Characterization of TCC on Chip-Multiprocessors

Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Niridén D. Carlstrom
Lance Hammond, Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University
{austenmc, jwchung, hchafi, caominh, bdc, lance, kozyrakiek@stanford.edu

Abstract Transactional Coherence and Consistency (TCC) uses
continuous transactional executiemsimplify parallel pro-

Transactional Coherence and Consistency (TCC) is a gramming [14]. Unlike previous proposals using transac-
novel coherence scheme for shared memory multiprocestional memory merely for non-blocking synchronization,
sors that uses programmer-defined transactions as the fun-TCC uses programmer-defined transactions as the basic unit
damental unit of parallel work, synchronization, coherenc of parallel work, synchronization, memory coherence, and
and consistency. TCC has the potential to simplify paral- consistency. In TCC, transactions continuously execuge in
lel program development and optimization by providing a speculative manner, using the execution model illustrated
smooth transition from sequential to parallel programs. in Figure 1. Each transaction is a sequence of instruc-

In this paper, we study the implementation of TCC on tions guaranteed to execute atomically. During execution,
chip-multiprocessors (CMPs). We explore design alter- writes are buffered locally, then committed to shared mem-
natives such as the granularity of state tracking, double- ory atomically at transaction completion as well as broad-
buffering, and write-update and write-invalidate proté&o cast to other transactions in the system. Other transaction
Furthermore, we characterize the performance of TCC in snoop these broadcasts to maintain cache coherence and de-
comparison to conventional snoopy cache coherence (SCCl}ect when they have used data that has subsequently been
using parallel applications optimized for each scheme. We modified by the committing transaction—a dependence vi-
conclude that the two coherence schemes perform similarly,olation that causes transactional re-execution.
with each scheme having a slight advantage for some appli-
c(_’:\tions. The ban(_JIvv_idth requirem_gqts of TCC are slightty memory parallel programming in four ways [14]. First, it
higher bu_t well within the capab|l|t|e_s of CMP systems. provides programmers with a single, high-level abstractio
Also, we find that ov_erflow qf speculatwe state can be effec-to reason about parallelism, communication, consistency,
tively handled by a simple victim cache. Our results suggest

TCC ide it . dvant thout and failure atomicity. A single clear abstraction is key o a
can provige Its programming advantages without Com- .1, isiy/e programming model. Second, transactions allow
promising the performance expected from well-tuned paral-

L2 speculative parallelization of sequential algorithmdhwiit
lel applications. the need for the programmer to prove independence or man-
ually handle rare dependencies. Third, transactions allow
1. Introduction the user to specify the high-level atomicity and ordering re
r]quirements in parallel algorithms, but move the burden of
implementing these requirements to hardware and system
software. Locking conventions and the associated races and
deadlocks are eliminated. Finally, as hardware continlyous
monitors the progress of concurrent transactions, thene is
opportunity for low-overhead collection of profile data for
feedback-driven or dynamic optimizations [7].

Continuous transactional execution simplifies shared-

Parallel processing has reached a critical juncture. O
one hand, with ILP techniques running out of steam, chip
multiprocessors (CMPs) are becoming the norm. Ev-
ery major processor vendor has announced a CMP prod
uct [22, 23, 27]. On the other hand, writing correct and ef-
ficient multithreaded programs with conventional program-
ming models is still an incredibly complex task limited to
a few expert programmers. Unless we develop models that Early trace-driven experiments of TCC-based multipro-
make parallel programming the common case, the perfor-cessors with idealized caches have shown good parallel per-
mance potential of CMPs will be limited to multiprogram- formance potential for a variety of applications [16]. listh
ming workloads and a few server applications. paper, we provide the first thorough, execution-drivenchar

Trans. 0 Trans. 1 Trans. 2 our experimental methodology. In Section 5, we present
the evaluation results. Section 6 discusses related watk an

Transaction

Starts — Section 7 concludes the paper.
Execute ——
Transaction 2. Transactional Coherence and Consistency
o C:;F::z: Eéig‘ge Execute The conventional wisdom for supporting transactional
E|l commit |Arbitrate Code memory is to overlay it on top of the already complex coher-
commil®] ence and consistency protocols [26, 30, 29, 33]. Additional
Starts A states are necessary in the MESI protocol and extra rules are
Y commit ™™ | Gommy fAtbitrate needed for load-store ordering. In contrast, TCC directly
Completes Nl) _ implements transactional memory with optimistic concur-
Commit | Commit [MOAE rency. This mechanism is also sufficient to provide cache
: Pormission y coherence and memory consistency at transaction bound-
Commit aries yvithout additional complications. I.n this sectiorg w
describe a straight-forward implementation of the TCC ex-
C— ecution model for CMP systems. The design supports con-
Figure 1: Execution timeline of three transactions in a tinuous execution of transactions by providing a means for
TCC system. buffering and committing the transactional state produced

o) , . by each processor.
acterization of contmuoustrapsa_c:tmnal executionon 8MP ~ 11 cmP organization we study is similar to those in
and make the following contributions: previous studies [6, 15, 23]: a number of simple proces-
e Performance Comparison on CMPs. A straight- sors with private L1 caches sharing a large, on-chip L2
forward implementation of TCC performs and scales cache. The processors and L2 are connected through split-
similarly to conventional cache coherence schemes.transaction commit and refill buses. The two buses provide
TCC has a performance advantage for difficult-to-tune high bandwidth through wide data transfers and bursts. The
applications with irregular communication patterns. commit bus has de-multiplexed address and data lines and
e Bandwidth Requirements. The commit bandwidth is used to initiate L2 accesses (address only) and to commit
requirements for TCC are only slightly higher than their stores at the end of each transaction (address and data
with conventional schemes, but well within the capa- The refill bus is used to transmit refill data from the L2 to
bilities of bus-based interconnects, even for a CMP the processors (data only). Both buses are logical but not
with 16 processors. physical buses, providing serialization and broadcast. To
o Buffering Requirements. The common buffering re- ~ SUpport high bandwidth, they are implemented using a star-
quirements for transactional execution are modest and!ike topology with point-to-point connections that supjsor
can be satisfied by first-level caches. On the other Pipelined operation for both arbitration and transferg.[20
hand, associativity overflows pose a frequent bottle- 2.1 Transactional Buffering
neck, but can be virtually eliminated with a simple vic-

. Each processor buffers the addresses and data for all
tim cache.

