Journal of Instruction-Level Parallelism 9 (2007) 1-26 Submitted 6/07; published 9/07

Deep Jam: Conversion of Coarse-Grain Parallelism to Fine-@Gin and
Vector Parallelism

Patrick Carribault * PATRICK@ICES.UTEXAS.EDU
Department of Computer Science, University of Texas, Austi

Stéphane Zuckerman STEPHANEZUCKERMAN@PRISM.UVSQ.FR
LRC Itaca, University of Versailles and CEA DAM.

Albert Cohen ALBERT.COHEN@INRIA.FR

ALCHEMY Group, INRIA Saclay and LRI, Paris Sud 11 University

William Jalby WILLIAM .JALBY @PRISM.UVSQ.FR
LRC Itaca, University of Versailles and CEA DAM.

Abstract

A number of computational applications lack instructiendl parallelism. This loss is particu-
larly acute on sequences of dependent instructions on isgles or deeply pipelined architectures.
We consider four real applications from computational @iy, cryptanalysis, and data compres-
sion. These applications are characterized by long seggavfcdependent instructions, irregular
control-flow and intricate scalar and memory dependenceipeat While these benchmarks ex-
hibit good memory locality and branch-predictability, tetaf-the-art compiler optimizations fail
to exploit much instruction-level parallelism.

This paper shows that major performance gains are possib&ich applications, through a
loop transformation calledeep jam This transformation reshapes the control-flow of a progiam
facilitate the extraction of independent computationstigh classical back-end techniques. Deep
jam combines accurate dependence analysis and contrallapen, with a generalized form of
recursive, multi-variant unroll-and-jam; it brings topet independent instructions across irregular
control structures, removing memory-based dependencasgh scalar and array renaming. This
optimization contributes to the extraction of fine-grairrgdkelism in irregular applications. We
propose a feedback-directed deep jam algorithm, seleetifgnming strategy, function of the
architecture and application characteristics.

1. Introduction and Related Work

Optimizing compilers perform a wealth of program transfations to maximize the computation
throughput of modern processor architectures. These @atiians improve the behavior of ar-
chitecture components, such as the memory bus (reductitimeahemory bandwidth), the cache
hierarchy (locality optimization), the processor fromde(removal of stalls and flushes in the in-
struction flow), the processor back-end (instruction salied), and the mapping of instructions to
functional units and register banks. Yet superscalar datrder execution, software pipelining and
automatic vectorization fail to exploit enough fine-graarallelism when short producer-consumer
dependences hamper aggressive instruction schedulir®].[Many hardware and software solu-
tions have been proposed.

x. While at LRC Itaca, University of Versailles and CEA DAM.

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

Hardware Approaches

e Simultaneous multithreading [3] is specifically aimed at filing of idle functional units
with independent computations. Yet the program must bei@ttplthreaded, or one may
resort to automatic parallelization.

e Large and structured instruction windows also enable esapsin parallelism to be exploited
in aggressive superscalar designs [4, 5].

e Load/store speculation and value prediction can also isgouit-of-order superscalar execu-
tion of dependent instruction sequences [1, 2].

e Instruction sequence collapsing bridges value predicéind instruction selection. Typical
examples are fused multiply-add (FMA) or domain-specifstrimctions like the sum of ab-
solute differences (SAD in Intel MMX), or custom operatogs T].

Software Approaches

Closer to our work, many approaches do not require any hamlhsapport but rely on aggres-
sive program transformations tmnvert coarse-grain parallelism from outer control sttuies into
fine-grain parallelism Theseenablingtransformations enhance the effectiveness of a back-end
scheduler (for ILP) or vectorizer. Classical loop transfations [8] may improve the effectiveness
of back-end scheduling phases: loop fusion and unrolljamdeombined with scalar promotion
[9, 10] is popular in modern compilers. Several authors redeel software-pipelining to nested
loops, e.g., through hierarchical scheduling steps [1llodthodulo-scheduling of outer loops [13].
But these techniques apply mostly to regular, static-obtdop nests.

Extension to loops with conditionals may incur severe ogads, and none of these approaches
handle nestedhi | e loops. Two approaches deal with ILP beyond branches: sgi@gischeduling
techniques coalesce consecutive basic blocks, wbftevare thread integratiomerges instructions
coming from independent procedures to increase ILP.

Speculative Scheduling. Trace scheduling [14] can increase the amount of fine-graialiglism

in intricate acyclic control-flow, but its ability to conazoarser-grain parallelism is limited. It aims
at using the trace of the program to group consecutive bémsik® and consider these blocks as one.
A function is divided intro traces representing the fredlyeaxecuted paths. Side entrances and side
exits are allowed in these traces. Instructions are sckddulthin a trace ignoring branches. But
this has a major drawback: the implementation complexityiired by the need to maintain correct
program execution after moving instructions across basickds (bookkeeping).

Superblock scheduling [15, 16] is also a technique for akplpILP across basic-block bound-
aries. A superblock is a trace which has no side entranceés:esitrances are removed thanks to tail
duplication [17, 18]. Formation of superblocks can be deddhanks to dynamic feedback from
profiling and static analysis [16].

Software Thread Integration. Independentlysoftware thread integratiofSTI) [19, 20] is de-
signed to map multithreaded applications on small embeddeides without preemptive multitask-
ing operating systems. STI proceeds with the static irdeney of independent threads into a single
sequential program, considering arbitrary control flovglirding procedure calls. This technique
has recently been proposed to exploit coarse-grain phsatlen wide-issue architectures [21]: it

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

statically interleaves several procedures calls (frorfedét procedures or not). Finally, STI has
been extended to iterative compilation [22].

Yet STI does not allow any dependences between the threadgdiatically interleaved, it only
provides rough support for nested conditionals (decisiers) andwi | e loops, and requires the
manual choice of the procedures to integrate.

Contributions. This paper presents a new program optimization, cafledp jam to convert
coarse-grain parallelism into finer-grain instruction @ctor parallelisnt. Deep jam is a recur-
sive, generalized form of unroll-and-jam; it brings togatindependent instructions across irregular
control structures, breaking memory-based dependencesgi scalar and array renaming. This
transformation can enhance the ability of a back-end op#ntio extract fine-grain parallelism and
improve locality in irregular applications. Deep jam rétgsSTI to (statically) interleave multiple
fragments of ainglesequential program, associating it with optimizationsdecision trees, scalar
and array dependence removal, and speculative loop tranafions. We show that deep jam brings
strong speedups on four real control-intensive codeswaitp idle functional units to be fed with
independent operations, with a low control overhead.

This paper is organized as follows: Section 2 introducegpthmitive jamming transformations
of the control-flow, including scalar and array renamingd atates a first deep jam algorithm.
Section 3 explains the criteria of jamming and variationsadapt to dynamic execution profiles.
Section 4 integrates all these analyses and transfornsaiioa generic deep jam algorithm and
proposes hints to design a practical algorithm, reduciegpirameter space induced by the generic
one. Section 5 describes four real applications and theioprance inefficiencies, then shows how
deep jam can achieve good speedups.

2. Jamming Irregular Control With Data Dependences

Figure 1 shows a single-stage basic control-flow transftongoerformed by deep jam. In this
example, the outer loop cannot be fused with other loop teease the ILP with control- and data-
independent instructions. Moreover, the scalar variabpgoduces many intra-loop — unlabeled
or O-labeled edges — and loop-carried dependences — edtfepagitive distance labels [8]. To
improve performance, let us first unroll the loop (step b).eThain purpose is to merge (or jam)
structures with similar control-flow and independent instions. For that, the unrolling of the outer
loop exhibits two pairs of identical structurest./i f andwhi | e/whi | e. But the data dependences
on a hamper the code motion needed to group these structuregefdies a partial renaming is
mandatory: this is a SSA-like renaming, but only one assimnper structure is needed (step b).
Then, step ¢ matches pairs of identical control structuyastiving the secondf above the second
whi | e loop, then step d jamd conditionals andahi | e loops pairwise (respectively).

This can be seen as a generalized unroll-and-jam [8] fogutee control, including non-loop
structures. Performance improvements come from the execof larger basic blocks with in-
creased IPC: when conditiopd andp2 (resp.gl andg2) hold simultaneously, instructions coming
from two subsequent iterations of the outer loop may be concurrently executed.

1. Deep jam was first presented in a conference [23]. Thisdowgrsion describes a compilation algorithm at much
greater depth, and draws a pragmatic roadmap to implemeptjden while optimizing the profitability of its steer-
ing heuristics. It also reports on the successful optindpabf two additional applications, including the SPEC
benchmark Gzip.

