the
automatically tuned version, which is denoted as “Search”, on the four platforms.
As we can see, “NV multi” consistently performs the worst among the three imple-
mentations. Between “NV Single” and “Search”, on G6800U and G5800U, “Search”
achieves 70%, 56% of the performance of “NV Single”. On G6800G and QF3400,
“Search” achieves 8% and 15% speedup over “NV Single” respectively.

This result might look surprising, because both of the hand-tuned implementations
are within the search range of automatic tuning. The reason for the lower performance
of “Search” is the overhead associated with using the high level BrookGPU language.
We found some inefficiencies in the BrookGPU’s runtime system and “cgc”/“fxc”
compilers. For example, instead of using “render-to-texture” technique, BrookGPU’s
OpenGL backend uses the expensive copy operation to move intermediate results from
the frame buffer to texture memory. Also in dealing with array-indexing operation,
BrookGPU seems to generate auxiliary instructions to map index values to texture
coordinates. The addition of extra instructions compared to carefully crafted assem-
bly code would hurt performance. We also suspect that “cgc” and “fxc” compilers’
register allocation strategy is not optimum for some cases. For instance, when a loop
is unrolled, occasionally the compiler fails to reuse registers across unrolled iterations
of the loop, which greatly increases the pressure on registers and limits the ability of
unrolling loop to improve performance.

In order to roughly measure the performance overhead of using high level BrookGPU
language, we compare the performance of “NV Single” with the performance of its
counterpart implementation in BrookGPU. We force the code generator to generate
implementations in BrookGPU with the same mrt ∗, mc ∗, unroll, profile values

17



 0

 20

 40

 60

 80

 100

np=2 np=4 np=8 np=16 np=32 np=64

N
or

m
al

iz
ed

 M
F

LO
P

S

NV_Single Generated_Brook

Figure 6: Performance penalty associated with runtime library and compiler opti-
mization

as “NV Single” ’s corresponding values in table 2. For compiler parameter, since
“NV Single” is implemented in assembly fragment code, there is no corresponding
compiler value for it. We use the compiler value with the best performance. We
vary the np tuning parameter from 2 to 64 in power of two values. We choose this
range because “NV Single” does not support np = 1 case and larger np in power
of two values will exceed the instruction limit. Figure 6 , which is based on data
collected on G6800U platform, shows the relative performance of the “NV Single”
and its counterpart implementation in BrookGPU. As can be observed, due to the
overhead of using high level BrookGPU language, the generated BrookGPU version
never reaches more than 60% of the performance of “NV Single”. As np increases, the
relative overhead also increases. We don’t fully understand the reason. We suspect
the reason has to do with the added array-indexing instructions, which increase the
dynamic instruction count and the use of more active registers.

If we take into account the performance overhead due to using the high level
BrookGPU language, the performance achieved in figure 5 is satisfactory. On two
platforms, the automatic tuned version can even outperform the hand-tuned version
in spite of the significant overhead. This is mainly because “NV Single” was specially
tuned for graphics hardware similar to “GeForce 6800 Ultra” graphics card. When
changing to other platforms, the performance of “NV Single” is far from optimum.
This testifies the benefit of automatic tuning system to adapt to changing underlying
architecture. Since BrookGPU system is still a prototype research project, we believe
its implementation has good potential for improvement.

18



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 20  40  60  80  100  120

np

(a) Power of two values.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 20  40  60  80  100  120

np

(b) All values

Figure 7: Sensitivity of np parameter.

6.2.2 Parameter Sensitivity

In this subsection, we present the sensitivities of the tuning parameters described in
section 5.2 to the overall performance.

Figure 7(a) shows the performance curves over power of two np values. These
curves are searched in step 4 of algorithm 2. Different curves correspond to fixing the
other parameters to different values. All curves have a single maximum. Figure 7(b)
shows the performance curves over np ranging from 1 to 128. These curves are
searched in step 8 of algorithm 2. As can be observed that there are some performance
drops off the original curves in 7(a) at some particular np values. The performance
curves recover from those drops gradually to the original curves. We don’t understand
the underlying reason for these performance drops, however, since the dropping points
are not in power of two values, in most cases algorithm 1 can still find the global
optimum as if the curve is a unimodal function.

Figure 8, which is based on data collected on G6800U platform, shows the sensi-
tivities and interaction of mrt ∗ and mc ∗ parameters. As described in section 5.4.1,
both mrt ∗ and mc ∗ range over {(1, 1), (1, 2), (1, 4), (2, 2)}. For each combination of
mrt ∗ and mc ∗, we tested five np values at {2, 4, 8, 16, 32}. On G6800U platform,
mc = 2×2 can achieve 2X to 2.5X speedup over mc = 1×1. mrt = 2×2 can further
achieve 10% speedup over mrt = 1 × 1. The optimum mrt ∗ and mc ∗ values are
platform dependent.

For the “unroll” parameter, our experiments show that unroll = 0 is almost
always better than unroll = 1. The reason is that for profiles that do not support
branch instruction, the fxc and cgc compilers automatically unrolls the loop even
if unroll is set to zero. For profiles that support branch instruction, the compilers
determine whether or not to unroll the loop based on the length of the shader even
if unroll is set to zero. Hence, generating high-level code with explicit loop-unrolling
does not benefit performance in both cases.