. .] stores within a transaction (the write-set) until it conswit
o Design Alternatives. We evaluate three TCC design ahorts. The processor simultaneously tracks all addresses
alternatives: choice of snooping protocol (invalidate |oaded within a transaction (the read-set) in order to de-
or update), single vs. double buffering, and word vs. et dependency violations when other transactions commit
cache line granularity for speculative state tracking. {heir write-sets. We store both read- and write-set informa
Experiments show performance is not significantly im- tjon, in the L1 data cache because it provides high capac-
pacted by choice of protocol or buffering scheme. i with support for fast associative searches [12, 38, 24].
However, word-level granularity is clearly beneficial | 550 allows speculative and non-speculative data to dy-
for applications with fine-grain sharing patterns. namically share the storage capacity available in each pro-
Our results prove that continuous transactional execugion cessor in the most flexible way. Cached data become non-
practical to implement for CMP systems. TCC provides speculative when the transaction that fetched or produced
for easier parallel programming without compromises in the them commits.
peak performance possible for each application. The cache stores data at the granularity of lines, but
The rest of this paper is organized as follows. Section 2 we can track the transaction read-set and write-sets at the
describes an implementation for a TCC-based CMP systemgranularity of lines or individual words. Figure 2 presents
In Section 3, we provide a qualitative comparison betweenthe L1 data cache organization for the case with word-
TCC and conventional cache coherence. Section 4 presentievel speculative state tracking. Cache lines includedyali

=3 Er— | TCC allows programmers to Qefine Qrdered, _partially or-
— dered, and unordered transactions, with ordering enforced
Address Data :V‘°'a"°" @ during commit arbitration [14]. Therefore, acquiring com-
] mit permission may impose significant wait time on an ap-
plication with ordered transactions, as younger trangasti
must always wait for older transactions to commit first.
ollsofl e, L Even with unordered transactions, significant delays can oc
o cur if multiple transactions attempt to commit within a smal

(— Victm period of time because of bus contention.

Buffer
The processor identifies the transaction write-set in the

Overtow iy data cache with help from the store address FIFO (SAF).
(R [This is a non-associative, tagless, single-ported bufiar ¢
COTQEI ooy freml o | taining pointers to speculatively modified cache lines. For

commit | conmt || et Commit Commit a 32-KB cache with 32-byte lines, the SAF requires 1024

fucressln | Detain || Pae praout] s Ot entries with 10 bits per entry. So, the SAF area is small
Commit Bus compared to that of the cache. During transaction execu-
m— tion, stores check the SM bits of the corresponding line in
parallel with the tag comparison. If all SM bits are 0, this
is the first speculative store to the line in this transaction
and a pointer is inserted in the SAF. If an SM bit is set, the
line address is already registered in the SAF. During com-
mit, we read the SAF pointers one by one and flush out the
speculatively modified words in the identified cache lines.
The cache line address and a bitmask with the SM bits are
speculatively-modified (SM), and speculatively-read (SR) transmitted along with the dirty words. The transmission
bits for each word. For a 32-bit processor with 32-byte itself may take multiple cycles, depending on the bus width
cache lines, 8 bits of each type are needed per line. The SMand the number of modified words. After the write-set is
bit indicates that the corresponding word has been modifiedcommitted, we reset all SM and SR bits to indicate that the
by a store during the currently executing transaction. Simi corresponding lines/words are no longer speculative.
larly, the SR bit indicates that its word has been read by the All other processors use a second portin the cache tags to
current transaction. SR is set on loads, unless the SM bitsnoop the committed addresses and detect any dependency
is already set, to implement memory renaming and elimi- violations for the transactions they currently execute.i-A v
nate dependency violations due to WAW and WAR hazardsolation occurs when the an executing transaction has spec-
across transactiohs Line-level speculative state tracking ulatively read one of the words committed (i.e., there is a
works in a similar manner but requires a single valid, SR, match for the snoop tag access and the word has the SR bit
and SM bit per line. We discuss the tradeoffs of each ap-set in the cache). The processor must also check pending
proach in Section 2.6. accesses in the MSHRs. When a violation is detected, spec-
ulatively modified lines are invalidated, SR and SM bits are
cleared, and the transaction restarts.

To commit a transaction, a processor first arbitrates for

permission, then broadcasts its write-set to the lowerdeve 2.3 Invalidate vs. Update

of the memory hierarchy. Meanwhile, all other processors a rocessor must revise the state of any line it caches if
snoop the committed addresses and data to detect potentig| js yqgified by a committing transaction in order to main-
dependency violations and update or invalidate the coitent (i, cache coherence. One can useipdateor invalidate

of their caches to maintain coherence. System-wide arbitra protocol to handle snoop matches: update replaces the old
tion guarantees that all processors see commits in the samgt4 value with the new committed value. while an inval-

order (serializability). Hence, memory consistency ismai jqate protocol evicts any data modified by the committing
tameo_l at transaction boundaries without rules for orderin ., n<action. An update protocol is possible for this CMP
of individual loads and stores. system as the committing processor is already placing the
1To handle renaming correctly in the presence of byte or half- data on the commit bus for the L2 cache. The main disad-
word loads and stores, we set both the SR and SM bits on subwordvantage is that updates share the single data port in the L1
stores. This approach may generate a few unnecessary éepgnd ~ caches with the processors. Therefore, occasional stalls o
violations in the presence of byte-level false sharing. cur during load and store accesses from those processors.

b Victim
" Cache

Store

[Adaress
FIFO Data

Commit
Address

Figure 2: The data cache organization for transactional
coherence. Double buffering requires additional hard-
ware: a write victim buffer, duplicate SR/SM bits, an ex-
tra store address FIFO, and another register checkpoint.
Shown is the configuration for word-level speculative
state tracking.