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

for (i=0; i<10; i++)
if (p)

-a- Original nest.

for (i=0; i<10; i+=2)

a2 =
a2 =\¢?a2, al)
whi | e\(q2)

.= a2+ .

-b- Unraoll, renaming.

-c- Match.

al = a;
for (i=0; i<10; i+=2) for (i=0; i<10; i+=2)
al = @(a, a2) if (pl & p2)
if (pl && p2) gil = .
al = a2 = .
a2 = . else if (pl)
el se if (pl) al = .,
| a1 = .; a2 = al;
elseif (p2) else if (p2)
| ER =2 | ER =2
a2 = @(a2, al) while (gl & @2)
whi | e (gl && q2) = al + .
. =al + . ‘ L= a2+
‘ L= a2+ while (ql)
whi | e (ql) | = al + .
| w=al + . while (q2)
whi | e (g2) | .= a2 + .
|...:a2+ : al = az;

-e- Convert from renaming.

-d- éingle jamming stage.

Figure 1: Irregular jam with scalar dependences.

2.1. A Single Jamming Stage

Throughout the deep jam process, the ténneadletwill name any structured code fragment can-
didate for jamming with another one. In the previous exan{pigure 1), eachf structure and
whi | e loop represent a threadlet.

A stage of the jamming process uses the control-dependeaphd ¢CDG) [24] to extract and
process the threadlets. Starting from any control node isfghaph, applying aingle jamming
stageboils down to the following sequence of operations:

1. Among children of the parent control node, choose pairgarftrol structures — called
threadlets— to be jammed together. If few matching pairs can be buils thay, and if
the parent control node is a loop, unroll it by an unspecifeeddr before identifying pairs of
threadlets:

2. For each pair of threadlets, apply the following operagio

(a) Rename scalar and array variablleseeadlet-wiseto remove all memory-based depen-
dences between threadlets.

2. Afactor of 2 is most of the time a good trade-off to exhibatehing threadlets without code size explosion. But this
factor is not limited.

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

(b) Match the selected threadlets. Apply code motion on breatllet to obtain a sequential
code of these two threadlets. Assuming the lack of flow degeoes across structures
between the selected threadlets, this code motion is valid.

(c) Fuse each pair of loops and each pair of conditionals [@&herate the appropriate loop
epilogs to compensate for unbalanced trip counts. Compaetoss-product of the
control-state automata associated with conditionals, gemgbrate an optimized nested
conditional structure from the resulting automaton [21].

The example in Figure 1 follows this informally-stated altjom. The parent control node is a
f or loop containing 2 children: ahi | e loop and an f structure (Figure 1-a). Because the control
flow of these 2 structures is not similar, and the root nodeli®p, the first step advises to unroll
the loop by a factor of 2 (Figure 1-b). Then, the algorithrmestd tha f-i f pair of threadlets and,
after applying renaming, groups it by moving the secondcsting next to the first one. Then, these
threadlets are jammed creating a new conditional structttie the merged bodies. Finally, the
algorithm goes back to step 2 and selectsvitid e-whi | e pair. These structures are matched and
jammed according to the final steps of the algorithm (Figucd. I he final code corresponds to the
Figure 1-d.

2.2. Threadlet-Relative Renaming

STl targets independent threads only; this is a reasonabf@ifcation for real-time system design
[19], but this would kill most jamming opportunities in ousmpilation context. As seenin Figure 1,
we perform a threadlet-wise SSA-like renaming in order tmeoge memory-based dependences.
This is a major improvement on [21].

Scalar Renaming. Many dependence removal techniques have been designed gomitext of
automatic parallelization [25, 26, 27, 28, 29]. Typicaligntrol dependences can be converted into
data dependences (if-conversion), and memory-basedldatndences (output- and anti-dependences)
can be removed by expansion, like privatization or renamBygeculation or data-flow restoration
induce an execution overhead; we must make sure the extadigham is worth what we pay for

it. Fortunately, in most cases, deep jam reschedules tlgrgoin such ways that the overhead

of dependence removal techniques can be minimized. Indedya renaming concerning scalars
written in at least one threadlet is needed.

This threadlet-relativerenaming is a derived form of SSA transformation [30]: vakes pro-
duced before the second threadlet are subscripted by 1 widke produced inside the second
threadlet and after are subscripted by 2. This partial rengis sufficient because it removes every
memory-based dependence hampering the grouping of thésedtltets. Phi-functions are added
following the SSA rules but many of these functions are sselgecause they concern the same
variable names. Converting from this renaming behaveslfikeDeSSA transformation [30].

Array Renaming. Dealing with array dependences is much more complicatechySSA [28] is
the most natural extension of SSA. It is a good candidatentijeegular control structures since
it does not assume any particular control-flow or dependérfoemation, and since it is mostly an
array renaming transformatiochAlthough DeArraySSA is more complex than DeSSA, the flow of

3. Unlike array expansion [25, 29] and privatization [27].

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

data can be regenerated with low overhead in many casesd@®pugh precise static analysis of
the array data-flow may be required [31].

Since it is not always possible to find a DeArraySSA with lowedhead, alternate solutions
consist in pre-constraining array renaming to cases wherstatically known how to regenerate the
correct data-flow efficiently [32, 29], based on array datarfhnalysis [25, 31]. These sophisticated
expansion schemes have a lower runtime overhead but reapdreate static analyses.

In general, it is important to take into account the overh&fatray renaming in the performance
estimate of any jamming strategy. Unfortunately, few qitative evaluations of this overhead are
available for the above-mentioned expansion schemesgiaipdor sequential execution.

2.3. Speculative Threadlet-Relative Renaming

Thisthreadlet-relativerenaming does not remove every dependence: when flow depeesibam-
per the reordering of the threadlets candidate for jammingpeculative variant of this renaming
can be used. This is valuable when this dependence is gubydadarely-occurring condition.
Consider the example in Figure 2-a, the parent root nodeagmtwo children with different con-
trol flows, so the loop is unrolled by a factor of 2 accordindhe previously-stated algorithm. The
next step is the threadlet-relative renaming, detailetiégrevious sections (Figure 2-b). However,
despite this renaming, a dependence remains from the s@€atadthe firstwhi | e, preventing the
reordering phase to match the corresponding structureg.tiguproducer of this dependence is
guarded bypl: by speculating that thisf is not taken, the reordering can be done, but a recover
mechanism is necessary if the speculation was not apptepria

Lett; andt, be two threadlets that cannot be jammed because of flow depees. Assuming
that a dependence analysis gives us the&Sgeintaining every block producing such dependences,
every block in this set will then be speculated as not taken.

Generic Speculation. When no unrolling is involved, there is an intuitive way ofesplating.

Each time we mové, across a speculated blogke S— i.e. we moves to the left on the CDG
[24], overB —, the code of, must be duplicated at the control-flow join Bfto ensure that we still
maintain the proper semantics of the program.

Transactional Model. If the parent control node is an unrolled loop (as in the eXdarfgure 2),
we perform atransaction-liketransformation [33]. Eackp-function associated with a speculated
block B € Sbecomes api-function, whereu is the name of theipdated-statesariable associated
with B. When we reach the DeSSA-like stage, the conversion of wiatedg-functions does not
change; only the annotated ones are influenced by the rdgtkk speculation. Indeed, to remove
the @d-functions, a special processing is applied: if we did naveérseB, thenu is false and the
@-function becomes a classiogifunction. Otherwise, we must not commit variable updakes t
occurred during the misspeculated iteration — we must ¢aheewhole iteration. To do so, we
simply do not allow variables to be updated past the first peisslated unrolled iteration

In Figure 2-b, let us speculate that iHeblock onpl is not taken. Of course, this choice needs to
be justified by a static or dynamic path profiling. This blosladded to the s& Theg-function at
the control-flow merge point of these two iterations is aated withSandu, the latter representing
the variable used to guard the commit of the second itergfidgure 2-c). This variable appears
in the speculated block u is put to 1 meaning that the speculation is then incorrectusTihe
@-definitional = @(a, a2) can be read aal is equal toa at the entry point of the loop, and

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

is updated toa?2 if the previous iteration was correctly speculated on thieafélocks S or is not
written otherwise Next, apply the jamming phase leads to the code in Figure 2-d

Only annotatedp-functions are converted from this renaming in a special ;wasre theq-
function onal is influenced by the result of the speculation. At the end efltlop, ifu is equal to
0, then the speculation is valid, so the updatalofs performed. Otherwisel is not updated and
the induction variable is brought back to the value it wouldddnhad at the end of the last correct
iteration. In our example, when we misspeculate on the ouécof the second threadlet, we must
decrement the value of the induction variable to re-exetheéenisspeculated iteratidnThis leads
to the code in Figure 2-e.