For the profile parameter, we find in all of the four platforms we tested that

19



 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

m
c=1x1

m
c=1x2

m
c=1x4

m
c=2x2

m
c=1x1

m
c=1x2

m
c=1x4

m
c=2x2

m
c=1x1

m
c=1x2

m
c=1x4

m
c=2x2

m
c=1x1

m
c=1x2

m
c=1x4

m
c=2x2

M
F

LO
P

S
Sensitivity of MRT, MC Parameters

MRT=2x2MRT=1x4MRT=1x2MRT=1x1

Figure 8: Sensitivity of MRT and MC parameters

profiles supporting more capabilities generally perform better than profiles supporting
fewer capabilities. For example, for “DirectX” back end, performance increases in
the order of “ps20”, “ps2b”, “ps2a”, “ps30”. For “OpenGL” back end, performance
increases in the order of “arb”, “fp30” and “fp40”.

For the compiler parameter, we find both fxc and cgc generate codes of equivalent
quality on all platforms.

7 Conclusion and Future Research

As graphics hardware advances and changes so rapidly, the ability of automatic tuning
software to graphics hardware’s architectural features will be essential for achieving
good performance across a wide variety of architectures. In this paper, we present an
automatic tuning system that can generate high-performance matrix multiplication
implementation with comparable performance to hand-tuned version on a variety of
graphics hardware. This paper identifies and employs some tuning strategies which
are unique to graphics hardware. To our knowledge, it is the first attempt in auto-
matic generation of high-performance numerical libraries for graphics hardware, and
the results are encouraging.

For future research, similar automatic tuning approaches can be applied to gen-
erate broader library routines such as FFT, sorting, and linear algebra. Also, as
BrookGPU is still a prototype research project, we believe it has good potential for
improvement, which in turn can significantly benefit building similar automatic tun-
ing systems for graphics hardware.

20



References

[1] Ádám Moravánszky. Dense matrix algebra on the gpu. 2003.
http://www.shaderx2.com/shaderx.PDF.

[2] K. Akeley. Reality engine graphics. In Computer graphics and interactive tech-
niques, pages 109–116. ACM Press, 1993.

[3] J. Bilmes, K. Asanović, C. whye Chin, and J. Demmel. Optimizing matrix multi-
ply using PHiPAC: a Portable, High-Performance, ANSI C coding methodology.
In International Conference on Supercomputing, Vienna, Austria, July 1997.

[4] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the
gpu: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917–924,
2003.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for gpus: Stream computing on graphics hardware. Proceddings of
SIGGRAPH, August 2004.

[6] N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. In ACM SIG-
GRAPH/EUROGRAPHICS Graphics hardware, pages 37–46, 2002.

[7] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the effi-
ciency of gpu algorithms for matrix-matrix multiplication. In ACM SIG-
GRAPH/EUROGRAPHICS Graphics hardware, 2004.

[8] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceed-
ings of the IEEE, 93(2):216–231, 2005. special issue on ”Program Generation,
Optimization, and Platform Adaptation”,.

[9] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast com-
putation of database operations using graphics processors. In SIGMOD, pages
215–226. ACM Press, 2004.

[10] J. D. Hall, N. A. Carr, and J. C. Hart. Cache and bandwidth aware matrix
multiplication on the gpu. Technical Report UIUCDCS-R-2003-2328, 2003.

[11] E.-J. Im, K. A. Yelick, and R. Vuduc. SPARSITY: Framework for optimiz-
ing sparse matrix-vector multiply. International Journal of High Performance
Computing Applications, 18(1):135–158, February 2004.

[12] E. S. Larsen and D. McAllister. Fast matrix multiplies using graphics hardware.
In ACM/IEEE conference on Supercomputing (CDROM), pages 55–55. ACM
Press, 2001.

21



[13] X. Li, M. J. Garzaran, and D. Padua. Optimizing sorting with genetic algorithms.
In CGO’05, pages 99–110. IEEE Computer Society, 2005.

[14] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. Infinitereality: a
real-time graphics system. In SIGGRAPH, pages 293–302. ACM Press/Addison-
Wesley Publishing Co., 1997.

[15] K. Moreland and E. Angel. The FFT on a gpu. In ACM SIG-
GRAPH/EUROGRAPHICS Graphics hardware, pages 112–119. Eurographics
Association, 2003.

[16] nVidia Corporation. NVIDIA Cg Toolkit.
http://developer.nvidia.com/object/cg toolkit.html.

[17] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray tracing on program-
mable graphics hardware. SIGGRAPH, 21(3):703–712, July 2002.

[18] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua, M. Veloso, and
R. W. Johnson. SPIRAL: A generator for platform-adapted libraries of signal
processing algorithms. International Journal of High Performance Computing
Applications, 18(1):21–45, February 2004.

[19] Stanford Univ. Graphics Lab. GPU benchmark suite.
http://graphics.stanford.edu/projects/gpubench.

[20] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[21] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. A. Padua,
K. Pingali, P. Stodghill, and P. Wu. A comparison of empirical and model-driven
optimization. In PLDI, pages 63–76, 2003.

22