2.2 Transactional Commit

An invalidate protocol is more complicated as we may need previous one. The hardware required for double buffering
to invalidate a word in a line with other speculatively mod- in the CMP implementation of TCC is shown in Figure 2:
ified or read words. We cannot simply invalidate the whole the cache maintains two sets of SR and SM bits to track the
line because we would lose part of the transaction read-setead- and write-sets for both transactions simultaneously
or write-set. A solution is to provide per-word valid bits, but only one copy of the data is kept. A second SAF is also
which introduces storage overhead and complicates missmeeded. The two read-sets may intersect without any com-
handling. The performance difference between the two pro-plications, but special care is necessary when both transac
tocols depends on the percentage of updated or invalidatedions write to same word. We must maintain both specula-
words that are later accessed by the processor. A large pertive versions of the word, as the younger transaction may vi-
centage gives a performance advantage to the update protmlate while the older transaction commits without problems
col. We handle this case using a separate write victim buffer.
2 4 Buffer Overflow When the younger trans:_;tction first overwr.ites_a word mgd—
ified by an older transaction, we copy the line into the write
Buffer overflows happen when the L1 can no longer cap- yictim buffer and clear the SM bits in the cache for the older
ture the write- and read-sets of the executing transactiontransaction. When the older transaction commits its write-
They occur either because the capacity or the associativityset, it also commits any lines stored in the victim buffer. In
of the cache is exhausted. Overflows cause a major perforgyr experiments, we do not limit the size of the write vic-

mance bottleneck for transactional execution regardless o tjm puffer in order to optimistically determine the value of
how they are handled. One can switch to software transac-ouble buffering.

tional buffering [18, 17] or overflow to a special regionin Though resources required for double buffering are min-
the lower levels of the memory hierarchy that has hardwarejmg| in terms of area, the additional control complexity is

support for speculative state [10, 4, 31]. In any case, the X sjgnificant as there are several corner cases (multiple ver-
tended buffers are slower than the L1 data cache for searchsjons of words, conflicts between transactions, violatiah a
ing, committing, or flushing speculative data. In this study restart ordering). If commit latency is not a major bottle-
we use a simple technique to handle overflows [16]. When neck, which is often the case in a CMP environment with
an overflow is detected, the hardware must commit the cur-pjentiful commit bandwidth, the occasional performance
rent write-set of the transaction, potentially waiting ado advantage of double buffering may not be worth the addi-
time for commit permission due to ordering constraints. NO tjonal area overhead and control complexity.
other transaction is then allowed to commit until the over-
flowing transaction has reached its regular commit point.
Essentially, this serializes the system even if all prozess So far, we have used word-level tracking of speculatively
execute unordered transactions. read and modified state. With fine-grain write-set infor-
In Section 5, we demonstrate that capacity overflows aremation, we minimize commit bandwidth by sending only
extremely rare for processors with 32-KB caches. An over- modified words. Additionally, word-level read-set track-
flow handling mechanism is still necessary for the uncom- ing eliminates most false dependency violations—those be-
mon case, but its performance is non-critical. On the othertween transactions that read and write different words in
hand, associativity overflows are more frequent as there arehe same cache line. Alternatively, we can track specula-
often “hot” cache indices in each transaction where multi- tive state at the cache line-level by keeping a single SR and
ple cache lines with speculatively-read or -modified da¢a ar SM bit per line. This saves die area, but causes spurious
mapped. We address this issue with a victim cache [21] thatviolations for two reasons: false sharing and the inabibty
stores the lines that would otherwise cause an assocyativit resolve conflicts between a modified line and a commit to
overflow (see Figure 2). Each line in the victim cache has that same line. The latter case is handled smoothly by word-
the identical format as a line in the data cache. In Sectionlevel tracking because we know which words are modified
5, we demonstrate that an 8-entry, fully-associative wicti by the running transaction and we can skip them when up-
cache eliminates virtually all associativity overflowsivet dating/invalidating, thus avoiding WAW hazards.
applications we examined.

2.5 Double Buffering A few processor core modifications are needed for trans-
So far, we assume a processor stalls while it commits actional execution. The processor must create checkpoints
a transaction before it starts the next one (see Figure 1).of architectural registers at the beginning of each transac
While simple, this approach cannot hide the latency of com- tion, which are restored in the case of a dependency viola-
mit arbitration and write-set transmission. Double buffgr ~ tion. Two checkpoints are necessary for double buffering.
can hide commit latency by allowing a processor to start ex- Furthermore, the processor requires a few new instructions
ecuting the next transaction in parallel with committirgy it to trigger the register checkpoint and transaction commit.

2.6 Speculative State Granularity

2.7 Discussion

The presented TCC-based CMP uses a straight-forwardcur. SCC, in its base form at least, is non-speculative. Only
implementation of the TCC execution model. Several al- one processor may have write access to a cache line at any
ternative implementations are possible and of interest es-point in time, so multiple writes are serialized.
pecially for larger-scale systems: extended bufferind& t ~ Synchronization: TCC inherently supports non-blocking
L2 cache, commit in place to avoid data broadcast at trans-atomic execution of operations grouped into a single trans-
action commit, directory-based schemes to reduce commitaction, regardless of the number of memory objects they
traffic, and two-phase schemes for parallel commit of inde- process. On the other hand, SCC communication re-
pendent transactions. We will explore these techniques inquires additional lock variables accessed with atomicity i
future work. Nevertheless, this implementation is suffitie structions (load-linked and store-conditional, test-aet|
to achieve good performance in a CMP environment and tocompare-and-swap, etc.) to implement mutual exclusion.
analyze the virtues of transactional execution. Furthermore, a consistency protocol is necessary to order

There are several operating system issues (virtualiza-ordinary and special loads and stores across processors.
tion, scheduling) and programming model challenges (nest- e following sections discuss how the semantic differ-
ing semantics, 1/0) to explore with respect to continuous gnces hetween TCC and SCC translate to performance ad-
transactional execution. Several researchers havedstte vantages or bottlenecks within the CMP environment. Sec-
ploring these issues [31]. This paper focuses exclusivelyiion 5 presents quantitative data that evaluate the pedctic
on hardware feasibility and performance comparison: Otherimportance of each issue.
challenges are not of interest if continuous transactieral
ecution is prohibitive to implement or offers poor perfor- 3.1 Snoopy Coherence Advantages
mance compared to conventional techniques. SCC has a performance advantage over TCC for applica-
3. Transactional vs. Snoopy Coherence tions with fine-grain, high-frequency communication. Data