Annotating everyp-function associated to the join point of the unrolled logpsifficient to
control the data flow from the second unrolled iteration te tiext one. Indeed, if a misspecula-
tion occurs, then the second unrolled iteration has to bgeplaagain. In that case, the variable
consistency is guaranteed through the non-update of eeatgirawritten during the misspeculated
iteration.

This approach has two main advantages: (1) it involves alegryverhead (almost no recovery
code is needed, save for the induction variables shift) 8hdifice we speculate on scarcely-taken
blocks, re-runs of a single iteration rarely happen, anduas $arely worsen the program perfor-
mance when the speculation was wrong.

This speculative renaming can also be extended to arrayddpgnds on the array data-flow
analysis to avoid run-time recovery overhead [34, 32].

2.4. Breaking Dependences Speculatively

Dependences may remain after renaming (even speculat®g imeluding def-use dependences
carrying the actual flow of data and memory-based dependemhese removal through array re-
naming would incur too much runtime overhead. Such deparedemay disappear by runtime
inspection mechanisms, and more generally, any depenaamncke speculatively broken with the
appropriate recovery mechanism; see, e.g., [35, 36] forpertime approaches to runtime de-
pendence analysis and speculative parallelization. Simese techniques target massively parallel
systems it is unlikely their overhead would be compatibléhwihe comparatively limited speedup
expected from deep jam.

Nevertheless, we will see in Section 5 that speculation eaprobfitable if restricted to critical
cases where, (1) it incurs limited squash overhead, and {&)équired to enable any jamming.
In practice, it may be profitable to speculate on controlestelences due to early exits, and when
ad-hoc algorithmic information can be used to avoid squmastiie (whole) speculative threadlet.

2.5. Jamming Recursively

Quite naturally, jamming stages are designed to be realysapplied to inner control structures,
until all the control flow dominated by the initial controlasément has been covered. In addition,
if an isolated loop appears at any jamming stage, it has tonballed by a factor of two before
descending recursively in its boéy.This way, any parallelism among outer loop iterations will

4. In general case, induction variables are updated acwptdithe speculation outcome.
5. As an exception, innermost loops that can be efficienttindped with traditional software pipelining (and possibl
if-conversion) should not be unrolled.

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

a = oy

for (i=0; i<10; i+=2)

a=.,u= 0;
for (i=0; i<10; i+=2)

el = i, &) al = gi(a, a2)
il () while (q1)
| ~=al+ | = al + .
'f| 2;11)_ , while (q2)
for (i=0; i<10; i++) . i ~=al+ .
while (q) whi l e (g2) if| (pl) /! Block S
_ X . = al + .
.|..._a+...‘ (p2) u =1
if (p) l|a%-- all = .
eve a2 = ¢a2, al) 'f| g;;z):
a2 = g(a2, al)
-a- Original nest. -b- Unraoll, threadlet-relative renaming. -c- Match, speculation onf (p1l).
a=.; u=0; a=.;al=a u=0;
for (i=0; i<10; i+=2) for (i=0; i<10; i+=2)
al = g(a, a2) while (gl && g2)
while (gl && g2) w=al + .
. =al + . . =al + .
‘ ~=al + . while (ql)
while (ql) | w=al + .
| = al + . vwhile (q2)
while (qg2) | ~=al + .
| - =al+ if (p1) // Block S
if (pl) // Block S | al = .. u=1;
u =1 a2 = al;
al = . if (p2)
if (p2) a2 = .
| a2 = .; if (u==10) al = az;
a2 = ¢ a2, al) elsei =i - 1; u=0;

-e- Convert from threadlet-relative renaming

-d- Single jamming stage.

Figure 2: Irregular jam with speculative scalar-dependemenoval.

ultimately be narrowed down to inner basic blocks, henceredimg coarse grain parallelism into
finer grain instruction-level or vector parallelism. Of ¢s@, we are still far from an automatic
deep jam algorithm. The real challenge in designing suchgorithm lies in the integration of a
guantitative profitability analysis. This will be done incSien 4.

Managing code size is another challenge. Compared to S3 yrie to fuse as much control-
flow as possible may lead to unacceptable expansion: specis needed to reduce branch over-
head resulting from the product control-state automatemiigate this overhead, we compute —
and generate code for — product-states associated witls pdtare basic blocks from the jammed
threadlets will effectively be concatenated in furthemgst® Code associated with the remaining
control states (single and mismatching conditional brasgkhi | e epilogs) is not jammed any fur-
ther. For example, Figure 3 shows a binary decision tred€de=onditionals) where each node has
only one (isomorphic) match when applying a jamming stageceSjamming, e.g., a square with a
circle, would not extract any additional fine-grain partidien, the 12 associated product states are
not computed, and the original subtrees are appended faulleinjammed cases. This optimiza-
tion preserves the amount of extracted fine-grain paraitelivhile avoiding the duplication of code
and control for execution paths which would not benefit fréva transformation.

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Product States Default Decision Tree

ooy Wi

for if for if
for for

Figure 3: Jamming decision trees.

3. Jamming Criteria and Variants

The previous section outlined the primitive operationsligpoldn our algorithm. Due to the variety of
motivations, overheads and nested control structuresatgorithm needs a more complex model.

3.1. Optimization Criteria

Hot Paths. Deep jam has a chance of bringing actual speedups only wpsifisant parts of the
execution trace traverse jammed control paths: a singlenjagn stage should considatl pairs
of matching control structures to maximize opportunitiéswilding larger basic blocks from in-
dependent threadlets. From feedback-directed optinizaibone may promote the formation of
larger basic blocks occurring on hot execution paths. Tacedontrol overhead and lower register
pressure, one should not fuse basic blocks occurring on matlds in general. However, special
cases exist when jamming results in simplified control-fléaetoring identical conditions) or when
hot inner loops cannot be jammed without processing coldelosing control structures: fusing
control-structures enclosing the hot basic-block may irecurior fusion of external colder one. For
example, a coldf conditional including a hothi | e loop may have to be jammed to exhibit the
potential gain in fusing the innehi | e loops.

Trip Count. Dynamic information is needed to make the optimization paibfe. Loop jamming
depends on the loop trip count and on its stability. Indeaohmingwhi | e loops in the previous
example will be efficient if the respective trip counts aresd. Furthermore, when jamming loops
whose trip-count is often close to zero, it is critical to raaure that no additional branches will
be encountered on short execution paths (e.g., on zer@dsps), compared to the original non-
jammed loops.

Impact on ILP. Besides profile information, feedback from the effectivenef a jamming strat-
egy is needed to quantify its benefit on ILP — through scheduleectorization improvements.
If deep jam is used in an iterative optimization environmi@t, 38], we may assume instruction-
per-cycle (IPC) statistics are available for each basickoknd for each variant; such statistics can
be easily obtained from actual runs and hardware countengsing static estimates [39]. These
measurements take into account transformations appligeiback-end part of the compiler, these
transformations having a strong impact on the profitabditpur technique [40].

Compiler Transformations. From the compiler/architecture features and dynamic faekibthe
way to jam two threadlets may evolve and lead to differensitids variants. This is due to specific
architectural features or compiler potential transfoiiora.

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

If-conversion is an important optimization (and enabliransformation) on architectures which
support predicated execution (like Intel Itanium or PHilifriMedia). The profitability heuristic for
converting conditionals to predicated instructions ndedi revised in our context, for two reasons:

e predication reduces code duplication from the produdestantrol automaton;

e deep jam is profitable when coalescing basic blocks allovisdd idle functional units: this
effect will be reinforced in a predicated implementation.

Practically, we found that if-conversion was more profieakthan usual when applied to nested
conditionals, and to sequences of conditionals that wetréused by deep jam.

Interestingly, if-conversion can also improve the perfanoe of jammed loops: if an execution
profile shows that the trip-count difference is much lowearththe total number of iterations, it
is advisable to speculatively let the shorter loop continogl the termination of the longest one,
predicating loop bodies accordingly.

Tail-duplication is often associated with if-conversi@nmprove software pipelining [8]. Deep
jam has a similar impact on the tail-duplication heuristcaa if-conversion: if a significant part
of the execution is spent on non-fused code (after jammihgatching control structures), tail-
duplication can enable further jamming, e.qg., of loop aslavith subsequent straight-line code
from independent threadlets.

Eventually, as unroll-and-jam is not limited to unrollingctors of 2, it is possible to extend
deep jam to triples of matching control structures, or evemanOur current experience shows that
the control overhead and code size increase practicalheoffie additional ILP extraction. But this
extension should be considered on wider-issue archiesiike grid processors [41, 42].