can be transferred between SCC caches as soon as the com-

The TCC architecture in Section 2 provides processorsmynication is detected and, apart from interconnect ltenc
with cache-coherent access to shared memory. Howeverihere is no additional performance penalty. With TCC, on
there are distinctive differences between transacticx@i€ the other hand, fine-grain communication between trans-
coherence (TCC) and conventional snoopy cache coherencgctions can lead to significant performance loss due to vi-
(SCC) using a protocol like MESI [8]. olations (large transactions) or excessive overhead [(smal
Time Granularity & Bandwidth: TCC maintains coher- transactions). However, this is not a major handicap be-
ence at transaction boundaries. Until transactions commit cause applications with fine-grain communication patterns
caches may temporarily contain incoherent data. Coher-tend to scale poorly on all parallel systems.
ence events involve the whole write-set, even if only a frac- Transaction commit poses a performance challenge in
tion of it is actually shared across processors. On the otherrCC even for applications with coarse-grain communica-
hand, SCC maintains coherence at a fine time granularity—tjon. Without double buffering, the processor is idling fehi
on every load and store issued by any processor. Coherencgrbhitrating for and committing a transaction. The arbitra-
events such as invalidations or ownership requests handlgion time depends on transaction ordering, on the number
a single cache line at the time. However, SCC generatesof processors arbitrating concurrently, and on bus usage by
coherence events only when cache lines are actually sharedsther transactions. Double buffering can hide some of this
Address Granularity: TCC can track coherence at a fine latency, but its benefits are limited by two factors. First,
granularity with respect to addresses. Data are brought int the arbitration and commit time of the older transactions is
the cache at the granularity of cache lines but state can benot always perfectly balanced with the execution time of
tracked at the granularity of individual words. Fine-grain the second transaction. Second, the two transactions share
state tracking is necessary to reduce commit bandwidth re-a single cache and a single interface to the bus interconnect
guirements and eliminate expensive false sharing viaiatio Commits can also expose a bandwidth bottleneck for
during speculative execution. In contrast, SCC typically TCC systems. With SCC, data produced by a processor
tracks data state and ownership at the granularity of wholeare only transmitted on inter-processor communication or
cache lines, in order to limit the frequency and overhead of when they no longer fit in the cache. With the simple TCC
coherence events. implementation presented, the whole write-set of a trans-
Speculation: TCC executes transactions in parallel using action is transmitted, regardless of communication pagter
speculation. A transaction loads and stores data speculaand caching behavior. Even for a CMP environment, band-
tively, even though the actual state and validity of data may width may become an issue for configurations with large
not be determined until the transaction commits. Specula-processor counts.
tion allows TCC to support multiple concurrent writes with- Finally, TCC performance is affected by the frequency
outinter-processor communication at the time the writes oc of dependency violations and overflows. Dependency viola-

tions have a dual negative effect. First, they waste vakiabl | Feature Description |

time on a processor, especially if they occur toward the end | CPU 1-16 single-issue PowerPC cores (8)
of the transaction. Second, before a transaction viol#tes, L1 32-KB, 32-byte cache line
generates cache misses that consume cycles on the commit 4-way associative, 1 cycle latency
and refill buses, delaying other transactions that are éxecu | Victim Cache 0-32 entries fully associative (8)

ing useful work. Overflows cause additional commits and | Double Buffering | (Off) [TCC only]

may serialize the system. Bus Width 16 bytes

Bus Arbitration 3 pipelined cycles

3.2 Transactional Coherence Advantages Transfer Latency | 3 pipelined cycles

TCC supports speculative parallelization of irregular ap- L2 Cache 8MB, 8-way
plications for which data independence cannot be fully 16 cycles hit time
proven and communication patterns are difficult to under- | Main Memory 100 cycles latency
stand [32]. As long as the programmer can correctly iden- up to 8 outstanding transfers

tify transactions and their commit Ord(_ar’ the CMP har_dware Table 1: Parameters for the simulated CMP architecture.
executes the code correctly and achieves speedup if paral- - .
. . . Unless indicated otherwise, results assume the default
lelism is available [14]. : :
. . . values in parentheses. Bus width and latency parame-
Every TCC transaction is inherently a non-blocking, .) o
. . . ters apply to both commit and refill buses. L2 hit time
atomic task on multiple memory objects. Hence, TCC can . . .
. . . - includes arbitration and bus transfer time.
facilitate parallel access to shared data without incgrrin _ _ _ _
the runtime overhead of fine-grain locking. Furthermore, contention for the single data port in the L1 caches, which
lock-based synchronization easily leads to races or deadis used for processor accesses and commits (TCC with up-
locks as programmers associate the wrong lock (or no lock)date protocol) or cache-to-cache transfers (SCC). Table 1
to a shared object or acquire locks in an unsafe order. presents the main parameters for the simulated CMP archi-
TCC can eliminate the SCC performance penalty for tecture. The default configuration for TCC uses an invali-
false sharing. By tracking the transaction read- and write- date protocol, an 8-entry victim cache, and single buftrin
sets at word granularity, a TCC-based CMP can identify = With SCC, the CMP uses the commit bus to initiate
when two transactions update different words in the samel.2 refills and issue invalidate or upgrade requests. The
cache line and avoid unnecessary dependency violationstefill bus is used for replies from the L2 cache and for
On the other hand, SCC incurs inter-processor communica-cache-to-cache transfers. The victim cache is used for re-
tion for ownership upgrades and downgrades on false sharcently evicted data from the L1 cache. We always use an
ing. Word-granularity state tracking also allows TCC to im- invalidation-based MESI protocol for SCC because it gen-
plement memory renaming and eliminate violations on out- €rates less inter-processor traffic and is more widely used
put and on anti-dependencies between transactions. Wittthan update-based protocols in bus-based multiprocessor
SCC, output and anti-dependencies between threads mustystems [39]. o
be explicitly handled with synchronization. We compare the two cohe.rence schemes using nine par-
Despite the potentially high bandwidth requirements for allel applicationsequake, swi m andt oncat v from the
commits, TCC can utilize interconnect bandwidth better SPEC CPUFP suite [36har nes, mp3d, ocean, r adi x,
than SCC. Transaction write-sets range from tens to thou-andwat er - nsquar ed (called simplywat er) from the
sands of words, hence large burst transfers on wide buseSPLASH and SPLASH-2 parallel benchmark suites [34,
can efficiently move the data to the L2 cache and other pro-40]; andSPEQ bb2000 [37]. SPEQ bb was only used
cessors, amortizing the latency of bus arbitration. In con- for the CPU scaling experiments and ran on top of the Jikes

trast, all SCC transfers involve a single cache line, making RVM [3]. We chose these applications because they are rep-
it difficult to amortize arbitration latency or use busesevid ~ resentative of important workloads and their code has been

than a cache line. heavily optimized for conventional SCC multiprocessors by
4. Methodol the research community over a period of years. It includes
. Methoadology optimizations to reduce synchronization, false sharing, a

We evaluate the performance of CMPs with the proposedthe impact of communication latency. Even though transac-
TCC implementation or the MESI snoopy cache coherencetional execution with TCC allows us to speculatively paral-
(SCC) using an execution-driven simulator modeling Pow- lelize applications in a manner that is beyond the capabil-
erPC processors. All instructions, except loads and storesities of conventional parallelization techniques, we veaint
have a CPI of 1.0. The memory system models the tim- to ensure we did not penalize the performance of SCC by
ing of the L1 caches, the shared L2 cache, and the commitusing such applications. This study focuses on sustained
and refill buses. All contention and queuing for accesses toperformance and not on ease of programming or tuning.
caches and buses is modeled. In particular, we model the We ported the applications to TCC using the following