3.2. Jamming Variants and Quantitative Evaluation

We first model the variants and profitability of the jammingledf control structures: innermost
control nodes enclosing straight-line code, then extermnestedstructures.

3.2.1. Jamming Leaf Control Nodes

We detail the different possibilities of jamming single twh structures with their relative quanti-
tative evaluation. Indeed, each jamming variant may beuevatl with respect to a set of charac-
teristic parameters of the application and architectuneghis paper, we will focus on three specific
frequently-used pairs of threadleid:-i f , whi | e-whi | e andf or -f or.

Along these evaluation®y denotes the issue width of the processor (e.g. 6 on the ftagju
andP its branch misprediction penaltyEach jamming variant of a pair of threadlets is statically
evaluated and its evaluation is denoted;MGhe number of cycles to execute the jammed code of
t-type threadlets with the variant Furthermore, we suppose that static and/or feedbackitdute
analyses have gathered the following set of parameter$P () (resp. IPG) the average number of
instructions per cycle for the first (resp. second) thread® i, (resp.i») the number of instructions
for the first (resp. second) threadlet, after back-end dp#tion (3)n; (resp.nz) the number of
iterations if the threadlet involves a loop and {4Q,, IPCig2 andnig, the corresponding metrics
for the jammed body of these two threadlets.

6. Such parameters are rough estimates in general, but &pgeh to be quite effective on the 1A64 architecture.

10

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Il pl = p2 if (pl && p2)
it (p1) S S
S el se
if (pl) Il pl = p2 ‘ S if (pl)
| s if (p1) el se |
if (p2) S ‘ if (p2) if (p2)
-a- Original pair. -b- Equivalence. -c- Implication. -d- Generic.
if (pl) p=pl| (p2 << 1); %>
if (p2) switch(p)
| s S case 1
if (pl) el se | Si; break ;
S S case 2:
(p2) & el se | S; break ;
(pl) S el se if (p2) case 3:
(p2) & | (P2) & | & | S S break ;
-e- Predication. -f- Unbalanced. -g- Branch Prediction. -h- Tree.

Figure 4: Jamming variants of -i f threadlets.

Jamming Variantsfor i f -i f Threadlets. Figure 4 depicts the different ways to jam two matched
i f structures, and Table 1 its associated jamming variantiatiahs. The original sequential code
is presented in Figure 4-a.

A static data-flow analysis may exhibit correlations betw#ee conditionl andp?2 leading
to the possible jammings in Figure 4-b and Figure 4-c. Ndtiese cases may occur resulting from
the unrolling of a surrounding loop.

When static analysis fails, the most generic form of jamniggresented in Figure 4-d. Fur-
thermore, if the target architecture handles predicatioen the variant in Figure 4-e is viable only
if the twoi f s are mostly taken or when their bodies do not reach a signifsiae. Indeed, the size
of S and$; plays an important role in the jamming decision: if these bMxks are unbalanced, the
smallest one or the most taken one can be integrated ined#hiker to reduce the control overhead.
This leads to the variant in Figure 4-f.

Branch predictors are accurate as soon as a set of branchibit®a bias in their respective
outcome. Of course, if the threadlets are not taken — whemgdoandp?2 are false most of the time
— then it is useless to jam, but if this case occurs during Xeewtion alternatively with a situation
beneficial for jamming, then the algorithm has to deal withgbtential branch mispredictions as the
variant in Figure 4-g. When both conditions are verifiednti® misprediction occurs (assuming
t hen branches are predictedker), and, when both predicates are false, then, at most, only 2
mispredictions arise compared to 3 with previous variaimtge final variant requires a robust code
generator because it results in a decision tree: Figure Edch condition represents a specific
bit-matching pattern op and then, a simplewi t ch on its value determines which condition was
verified or not.

Jamming Variants for whi | e-whi | e Threadlets. Consider now a pair of threadlets containing
awhi | e loop as shown in Figure 5-a. An estimate of the number of eysfeent in that unjammed
pair of loops can be found in Table 1.

A performance estimate for theessimisticstrategy depicted in Figure 5-b is shown also in
Table 1. The 41" in the instruction count stands for the computation of¢bajunction of the loop

11

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

if (pl)
if (p2)
while (pl & p2) do
S | s S
S while (pl & p2)
while (pl) while (pl) while (pl)
| S | S | &t while (pl || p2)
while (p2) while (p2) while (p2) (pl) S
S 'S 'S (P2 S
-a- Original pair. -b- Generic. -c- Short loops. -d- If-converted.

Figure 5: Jamming variants @hi | e-whi | e threadlets.

conditions. Notice IP&> may be over-approximated by nfiPC, + IPC,, W), which corresponds
to an ideal interleaving of instructions from both threaslle

If the trip count of at least one loop is low, then the varianFigure 5-c can be considered. In-
deed, at least one misprediction is saved with respect todbgimisticase, and in the best case, the
branch predictor may learn the behavior of the outer comaiti, saving up to two mispredictions.
There is a benefit on short loops only: the extra control cexipt and code size may degrade the
applicability of back-end optimizations and instructicache performance.

Conversely, amptimisticstrategy in Figure 5-d bails out when both conditions aralidated,
predicating the execution of Lek, denotes the average number of iterations of the fused part; a
performance estimate for tloptimisticstrategy is shown in table 1.

-a- Original pair.

/1Nl < N2
for (i=0; i<NL; i+t) /1 NL = N2 for (i=0; i<NL; i++)
for (i=0; i<NL; i++) | s &
for (i=0; i<N2; i+t) S for (i=NL; i<N2; i++)
| & S | &

-b- Equivalence.

-c- Static generic.

for (i=0; i<min(NL, N2); i++)
| s &
if (min(N1, N2) == N1)
for (i=NL; i<N2; i++) for (i=0; i<max N1, N2); i++)
‘ | S pl — i<NL
el se p2 — i<N2
‘ for (i=N2; i<NL; i++) (p)) S
| s (P2) &

-d- Dynamic general jam. -e- Predication.

Figure 6: Jamming variants 6br -f or threadlets.

Jamming Variants for f or-f or Threadlets. Finally, we deal with the jamming of twéor
threadlets presented in Figure 6-a. In Table 1 the numbéeattions of the first loop is denotét
and the second oné, because the number of iterations is static. In the first féamiine number
of branch mispredictiong can be equal to 0, 1 or 2 but, on modern architectures, couotgs
prevent a misprediction. Therefore, we consider no midptied in further variant.

The main jamming variants depend on the ability for the cdenpo comparéN; andN,. Indeed,
if a static analysis guarantees the equality of these valudiseir order, the variants in Figure 6-
b and in Figure 6-c can be respectively used. The variant elevant only when the number
of iterations becomes important (otherwise, other baak-eptimizations have to be turned off,

12

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Case Evaluation Number of branch
mispredictionsx
NCif a —IFI’1Q|+ Be, +XP {0,1,2}
. 1&2
NCit o NGt q PCy, +XP {0,1,2}
NCif Pe
chmi | ca Nig2(11+H2+1) ”r:]}l%lr\? —t] Ir:])z)lléz +(§P Nig2)i
. 1&2\11 1712 1—11&2)11 2—111&2)12
NCuhi | ec NCv?/m | ef)—ZF’
n 11412+
NCyhi | e.d ~ipc, P
NCy L 4 22 xP {0,1,2}
or a IPQ N|IPQ 9 =y
NC or p PCo,
NCtor ¢ o
max(NI,N2)(iy,+2)
NG or e Wﬁ

Table 1: Jamming variant evaluation of-i f, whil e-whil e, andfor-for threadlets (see Fig-
ures 4, 5 and 6).

like prefetching or software pipelining) and when the difiece between the two trip counts is
significant too. Otherwise, thil code has to be generated in another way (software pipelining
versioning, ...). Finally, if the compiler and/or the targechitecture handle if-conversion and the
trip count of both loops is close, then the loop with the loitep count can be aligned on the largest
by predicating the corresponding blocks. The resultingedsgresented in Figure 6-e. The number
of instructions of this new loop body i, +2 — to model the computation of each predicate —
and an IPC equal to IPG.