Trans. | Trans. | Trans. | Ops. per
Application Size | Wr. Set | Rd. Set Word
90th % | 90th % | 90th % | Written
(Inst) (KB) (KB) 90th %

barneq40] 2,722 0.34 .80 62.1
(2048 part.)

equaked3e] 10,233 .35 2.1 129.7
(ref.)

mp3d[34] 748 .34 .40 7.8
(3,000 mol.)

ocean40] 1,293 1.0 2.5 39.4
(258x258)

radix[40] 4,373 1.4 2.6 175
(262,144 keys)

swim [36] 3,876 2.9 6.1 8.1
(ref.)

tomcatv[36] 751 0.66 91 8.3
(ref.)

water[40] 927 0.42 0.46 8.9
(512 mol.)

SPECjbh37] 50,556 2.44 1.38 143.6
(368 trans.)

Table 2: Applications used for performance evaluation.
The 90th percentile transaction size, measured in in-
structions, the 90th percentile transaction write- and
read-set sizes in KBytes, and the 90th percentile of op-
erations per word written.

process. For SPEC and SPLASH, we converted the cod
between barrier calls into unordered transactions, discar
ing any lock or unlock statements. FSPECj bb2000,

we converted the 5 application-level transactions into un-
ordered transactions. Next, we used profiling information

to identify and tune performance bottlenecks as described

in [14]. The tuning process typically lasted a few hours per

benchmark and produced code optimized for transactional

execution with TCC.

5. Performance Evaluation

This section presents the quantitative evaluation of con-
tinuous transactional execution with TCC in a CMP sys-
tem. First, we analyze applications to identify the randes o
runtime behavior TCC hardware must efficiently support.
Next, we explore TCC implementation alternatives. Finally

-~ 1 =

S E [] tomcatv

o E noo N

O 1 .

z 014 N N equake

9]]

§ : B bamnes

3 0.01—2

o]

q,_‘) 4

= 0.001—2

g]

5]

=0.0001 —
4- 8 16 VC VC VC VC VC VC VC
(ovc) 8 16 32 4 8 16 3
-way assoc. 2-way assoc. 4-way assoc.

Figure 3: Associative overflows for tomcatv, equake,
and barnes, varying cache configuration. Only associa-
tivity is varied on the first three plots (4-, 8-, and 16-way).
The remaining plots vary both associativity and victim
cache (VC) entries. The vertical axis is logarithmic and
normalized to 2-way associative, no victim cache.

tions given a preallocated stack per CPU). Table 2 also
shows statistics for read- and write-set sizes in the nine ap
plications. 90% read-set size for all transactions is lleas t

7 KB, while the 90% write-set never exceeds 3 KB. These
maximum sizes imply a 32-KB L1 cache can capture the

e[ead- and write-sets for these applications withauoy ca-

pacity overflow. While a software-based overflow mech-

anism is necessary to handle rare capacity overflows, the
common case for continuous transactional execution with
these applications is easy to handle with fast hardware tech

nigues. We discuss associativity overflows in the following
section.

Furthermore, Table 2 presents the ratio of operations per
word in the write-set. The ratio ranges from 8 to 143, de-
pending on the transaction size and the store locality exhib
ited for each application. This ratio is important because
it indicates the bandwidth requirements necessary to com-
mit data and the commit overhead. Applications with a high
ratio such agquake can commit quickly even when band-
width is scarce. Applications with a low ratio likgp3d put
pressure on commit bandwidth and experience performance

we compare the performance of TCC to SCC as we scale th,.;loss due to bus contention. Nevertheless, the bus utdizati

processor count.
5.1 Transactional Application Analysis

Table 2 shows the characteristics of our applications un-

der TCC. These characteristics depend on the transactiona

programming model and the optimization level (see [14] for

depends both on commit (writes) and L1 miss (reads) traf-
fic. If the latter is low, a greater need for commit bandwidth

can be tolerated.
.2 TCC Design Space Analysis

There are four major design choices to explore in the

a detailed discussion), but not on the hardware parametersCMP implementation of TCC: associativity overflow han-
Transaction sizes range from a half- to fifty-thousand in- dling, the use of an update or invalidate protocol for com-
structions, which provides adequate work to hide the over-mit, the use of single or double buffering, and word- vs.
head of starting a new transaction (approximately 8 instruc line-level speculative state tracking.

B Useful [I] Idle/Synch. [] Violations B Uuseful [Idle/Synch. [] Violations

L1 Miss [<] Commit/Comm. /7] LiMiss [<] Commit/Comm.

S 25 £30 N

)] o5 o] o

.520’ oY .EZS, j'\

= 1 [

c £ c] <

£15 88 i '%205% 2o T LB R

3 AN > 815 o =¥ nE 18 35 ©C oo

L = ? %] ~ =~

i@ 10 o 7 5 10

g 0 . 2

s Sl . T 5

£ Il W £

S o 20
Ul Ul Ul Ul Ul Ul Ul Ul 28 2% 2% 2% 2% 2% 2% &%
barnes equake mp3d ocean radix swim tomcatv water -z ‘=z “z “z ‘=z ‘=z “z “=

barnes equake mp3d ocean radix swim tomcatv water

Figure 4: Normalized execution time for TCC with an

invalidate (1) and an update (U) protocol for 8 processors. Figure 5: Normalized execution time for TCC with line-
Execution time is normalized to sequential execution. and word-level state tracking. Speedups are printed
Speedups are printed above each bar. above each bar.

Unlike capacity overflows, associativity overflows can formance benefits in applications where updated words are
be common even with small read- and write-sets (e.g., Subsequently accessed. An invalidate protocol would force
t ontat v). Figure 3 shows the number of associative over- thesere-touchedwords to be re-loaded from the memory
flows int ontat v, equake, andbar nes when varying hierarchy. However, only two of our applications exhib-
the L1 cache associativity and the victim cache size. Theited such behaviorequake andnp3d. Fornp3d, update
count is normalized to runs with a 2-way set-associative @chieved a performance gain of only 2.5% over invalidate.
cache and no victim cache. Several applications did not ex-Forequake the difference s negligible as its high miss rate
perienced associativity overflows at all, but with a 4-way (4.28%) masks all other performance bottlenecks. The per-
cache, the performance of the three applications in Figureformance results use the invalidate protocol as we compare
3 was significantly impacted by costly overflows. A 16- againstan invalidate-based SCC.
way cache virtually eliminates overflows, but such a design ~ Figure 5 shows normalized execution time with word-
would have a negative impact on clock frequency. The in- and line-level speculative state tracking. For most applic
troduction of a fully-associative victim cache can allégia tions, performance was nearly identical. However, for ap-
the problem without increasing the cache associativity. A plications with significant false sharing or cache-to-@ch
4-way cache with an 8-entry victim cache eliminates the transfers, likenp3d, there are additional spurious viola-
vast majority of associativity overflows, with only 1% of tions that negatively impact performance. Since it fealitis
bar nes’s overflows remaining. A 2-way cache is not suffi- & more robust programming environment, the remaining re-
cient even with a 32-entry victim as there are a large numbersults use word-level granularity.
of sets within transactions that require 3-way to 4-way as- Double buffering can hide commit latency at the expense
sociativity and exceed the capacity of the victim cache. The of additional complexity. We do not present extensive re-
remaining performance results assume a 4-way associativesults due to space limitations, but double buffering is some
cache with an 8-entry victim cache. what useful for applications exhibiting significant commit

Figure 4 compares the performance of an update and in-overhead, such asp3d (6% improvement) andvat er
validate protocol for TCC commitin an 8 CPU system. De- (5% improvement) that have a low operations per word
picted is execution time normalized to the sequential ver- written ratio. The remaining applications averaged a 1.9%
sions of the applications (lower is better). Execution time improvement because they either have high operations per
has five componentdJsefultime spent executing instruc- word written ratios or do not otherwise stress the available
tions and the TCC API codé&]l Misstime spent stallingon bandwidth in the CMP system. The remaining results use
loads and storeCommittime spent waiting for the com- single buffering.
mit token and com_m|tt|ng the wrlte_ set to shared mem- - o 1ocvs SCC
ory, ldle time spent idle due to load imbalance, and finally
time spend due t&iolations The choice of protocol has Figure 6 compares traditional snoopy cache coherence
little impact on performance. Update provides minor per- (SCC) with transactional coherence and consistency (TCC)

©

B Useful L1 Miss [Idle/Synch. [<] Commit/Comm. [] Violations
N
N [o0]
—

o

[11.93

o
181

o

o

P N W A O o
o

Normalized Execution Time (%)
o

S

£ 25

= R 43 ©

= 5 2

§°°7 57 o] 2 2

5 15 I’ 2] © © 2

3]] L).4 e

g<)10 ﬂ F 14 i

- A | |

8 5 | o | i

= | N0 Nlss N AR N

g o0

5 @ XNQY RNQG RNQY NNOY DDOG FNQY VROQY DHOG FDOQ

© 8883 8883 8883 88383 8889 8838 88ge 8308 8808
FOPe P20 FP%20 TR0 FP%R0 FP%Fe FPEe P20 "%

barnes equake mp3d ocean radix swim tomcatv water SPECjbb

Figure 6: Normalized execution time for SCC and TCC as we scal e the number of processors from 2 to 16. Parallel
execution times are normalized to that of a single processor running the original sequential code. The top graph
contains runs for 2 and 4 processors and the bottom graph cont ains the 8 and 16 processor runs; values on the
vertical axis change appropriately. Speedups are printed a bove each bar.

as we scale the number of processors from 2 to 16. It showsapplication exhibits interesting characteristics:

execution time normalized to sequential applications€ow pames It scales well on both TCC and SCC as it only
is better). Each TCC bar is broken into five components ashas a small amount of communication between proces-
described in Section 5.2. The SCC bars are slightly differ- sors bar nes has a high operations per word written ratio,
ent: Synchronizatiof time spent in barriers and locks, and - which helps TCC amortize the time spent communicating.

SCC bars do not have violations, Note that the applcationsCCUke The SCC version oéquake has significant syn-
are optimized individually foreac;h model chronization overhead caused by fine-grained locking to
' regulate access to a sparse matrix [28]. The TCC version
In general, SCC and TCC perform and scale similarly does not require fine-grain lock insertion, but suffers from
on most applications up to 16 processors. This demon-0occasional violationsequake is a good example of how
strates that continuous transactional execution doesnot i the simple TCC programming model provides performance
cur a significant performance penalty compared to conven-in the face of infrequent sharing.
tional techniques. Hence, it is worthwhile exploring the ad mp3d: np3d has a significant amount of communication
vantages it provides for parallel software development. Fo and false sharing. We use it as an example of an irregular
some applications, as the number of processors increaseparallel program that is difficult to tunerp3d scales well
time spent in locks and barriers make SCC perform poorly. up to 4 processors on both architectures, but false sharing
TCC also loses performance on some applications, but theeffects (cache-to-cache transfers) begin to grow at 8 groce
reasons vary. The differences are generally small, but eactsors on SCC. With SCC on 16 processors, cache-to-cache

la9emr o o o = width utilization never exceeds 55%. Even a bus-based in-

094 i H i1 1 B Arbitrating terconnect has sufficient bandwidth for this straight-ferdv
0841111 implementation of transactional execution.vat er and
S04l — 1 —=1—1r Sending bar nes, misses and L1 writebacks are rare, so committing

all written data makes TCC'’s bandwidth usage much higher
than SCC’s. SCC consumes more bandwidtmi3d be-
cause of its cache-to-cache transfeegjuake has viola-
tions that cause additional memory traffic in TCC.

We also analyzed the performance of SCC and TCC as
we varied the available bandwidth on the bus (8, 16, or 32
bytes per cycle) and the bus pipelined latency for arbitra-
tion and transfer (1, 2, or 6 clock cycles). Neither affected

00 0O 0O 0O VO 00 0Q 0Q _ Neitl
P8 8 L3 €3 8 L8 €8 L3 the comparison between TCC and SCC significantly. Both
barnes equake mp3d ocean radix swim tomcatv water schemes scaled similarly in all cases.