3.2.2. Jamming Intermediate Control Nodes

Non-leaf structures with nested control may immediatelpdfid from a jamming stage, if they
contain significant straight-line blocks with chains of dedent instructions. More generally, the
profitability of jamming intermediate control nodes desvieom the further jamming stages they
enable on nested control structures. One may adapt theopgeperformance estimates to handle
this case, thanks to two simple observations:

1. instruction count$; andi, correspond to the number of dynamically executed instastin
every inner conditional structure and block of straightlicode;

2. the IPC for each version can be derived from the divisiothefprevious instruction count by
the sum of the performance estimates of the same inner stesct

13

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

4. Deep Jam Algorithm

Deep jam is more complex than a recursive application of thgles jamming stage defined in
Section 2.1.. A wide spectrum of transformations, statialyses and performance estimations
must be coordinated in a complex interplay. Selecting a fatalf strategy within the resulting
search space seems challenging.

The deep jam algorithm starts from any node in the CDG andst8ksteps. First of all, every
jamming variant among pairs of threadlets inside the cuitbedy is generated. Then, for each pre-
viously generated tree, its performance is evaluated —eatht or dynamically — before choosing
the best one.

Variant Generation. Figure 7 summarizes the algorithm generating variants aide @after ap-
plication of deep jam. It tries iteratively to jam all matnbi pairs of threadlets, considering all
possible variants in a breadth-first fashion. A qué&ustores a tuple of 3 elements: the generated
tree, its associated current node and a list of threadles paitest. Initially, it contains CD@, the
root noder and an empty set. As the list is initially empty, the nextatem has to look for among
child nodes. Thus, the algorithm finds all possible matclpags of threadlets among children of
the current node. If current node is a loop it also considarslling the loop by a factor of two (or
more) to form new threadlets. The potential updated trel Whi¢ same root and the liktis then
appended tor.

When the element retrieved from contains a non-empty lidt, then its first elementc,c’)
indicates two subtrees candidate for jamming. This paihéntdequeued and processed: if these
threadlets can be jammed together, guided by the caglloskibleJamthen each variant is built
thanks to the moduléuildAllVariants and stored inside the set The new tree is generated ac-
cording to each variant and appended to the queue with thategdhreadlet-pair list. Finally, the
whole set of jammed codésis returned.

Two functions determine the scope and efficiency of the #lgor possibleJamandbuildAll-
Variants The first one checks if a pair of threadlets can be reorderedder to be matched together
(thanks to threadlet-relative renaming with or without@gdation — see Sections 2.2. and 2.3.). No-
tice this module has to store the set of speculated bl8ckorder to avoid the useless jamming of
speculated blocks. The second functiobugdAllVariantswhich iterates over the variants proposed
in Section 3.2. depending on threadlet type, content cshaiil/or dynamic feedback.

Profitability Evaluation and Selection. The second step executes or estimates the IPC of each
code inT. (Section 3.1..) With these measurements, an inner-terqrofitability analysis is run.
(Section 3.2..) Finally, the code with the highest profiiibis chosen.

The output of the whole algorithm is a jammed code with the pegential profitability. The
first step (see Figure 7) is realistic only if the number oftcolnodes is quite small (size o). In
practice, the depth of an exhaustive search for the best jagnstrategy should be bounded.

Towards an Implementation. Fortunately, the manual application of deep jam in the Yoiihg
section tends to indicate that the size of the search spaeassnable. Indeed, only a few alternative
schemes compete for each jamming operation. Due to theenaittine quantitative performance es-
timates, a practical algorithm should combine static imfation and dynamic feedback (application
profile and iterative optimization runs) [43, 44, 38].

Although we did not yet implement deep jam in a compiler, thevipus study and algorithm
allow us to outline a more practical deep jam algorithm refirthe one presented in Figure 7:

14

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Inputs: t Control-dependence graph
r Root of the control-dependence graph
Output: T Set of variants

Algorithm (Deep jam'’s variant generation):
T—0;, F < (troot,0)
While F #£0
(t',r',L) < nextElemertf)
F—F\({,rL)
fL=0
L" — findAlIMatchingPairgr’,t")
If L’ =0andr’is aloop
t” « unroll(t’, 2)
L” — findAlIMatchingPairgr’,t")
F e FU (t”,r’,L”)
Else
F—FU,rL)
Else
(c,c) —firstElemenfL); L+« L\(c,c)
If possibleJartt’,c,c)
V «— buildAllVariants(t’, c, c’)
ForveV
t” «— generateVariant’,v,c,c)
T—TuUt”
fL=0
r’ — nextBreadthFirstEleme(t',t’)
F '{]_-U{(t//’r//’q))}
Else
F o FU{,V,L)}
Return T

Figure 7. Deep jam — variant generation algorithm.

1. Starting from the parent control node, unroll it by a faab? if this is a loop (the probability
that each loop initially exhibits similar control flow is nsignificant). In our experiments, the
parent node has always been a loop containing the most tingeiotng part of the procedure.
If several loops share the time spent in this procedure, ¢theybe processed separately.

2. Apply threadlet-relative renaming on the two loop bod@smove superfluous dependences
flowing from one iteration to the other. Potentially, apppesulative renaming if the set of
speculative blocks is small and located on cold paths.

3. Among the children of the loop, try the different jammirgriants for each pair of matching
threadlets.

15

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

4. Repeat recursively the previous step for each pair ofithiets. The level of recursion has to
be bounded by 2 or 3.

These steps simplify the previously-stated algorithm bplling the outer loop, renaming only
once and recursively jamming each matching pair. But thellef/recursion is bounded (typically
by 2 or 3) to reduce the parameter space.

Overall, even if, thanks to the previous guidelines, the pitattion time expected is reduced,
deep jam is a challenging compilation problem. It involvesnplex transformations, relies on
precise static analysis, including array-dependenceysisaland its profitability is hard to assess
statically. In addition, although deep jam combines mldt{plassical and original) transformations,
applying any of these transformations in isolation doesbnioig any speedup or may even degrade
performance. Nevertheless, our experiments in the nexbsawill confirm that it can bring strong
speedups. Moreover, it will show that, with precise statistanodels, the compilation time could
be low enough to incorporate deep jam inside a compiler.

5. Experiments

Let us study four real compute-intensive applications abti@rized by long sequences of dependent
instructions, irregular control-flow and intricate scatard array dependence patterns. We apply
deep jam at programmer level as source-to-source tranaf@musing the Intel ICC compiler to
generate the binary object. We followed the guidelines ef ihactical algorithm. Special care
was taken to ensure that the compiler did not undo transfibomsa made by deep jam. The fol-
lowing experiments demonstrate the strong potential op ga, exercising the tuning of the main
parameters driving the selection of a profitable deep jaaiesyy.

5.1. SHA-O Attack

We first study the attack of the SHA-O cryptographic hash ritlgm [45], which lead to a full
collision in August 2004 [46, 47]. This algorithm belongsthe family of iterative hash functions.

It relies on a compression functidntaking as input a message and a tuple of five 32-bit values. The
application off returns another tuple forming, after an addition with thidahone, the 160-bit hash
value of the message. Compression is decomposed intouB@sof (mainly) bitwise operations.
The attack applies the SHA-0 algorithm iteratively to a mdimessages, checking at each round
if they may possibly collide or not at the end (i.e., after 8rounds). The research of colliding
messages is not exhaustive: messages are tested so thebrfigsitations (more or less the first
14 rounds) can be reused from a pair of messages to anotadmdeto a rather irregular control
structure with guarded compute kernels and early exits.

The experimental platform is a NovaScale 4020 server frorii ®aturing two Itanium 2
1.3GHz (Madison) processors, using the Intel C compilesiear8.1, choosing the best result from
-2 and- @B with -fno-al i as.

Performance analysis of this code highlights several iimgifactors: memory pressure, com-
plex control flow and limited amount of parallelism. To redeamemory pressure, we apply two
optimizations:scalar promotion(via loop unrolling), thenvectorizationof straight-line 32-bit op-
erations (using 64-bit registers and SIMD instructions)sdve registers and avoid the spills created
by the previous step (and of course, to reduce the numbereratipns). Strangely, this version

16

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

does not provide significant speedup. Hardware counteextiatiarge rate of pipeline stalls due to
register-register dependences:

IPC=2.48 nops=13.4% Reg-reg stalls = 15.0%

This code is composed of a main loop iterating on messagesaue, at this level, this loop is
alone and children of this control node contains no cleachiag pairs, the deep jam algorithm first
unrolls this loop by a factor of two. The loop body is largelfausand lines of code, implementing
up to 80 rounds on the selected message), and its control $lapparently unpredictable. Alone,
this transformation only brings 1% speedup.