5.4 Discussion
Figure 7: Bus utilization breakdown for TCC and SCC

with 8 processors. The bus is 16-bytes wide. In Section 5.3, we compare TCC to the conventional

SCC scheme with the MESI protocol [8]. Recently, re-
transfers and idle time spent in barriers begin to dominatesearchers have proposed two extensions to SCC that target
execution time. In contrast, TCC avoids false sharing by some of its performance bottlenecks.
using word-level valid bits and so continues to scale evenat cgherence decoupling (CD) [19] allows a processor to
16 processors. use invalid data in the cache while coherence messages are
ocean TCC and SCC perform similarly, but at 16 proces- exchanged over the interconnect. This reduces the per-
sors time spent in barriers begins to somewhat hinder scalformance impact of false sharing and silent stores. The
ability on an SCC architecture. CD evaluation shows a 1% to 12% performance improve-
radix: On SCCy adi x scales well because of its low miss ment for SPLASH applications on a 16 processor SMP.
rate and lack of barrier synchronization. The TCC version Speculative Synchronization (SS) [30, 26] allows a pro-
suffers from load imbalance. cessor to speculatively proceed past locks and barriers and
swim: Its execution time is dominated by the high L1 cache achieve the benefits of optimistic non-blocking synchro-
miss rate (above 9.15%¥%w mscales similarly with both nization. It provides a 5% to 25% performance improve-
architectures and with 16 processorsis limited by dataeach ment for SPLASH applications on a 16 processor SMP [30].
misses that saturate the bus to the L2 cache. For the CMP environment in this study, false sharing,
tomcatv. SCC performs better for up to 8 processors due silent stores, and synchronization pose smaller perfocean
to contention for the commit bug:ontat v’s transaction challenges than with a SMP system, as the on-chip inter-
sizes are small and lead to frequent commits. With 16 pro-connect in a CMP has higher bandwidth and lower latency.
cessors, SCC’s performance begins to lag due to synchroHence, the benefits from CD and SS in a CMP will be sig-
nization time spent in barriers; TCC’s speculative mecha- nificantly lower and are unlikely to change the compari-
nisms avoid some of this delay. son between TCC and SCC. In addition, both CD and SS
water: wat er has a tiny miss rate of 0.72%, which ensures require significant additional complexign top of snoopy
that both SCC and TCC scale well to 16 processors. Timecache control (speculative buffers and predictors). In-con
stalling for commit poses a small problem for TCC, becausetrast, TCC does away with all SCC hardware and imple-
the average transaction size is small at 927 instructiods an ments the hardware presented in Section 2 to handle coher-
the write state is relatively large at 430 bytes. ence, optimistic synchronization, and false sharing with a
SPECjbb: Both TCC and SCC scale well, achieving super- single mechanism.
linear speedup due to cache effects. TCC'’s optimistic con- In this paper, SCC uses sequential consistency and all
currency avoids the significant time SCC spends in locks, loads and stores from each processor in the TCC system are
so TCC achieves better speedups. strictly ordered. The use of a relaxed consistency model

Figure 7 presents the bus utilization for TCC and SCC would undoubtedly improve the performance of SCC [1].
with 8 processors. Bars are split into three regions: one rep Nevertheless, TCC would also improve as we can freely re-
resenting the time for transmission of load, store and com-order loads and stores within each transaction. In fact, TCC
mit data; one bar for arbitration time; and a final bar for idle with an out-of-order processor can be thought of as imple-
time. Though TCC uses additional bandwidth to commit all menting release consistency, with transaction begin add en
data written, whether they are truly shared or not, the band-being acquire and release, respectively.

6. Related Work 8. Acknowledgments

There is a vast amount of prior research in the area This research was sponsored by the Defense Advanced

of shared memory multiprocessor cache coherence. Thé?esearch PrOJec_ts Age_ncy (DAR_PA) through the Depart-
research that is most relevant to this paper is concernednent of the Interior National Business Center under grant

with transactional coherence and the performance ofsnoop){]gm%e_r l:IrI?CdHlO4009£ Thtth'eWSf '?hnd C?QCIUS'OZS Eonl-d
cache coherence protocols. ained in this document are those of the authors and shou

.] not be interpreted as representing the official policidhgeei
TCC uses transactions, a core concept in Database Mangxpressed or implied, of the Defense Advanced Research
agement Systems (DBMS) [13] as a general programmingprojects Agency (DARPA) or the U.S. Government.

construct. TCC relies on the idea of optimistic concur- additional support was also available through NSF grant
rency [25]: controlling access to shared data without locks 0444470.

by detecting conflicts and re-executing to ensure correct-

ness. TCC extends these database ideas to memory [16],
building on early transactional memory work done by Her- Ref
lihy [18] as well as more recent work in Thread-Level Spec- elerences

ulation (TLS) [35], and Stampede [38, 15, 24]. [1] S.V. Adve, V. S. Pai, and P. Ranganathan. Recent advances

Most of th h h imol ted in shared in memory consistency models for hardware shared memory
ost ot Ihe coherence schemes Implemented in share systems. Proc. of the IEEE, Special Issue on Distributed

memory multiprocessors are based on snoopy cache co- ghared Memory87(3):445-455, 1999.

herence [11]. Archibald and Baer [5] provide a survey of [2] A Agarwal, J. L. Hennessy, R. Simoni, and M. A. Horowitz.
snoopy protocols. Eggers [9] did an early study of data An evaluation of directory schemes for cache coherence. In
sharing in multiprocessors and Agarwal et al. [2] com- Proceedings of the 15th International Symposium on Com-
pare the performance of snoopy coherence schemes with puter Architecturepages 280-289, 1988.

directory based schemes. More recently, researchers havel3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
looked at combining speculation with conventional snoopy P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
cache coherence. For example, Martinez and Torrellas [26], M- Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
Rajwar and Goodman [30, 29], and Rundberg and Sten- ~ 96™ T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
strom [33] have independently proposed how to speculate Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and

. J. Whaley. The Jalapefio virtual machit@M Systems Jour-
through locks and barriers and Huh et al. have used specu- nal, 39(1):211-238, 2000.

lation to reduce the effect of false sharing [19]. [4] S. Ananian, K. Asanovic, et al. Unbounded transactional
memory. InProceedings of the 11th International Sym-
posium on High Performance Computer Architectureb.
7. Conclusions 2005.
[5] J. Archibald and J. L. Baer. Cache coherence protocols:
We investigated the implementation and performance of Evaluation using a multiprocessor simulation mod&€CM
continuous transactions in TCC as compared to snoopy Transactions on Computer Systenpmges 273-298, Nov.
cache coherence for chip-multiprocessors. Using nine opti 1986.

mized parallel programs, we found that TCC’s performance (6] LH_Ba”OSO’bK' ((thara(_:holrloor,]_et al.l Piranha: A sr;ilab(;e a

is comparable to that of conventional coherence and scales ~ Chitecture based on single-chip multiprocessing2doceed-

well to 16 processors. We also showed that that despite ings of the 27th Annual International Symposium on Com-
. .) . . puter ArchitectureVancouver, Canada, June 2000.

earlier evidence on the substantial bandwidth demands for 7] H. Chafi, C. C. Minh, A. McDonald, B. D. Carlstrom,

TCC, bandwidth utilization on bus-based CMPs was not a J. Chung, L. Hammond, C. Kozyrakis, and K. Olukotun.

hindrance to TCC scalability. We also studied implemen- TAPE: A transactional application profiling environment. |
tation alternatives for TCC and showed that the choice of Proceedings of the 19th ACM International Conference on
shooping protocol has little impact on performance, a sim- SupercomputingJune 2005.

ple victim cache can avoid most associative overflows, sin- [8] D. Culler, J. P. Singh, and A. Gupt#arallel Computer Ar-
gle buffering provides acceptable performance for most ap- chitecture Morgan Kauffman, 1999.

plications, and speculative state should be tracked at word [9] S- Eggers. Simulation Analysis of Data Sharing in Shared
level. Memory MultiprocessorsPhD thesis, University of Califor-

nia, Berkeley, 1989.