Before attempting to jam resulting threadlets (instandesvery inner conditional and loop
in the unrolled body), a large number of scalar dependene®laninated by threadlet-relative
renaming. One array of 80 elements needs to be renamed toessntput and anti-dependences.
After this expansion step, the remaining def-use depersdence compatible with a one-to-one
fusion of every matching pair of conditionals and inner Isop

Yet several control-dependences remain; they are due fpedts in the acyclic part and in the
single innerf or loop. Speculatively ignoring these dependences degraeiésrmance, and tail-
duplication is not applicable because of data-sensitieeipates guarding control-dependences. As
a result, some control-dependent code cannot be jammedeativafly as expected. For example,
the inner loop is jammed with its matching pair using gessimisticstrategy in Figure 5-b, instead
of an optimized scheme with if-conversion. Feedback fromreachic profile tells that the first three
rounds are only sparsely executed, hence the associiteahditionals do not need to be jammed,;
this saves the generation of a 9-case decision tree andagdode size.

The resulting code is approximately 4 times larger than thgiral application (due to un-
rolling andwhi | e loop epilogs), and provides48.3% speedup. Hardware counters reveal a major
improvement on the number of stalls amaps:

IPC=3.17 nops=10.3% Reg-reg stalls = 7.71%

5.2. ABNDM/BPM String Matching

The second application optimized by deep jam comes from atettipnal biology. It implements
an approximate pattern matching algorithm, named ABNDMVBR8], which finds all positions
where a given pattern oh characters matches a text with upktdifferences (substitution, deletion
or insertion of a charactef). Assuming an online search, the pattern is known and can be pre
processed to speedup the search, but the text may not. ABEBM/is a key contribution to the
pattern matching domain, since it combines dynamic progreng, filtering and bit-parallelism
[49]. The text is processed through windowsnof- k characters, to decide if an occurrence may
appear inside a window and how many characters to skip fiess— 2k) before the next window.
Approximate matches are selected from the bit-parallettation of a non-deterministic finite-state
automaton with a dynamic programming matrix [50, 49].

The code is composed of a main loop, iterating on the textdewnafter window. The loop
body contains early exists, conditionals and nested wbdps. The processing of a window is split
into a first phase, traversing the window backwards. A fiost loop iterates unconditionally ok
characters, thenshi | e loop proceeds with at most— 2k iterations. The skip distance between

7. In practical searchek,can be as large ag/2.

17

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

two consecutive windows is computed dynamically as a redtittis backward phase, depending on
the text being traversed. If thvi | e loop effectively completed the traversal (reading all eluders

in the window), a second phase traverses the window forwadreicking if an occurrence appears
(beginning at the first character).

The experimental platform is a 800MHz Itanium (Merced) 4p&MP, using the Intel C com-
piler version 7.1, choosing the best result froR and- &3 with - f no-al i as.

Again, the analysis of the generated assembly code and hegahwunters indicate a lack of ILP
in chains of dependent instructions. In addition, the caxplata-dependent control is reflected
in the high rate of pipeline flushes: up to 30% of the executiore is waisted in mispredicted
branches. For typical cases, the IPC lies between 1.3 and 1.5

Deep jam is only applied on the backward phase, since it atadormore than 90% of the
computation time. Because the main loop has no candidajarfaning, it first unrolls this loop,
yielding several threadlets associated with the backwasettsal of two subsequent windows. The
control flow of this backward phase is quite complex and ddpahon the input data. The unrolling
transformation alone does not bring any speedup.

Unfortunately, one immediately notices that the dynamimpuotation of the skip between two
consecutive windows yields several control and data dep®es. Indeed, even if a large number
of scalar dependences are eliminated by threadlet-relaémaming, any jamming scheme needs
to speculatively break those dependences. Thanks to despatific knowledge, we know that
under-approximating this distance is a conservative swiulyielding lower performances but still
covering all possible matches). Figure 8 sketches a spa@ijamming scheme where the position
of the second window is estimated at each iteration of therdunrolled) loop.

IGIAJT|T|AICIAICIAITITIAICIAIGIAIT |T]

First window

Iteration 1
Iteration 2

Iteration 3

Figure 8: Jamming windows speculatively.

The next difficulty comes from the jamming of a very short inmki | e loop nested in a com-
plex decision tree. This section is responsible for moshditamispredictions identified in the
preliminary analysis. Interestingly, tloptimisticjamming strategy of Figure 5-d results in a strong
reduction of the mispredictions rate, through tail-duglion and if-conversion. This strategy will
be calledoptim in the following experiments. However, the reduction in pnedictions is not al-
ways beneficial, due to the unnecessary (predicated) wathead in the frequent cases where the
innerwhi | e loop executes less than 3 iterations. We will thus also cemsashort loopstrategy,
called pessim thereafter, as defined in Figure 5-c. For some input text ahgeg ofk, the length
of the backward window traversals is very unstable. Thisiced deep jam benefits, since most of
the time will be spent in unjammed loop epilogs. It may be neiffective to squash the execution

18

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

of the second window when the first one terminates early, agthrt the traversal from the begin-
ning (at a non-speculative position), jammed with shdsequenbackward window traversal. This
strategy, callegriority thereafter, also simplifies the control-flow, eliminatiragmplex loop epilogs.
This strategy is not easily generalized to other deep jamas;d®nce its absence from the jamming
variants of Section 3.1..

Figure 9 shows the speedups achieved on the full applicatiarying the input text and the
number of errork, with fixed pattern sizen = 32. Since no jamming strategy dominates in all
contexts, all three are evaluated. The best speedup re&8t@%, but using the wrong strategy
leads to significant slowdowns. We thus designed an adapéiketion scheme, to dynamically
select the best strategy. We observed thatptiwity strategy is not profitable if the rate of early
exits is high, i.e., if the backward phase quickly discovbest no match is possible. The adaptive
scheme thus begins in tipgiority mode, then switches to thuptim strategy if the number of early
exits reaches a certain threshold. This scheme is fullyraatic and incurs only 1% performance
degradation compared to the best speedup achieved witr eiibrity or optim. This adaptive
selection could be extended to thessim scheme, based on an instrumentation of inner loop trip-
count; yet the benefits would be moderate sipessim rarely dominates.

k | priority | pessim optim k | priority | pessim optim
0 -6.5% | -73.6% | 58.9% 0| 39.2% | 38.2% 26%
1 -7.9% | -68.7% | 56.5% 1 37.7% | 34.2% | 24.4%
2 -8.2% | -63.2% | 49.9% 2| 355% | 35.7% | 22.3%
3 -9.7% | -56.7% | 46.5% 3 33.4% | 31.1% | 25.2%
4 | -12.4% | -48.7% | 41.5% 4 | -11.8% -40% | 26.5%
5 32.3% | 30.5% | 22.5% 5| -12.8% -31% 24%
6 33.1% | 30.9% | 22.5% 6 | -16.5% | -24.6% | 21.8%
7 30.4% | 29.2% | 21.2% 7 | -13.4% -16% | 18.9%
8 28.2% | 27.4% | 19.8% 8 -17% | -17.6% | 20.6%
9| 13.3% -13% | 53.2% 9 | -14.7% 7.4% | 39.4%
10 13.6% 7.8% | 57.2% 10 11.8% | 10.6% 6.3%
-a- English dictionary. -b- IATEX document.
k priority | pessim optim k priority | pessim optim
0| -11.5% | -68.1% | 33.7% 0| -15.4% | -69.8% | 32.6%
1| -18.7% | -58.4% | 20.5% 1| -22.1% | -59.3% | 18.0%
2 | -18.2% -46% | 21.4% 2 | -20.3% | -48.9% | 23.2%
3 -19% | -33.9% | 21.8% 3 -20% | -36.3% | 26.1%
4 | -21.3% | -27.5% | 17.4% 4 | -21.8% | -31.0% | 19.7%
5 | -20.9% | -22.1% 15% 5| -21.7% | -25.2% | 18.5%
6 | -21.4% | -18.7% | 11.9% 6 | -20.7% | -18.6% | 16.2%
7 | -21.3% | -17.2% 9.4% 7 | -21.3% | -16.4% | 12.5%
8 | -22.5% | -16.8% 7% 8 | -225% | -148% | 9.1%
9 | -22.4% | -16.3% 4.2% 9 | -22.4% | -14.2% 4.6%
10 | -22.4% | -15.5% 2% 10 -23% | -14.2% | 3.4%
-c- DNA of Buchnera bacterium. -d- DNA of bacillus anthracis str. Ames.