Overall, TCC provides excellent parallel performance [10] M. Garzaran, M. Prvulovic, et al. Tradeoffs in buffegin
for optimized applications in addition to the simpler péhl multi-version memory state for speculative thread-lewat p
programming model. allelization in multiprocessors. IRroceedings of the 9th In-

ternational Symposium on High Performance Computer Ar-
chitecture Feb. 2003.

[11] J. R. Goodman. Using cache memory to reduce processor

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

memory traffic. InProceedings International Symposium on
Computer Architecturepages 124-131, 1983.

S. Gopal, T. Vijaykumar, J. E. Smith, and G. S. Sohi. Spec
ulative versioning cache. IRroceedings of the Fourth Inter-
national Symposium on High-Performance Computer Archi-
tecture Feb. 1998.

J. Gray and A. ReuterTransaction Processing: Concepts
and TechniguesMorgan Kaufmann, 1993.

L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Programming with
transactional coherence and consistencyPrioceedings of
the 11th International Conference on Architecture Support
for Programming Languages and Operating Syste@st.
2004.

L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMPEEE MICRO Mag-
azine March—April 2000.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,

and K. Olukotun. Transactional memory coherence and con-

sistency. IrProceedings of the 31st International Symposium
on Computer Architecturgpages 102-113, June 2004.

T. Harris and K. Fraser. Language support for lightvatig
transactions. InProceedings of the 18th Conference on

[27]

(28]

[29]

[30]

[31]

[32]

Object-Oriented Programming, Systems, Languages, and[33]

Applications Oct. 2003.

M. Herlihy and J. E. B. Moss. Transactional memory: Arch
tectural support for lock-free data structuresPhoceedings

of the 20th International Symposium on Computer Architec-
ture, pages 289-300, 1993.

[34]

J. Huh, J. Chang., D. Burger., and G. Sohi. Coherence de-[35]

coupling: Making use of incoherence. Rioceedings of the
11th International Conference on Architectural Support fo
Programming Languages and Operating Systedtd. 2004.
JBus architecture overview. Technical report, Sunrivkys-
tems, Apr. 2003.

N. Jouppi. Improving direct-mapped cache performange
the addition of a small fully-associative cache and préfetc
buffers. InProceedings of the International Symposium on
Computer ArchitectureMay 1990.

R. Kalla et al. Simultaneous multi-threading implertaion

in POWERS. InConference Record of Hot Chips,16tan-
ford, CA, Aug. 2003.

P. Kongetira. A 32-way multithreaded Sparc procesgor.
Conference Record of Hot Chips,16tanford, CA, Aug.
2004.

V. Krishnan and J. Torrellas. A chip multiprocessorhasc
tecture with speculative multithreadingEEE Transactions

[36]

[37]

[38]

[39]

on Computers, Special Issue on Multithreaded Architecture [40]

Sept. 1999.

H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Sys-
tems 6(2), June 1981.

J. Martinez and J. Torrellas. Speculative synchrdiona
Applying thread-level speculation to parallel applicagoIn
Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating

SystemsOct. 2002.

C. McNairy. Montecito: The next product in the Itanium
Processor Family. I'€onference Record of Hot Chips,16
Stanford, CA, Aug. 2004.

D. O’'Hallaron. Spark98: Sparse matrix kernels for sloar
memory and message passing systems. Technical Report
CMU-CS-97-178, School of Computer Science, Carnegie
Mellon University, Oct. 1997.

R. Rajwar and J. Goodman. Speculative Lock Elision: en-
abling highly concurrent multithreaded execution. N-
CRO 34: Proceedings of the 34th ACM/IEEE International
Symposium on Microarchitectyrepages 294-305. |IEEE
Computer Society, 2001.

R. Rajwar and J. Goodman. Transactional lock-free exe-
cution of lock-based programs. Rroceedings of the 10th
International Conference on Architectural Support for Pro
gramming Languages and Operating Syste@rs. 2002.

R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transtanal
memory. InProceedings of the 32nd International Sympo-
sium on Computer Architecturdune 2005.

L. Rauchwerger and D. Padua. LRPD test: Speculative run
time parallelization of loops with privatization and reeluc
tion parallelization. InProceedings of the Conference on
Programming Language Design and Implementatidune
1995.

P. Rundberg and P. Stenstrom. Reordered specula®aiex
tion of critical sections. IfProceedings of the 2002 Interna-
tional Conference on Parallel Processirfgeb. 2002.

J. P. Singh, W. Weber, and A. Gupta. Splash: Stanfordlpar
lel applications for shared-memorgomputer Architecture
News 20(1).

G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar pro-
cessors. IrProceedings of the 22nd Annual International
Symposium on Computer Architectupages 414-425, June
1995.

Standard Performance Evaluation Corporation, SPEO CP
Benchmarks. http://www.specbench.org/, 1995-2000.
Standard Performance Evaluation Corporation,
SPECjbb2000 Benchmark. http://www.spec.org/jbb2000/,
2000.

J. Steffan and T. Mowry. The potential for using thrdedel
data speculation to facilitate automatic parallelizatioim
Proceedings of the Fourth International Symposium on High-
Performance Computer Architectyréas Vegas, Nevada,
1998.

P. Sweazy and A. J. Smith. A class of compatible cache con
sistency protocols and their support by the IEEE futurebus.
In Proceedings of the 13th Symposium on Computer Archi-
tecture pages 1056-1072, 1986.

S.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash2 programs: Characterization and methodologi-
cal considerations. IRroceedings of the 22nd International
Symposium on Computer Architectugages 24-36, June
1995.