Figure 9: Performance of three deep jam variants on ABNDM/BP

19

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

CPU Cycles (whole application) IPC | Speedup
Original version 373174x 10° 2.51 —
Unroll (factor of 2) 372919x 10° 2.43 0.1%
Deep jam 350809 10° 2.51 6.4%

Table 2: BLAST — Optimization of the most time consuming loop

5.3. BLAST

The next benchmark also belongs to computational biologASTI (Basic Local Alignment
Search Toof) is a set of algorithms used to find similar sequences betweesral DNA chains
or protein databases. Unlike the previous algorithm, BLARBIly findsexact matchesThis pro-
gram, composed of dozens of functions, is an integer, caatipatl-intensive code exhibiting an
important control-flow complexity.

The most time consuming loop isfar loop including a dominatingf conditional with an
unbalancecl se branch. A quick dynamic analysis confirms ILP is low on the tfeequently
used path. Indeed, the most executed path is only the firat bk of the loop body, followed
by the short hen branch of tha f conditional. The first basic block loads fields from an array o
records, just before operating on them. This leads to slepeddence chains, reducing ILP even if
the compiler assumes that data are prefetched into the lliedétency of 1 cycle).

Because théor does not have potential matching threadlets among itsremjdhe first step
consists of unrolling this loop by a factor of 2. After thedhtet-relative renaming, the first basic
block of each iteration is matched and jammed (jamming Halsicks is straightforward). But this
can be done only by speculating on the valudiafg_coor d. Indeed, in the hen, thedi ag_coord
cell of arraydi ag_ar ray is written. During the next iteration, the same array is rdathe indices
match, the code motion is not valid. Therefore we matchedamdhed the first instructions of the
loop by checking the outcome of the speculation afterithel se structure of the first iteration,
applying a speculative threadlet-relative renaminditag_coor d.

We did not jam further because, (1) path profiling indicate=t hen branch is a hot-path but the
body is very short and (2) the speculation induces contrettowad leading the a higher complexity
hampering further jamming. So the final code features a louplied twice, a match of the first
basic block of each iteration and, finally, a speculatiordioay_coor d.

Table 2 shows results obtained on a 1.6 GHz Itanium 2 Madisaehine with 3MB of L3 cache
and ICC Compiler version 9.1. Three versions have beendeste original code, the original code
unrolled by a factor of 2 and, finally, the code after applyitegep jam.

This table presents, for each version, the time spent inmhele applicationplus the corre-
sponding IPC and the speedup w.r.t. the original code. ThRedPthe whole application is good
for an integer irregular code. The unrolling does not brimy apeedup. Indeed, after unrolling,
code motion is impossible due to the potential dependencdi aq ar ray through the value of
di ag_coord. The deep-jammed code brings more than 6% speedup on the application and
keep the IPC at the same level. Actually, its performanceectom the merge of the basic blocks
at the beginning of théor loop feeding functional units and recovering load latescie

8. Seéht t p: // www. nchi . nl m ni h. gov/ BLAST/

20

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Input sefgr aphi ¢ CPU Cycles | IPC | % Bubbles| Speedup
Initial 13724x10° | 1.33 44.2% —
Unroll (factor of 2) | 12.824x 10° 1.45 46% 7%
Deep jam 11842x 10° 1.73 44.9% 15.9%
Input setl og CPU Cycles | IPC | % Bubbles| Speedup
Initial 12797x10° | 1.70 34.2% —
Unroll (factor of 2) | 11.299x 10° 1.86 36.2% 13.3%
Deep jam 10.464x 10° 2.33 38.8% 22.3%
Input setpr ogr am CPU Cycles | IPC | % Bubbles| Speedup
Initial 102748x 10° | 1.67 22.3% —
Unroll (factor of 2) | 84.087x 10° 1.86 26.8% 22.2%
Deep jam 73.186x 10° 2.62 28.8% 40.4%
Input setfr andom CPU Cycles | IPC | % Bubbles| Speedup
Initial 12642x10° | 1.20 45.7% —
Unroll (factor of 2) | 11.846x 10° 1.34 46.7% 6.70%
Deep jam 10.903x 10° 1.60 45.8% 16%
Input setsour ce CPU Cycles | IPC | % Bubbles| Speedup
Initial 42503x 10° | 1.6 28.3% —
Unroll (factor of 2) | 35.437x 10° 1.77 31.2% 20%
Deep jam 30.629x 10° 2.33 34.4% 38.8%

Table 3: Performance results of Gzip benchmark omgest _mat ch function.

5.4. Gzip

The last code optimized with deep jam is Gzip, extracted floenSPEC2000 benchmark suite. In
the most time-consuming function, the outer loop iterateshe current text looking for a match.
A first profiling phase highlights that the first is usually taken, ending the iteration prematurely
(due to thecont i nue instruction).

Because this loop can not be matched with another one, thgjdeealgorithm first unrolls
it by a factor of 2. Even through renaming, dependences osdhe, scan_end andscan_endl
variables remain. Indeed, the main goal is to jam two ocogee of the firstf , but the values read
during the second iteration may have been written durindithieone. So the speculative threadlet-
relative renaming created new scalar variables and sdleeubtree after the first as speculated
(set9S). Indeed, as soon as the first iteration goes through thetficst f s and update the variable
scan (instructionscan += 2), then the speculation is wrong and the second iteratiort nmushe
committed. Thus a new variabieis updated to 1 just before this instruction. During the cathm
if uis equal to 1, then the induction variablag _mat ch andchai n_| engt h are updated from the
first iteration. Otherwise, they are updated with the vdéalf the second one.

Experimental results are provided Table 3. The target tgchire is a Madison Itanium 2 pro-
cessor with 3MB of L3 cache and we use the Intel ICC compilesiva 9.1. Thé Bubblesolumn
gives the percentage of back-end bubbles occurring in desmg, i.e. the percentage of dynamic
stalls in the processor pipeline. Each table presents sdtseof each input set given with the Spec
distribution. Overall, the IPC of each input set is low (arduL). Unrolling the loop by a factor of
2 brings a small speedup. This is due to the fact that fewunogtms can be moved without any
further requirements. But deep jam brings more speedup 4p% on thepr ogr aminput set.

21

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

6. Conclusion

This papers presents a new program optimization, calleg {®, to convert coarse-grain paral-
lelism into finer-grain instruction or vector parallelisrithis optimization is applicable to irregu-
lar control and data flow where traditional optimizationd fa extract parallelism from chains of
dependent instructions. It handles nested loops and uicfabté conditionals, removing memory-
based dependences with modern scalar and array renamimgigees. Several experiments are
conducted on a wide-issue architecture, showing that dmapbyings good speedups on real ap-
plications: 43.3% on a cryptanalysis code, up to 58.9% onprdational biology applications and
40% on a SPECINT 2000 benchmark function. We detail strategind variants associated with the
jamming of irregular control structures, and integratenthia@ a practical deep jam algorithm. We
also study the implementation of deep jam in a feedbaclcticeoptimization framework.

Deep jam is also appealing for domain-specific program gdoer [51]; we believe expert
knowledge (from the programmer) will dramatically smodtie implementation challenges, com-
pared with a general-purpose compiler optimization frammw It seems interesting to evaluate
deep jam for grid processors [41, 42], reconfigurable coinguind hardware synthesis [52], and
custom extensions to VLIW processors [53, 54]. In this cxintdeep jam should be extended to
favor the jamming of control structures with non-conflictinsage of functional units; e.g., favoring
the interleaving of floating-point and bitwise operatioosthe fusion of array and scalar code [21].
Since deep jam revisits several automatic parallelizagehniques for irregular programs, coupling
it with hybrid static-dynamic analyses [55] may improveattectiveness.

References

[1] J. Gonzéalez and A. Gonzalez, “The potential of data vajueculation to boost ILP,” idCM
Int. Conf. on Supercomputing (ICS'9%)p. 21-28, 1998.

[2] B. Calder, G. Reinman, and D. M. Tullsen, “Selective waprediction,” inProc. Intl. Symp.
on Computer Architecture (ISCA'9Qp. 64—74, 1999.

[3] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous mhfgading: Maximizing on-chip par-
allelism,” in Proc. Intl. Symp. on Computer Architecture (ISCA'95n 1995.

[4] A. Cristal, O. J. Santana, M. Valero, and J. F. Martindgward kilo-instruction processors,”
ACM Trans. on Architecture and Code Optimizatigal. 1, no. 4, pp. 389—-417, 2004.

[5] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A schdahstruction queue design using
dependence chains,” iaroc. Intl. Symp. on Computer Architecture (ISCA'0@nchorage,
AK), May 2002.

[6] A. Moshovos, P. Banerjee, S. Hauck, and Z. A. Ye, “Chinaaéx high-performance architec-
ture with a tightly-coupled reconfigurable functional yhih Proc. Intl. Symp. on Computer
Architecture (ISCA’04)(Vancouver, BC), jun 2000.

[7] S. Yehiaand O. Temam, “From sequences of dependentigigtns to functions: An approach
for improving performance without ILP or speculation,” Rroc. Intl. Symp. on Computer
Architecture (ISCA’04)(Munich, Germany), June 2004.

22

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

R. Allen and K. KennedyQptimizing Compilers for Modern Architecturegorgan and Kauf-
man, 2002.

K. Kennedy and K. McKinley, “Maximizing loop parallelis and improving data locality via
loop fusion and distribution,” ihanguages and Compilers for Parallel Computigortland),
pp. 301-320, 1993.

S. Carr, C. Ding, and P. Sweany, “Improving softwaredfiping with unroll-and-jam,” in
Proceedings of the 29th Hawaii Intl. Conf. on System Scie(tldblCSS'96) Volume 1: Software
Technology and ArchitecturdEEE Computer Society, 1996.

M. Lam, “Software pipelining: an effective schedulitechnique for vliw machines,” iACM
Symp. on Programming Language Design and Implementati&®I(B8), (Atlanta, GA),
pp. 318-328, July 1988.

J. Wang and G. Gao, “Pipelining-dovetailing: a tramsfation to enhance software pipelin-
ing for nested loops,” irintl. Conf on Compiler Construction(CC’96)ol. 1060 of LNCS
(Linkdping, Sweden), pp. 1-17, Springer-Verlag, Apr. 1996

H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G.Gao0, “Single-dimension software-
pipelining for multi-dimensional loops,” IACM Conf. on Code Generation and Optimization
(CGO'04), pp. 163-174, Mar. 2004.

J. A. Fisher, “Trace scheduling : A technique for glob@trocode compactionJEEE Trans.
on Computersvol. C-30, July 1981.

W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.t%¥a R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Hamd D. M. Lavery, “The
superblock: an effective technique for VLIW and superscatanpilation,” J. Supercomput.
vol. 7, no. 1-2, pp. 229-248, 1993.

R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaand W. mei W. Hwu, “Su-

perblock formation using static program analysis,"NWHCRO 26: Proceedings of the 26th
annual international symposium on Microarchitectuteos Alamitos, CA, USA), pp. 247—-
255, IEEE Computer Society Press, 1993.

S. S. Muchnick Advanced Compiler Design & Implementatidiorgan Kaufmann, 1997.

D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. Mrozier, B.-C. Cheng, P. R.
Eaton, Q. B. Olaniran, and W.-M. Hwu, “Integrated predidated speculative execution in
the IMPACT EPIC architecture,” ifProc. Intl. Symp. on Computer Architecture (ISCA’98)
July 1998.

A. G. Dean and J. P. Shen, “Techniques for software thieegration in real-time embedded
systems,” iINEEE Real-Time Systems Symposium (RTSS®®)drid, Spain), Dec. 1998.

A. G. Dean, “Software thread integration for embeddgstam display applicationsTrans.
on Embedded Computing Sysl. 5, no. 1, pp. 116-151, 2006.

23

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

[21] W. So and A. G. Dean, “Procedure cloning and integrafamconverting parallelism from
coarse to fine grain,” ifith Annual Workshop on Interaction between Compilers and@der
Architectures (INTERACT-72003.

[22] W. Soand A. G. Dean, “Reaching fast code faster: usindetiog for efficient software thread
integration on a vliw dsp,” CASES '06: Proceedings of the 2006 international confexenc
Compilers, architecture and synthesis for embedded sgst®&aw York, NY, USA), pp. 13—
23, ACM Press, 2006.

[23] P. Carribault, A. Cohen, and W. Jalby, “Deep jam: Cosi@r of coarse-grain parallelism to
instruction-level and vector parallelism for irregulamdipations,” inPACT '05: Proceedings
of the 14th International Conference on Parallel Architees and Compilation Techniques
(PACT’05) (Washington, DC, USA), pp. 291-302, IEEE Computer Sockap5.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “Thgmm dependence graph and its use in
optimization,”ACM Trans. Program. Lang. Systol. 9, no. 3, pp. 319-349, 1987.

[25] P. Feautrier, “Array expansion,” iACM Int. Conf. on SupercomputingSt. Malo, France),
pp. 429-441, July 1988.

[26] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Arrayaflatv analysis and its use in ar-
ray privatization,” in20"ACM Symp. on Principles of Programming Languad&harleston,
South Carolina), pp. 2-15, Jan. 1993.

[27] P. Tu and D. Padua, “Automatic array privatization,"8AWorkshop on Languages and Com-
pilers for Parallel Computingno. 768 in LNCS, (Portland, Oregon), pp. 500-521, Aug. 1993

[28] K. Knobe and V. Sarkar, “Array SSA form and its use in giatization,” in 25"ACM Symp.
on Principles of Programming Languagé$an Diego, CA), pp. 107-120, Jan. 1998.

[29] A. Cohen,Program Analysis and Transformation: from the Polytope ®ldd Formal Lan-
guages PhD thesis, Université de Versailles, France, Dec. 1999.

[30] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and.EZadeck, “Efficiently computing
static single assignment form and the control dependermghgrACM Trans. on Program-
ming Languages and Systerasl. 13, pp. 451-490, Oct. 1991.

[31] J.-F. Collard, “The advantages of reaching definitionalgses in Array (S)SA,” in
11™"Workshop on Languages and Compilers for Parallel Computimg 1656 in LNCS,
(Chapel Hill, North Carolina), pp. 338—-352, Springer-‘agr] Aug. 1998.

[32] D. Barthou, A. Cohen, and J.-F. Collard, “Maximal stagixpansion,” ir25" ACM Symp. on
Principles of Programming Languages (PoPL'98%an Diego, California), pp. 98—-106, Jan.
1998.

[33] M. Herlihy and J. E. B. Moss, “Transactional memory: tatectural support for lock-free
data structures,” iINSCA '93: Proceedings of the 20th annual international sgsipm on
Computer architecturg(New York, NY, USA), pp. 289-300, ACM Press, 1993.

24

DEePJAM: CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

[34] P. Feautrier, “Dataflow analysis of scalar and arragmfices,”Int. J. of Parallel Program-
ming vol. 20, pp. 23-53, Feb. 1991.

[35] M. Griebl and J.-F. Collard, “Generation of synchrosaode for automatic parallelization of
whi | e loops,” in Euro-Par’95 (S. Haridi, K. Ali, and P. Magnusson, eds.), vol. 966.0§CS
pp. 315-326, Springer-Verlag, 1995.

[36] L. Rauchwerger and D. Padua, “The LRPD test: Specwdatiin—time parallelization of
loops with privatization and reduction parallelizationEEE Transactions on Parallel and
Distributed Systems, Special Issue on Compilers and Layegutor Parallel and Distributed
Computersvol. 10, no. 2, pp. 160-180, 1999.

[37] T. Kisuki, P. Knijnenburg, K. Gallivan, and M. O’Boyl&T he effect of cache models on itera-
tive compilation for combined tiling and unrolling,” iRarallel Architectures and Compilation
Techniques (PACT'0Q)EEE Computer Society, Oct. 2001.

[38] K. D. Cooper, D. Subramanian, and L. Torczon, “Adapiyimizing compilers for the 21st
century,”J. of Supercomputin@002.

[39] S. Winkel, “Exploring the performance potential of niam processors with ilp-based
scheduling,” inlEEE/ACM International Symposium on Code Generation antin@pation
(CGO’04), (Palo Alto), March 2004.

[40] W. Soand A. G. Dean, “Complementing software pipelgnrith software thread integration,”
in ACM Conference on Languages, Compilers, and Tools for Eddae8ystems (LCTES'0Q5)
2005.

[41] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. HuhHbirger, S. W. Keckler, and C. R.
Moore, “Exploiting ILP, TLP, and DLP with the polymorphou®RTPS architecture,” ifProc.
Intl. Symp. on Computer Architecture (ISCA’08an Diego, CA), June 2003.

[42] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. GhodraB. Greenwald, H. Hoffman, J.-W.
Lee, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shaigrv. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal, “The RAW microprocessor: dmputational fabric for
software circuits and general purpose prograriSEE Micro, 2002.

[43] M. D. Smith, “Overcoming the challenges to feedbadiedied optimization,” iPACM SIG-
PLAN Workshop on Dynamic and Adaptive Compilation and Qpétion, pp. 1-11, 2000.
(Keynote Talk).

[44] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff]terative compilation in program
optimization,” inProc. CPC’10 (Compilers for Parallel Computergyp. 35-44, 2000.

[45] N.I. of Standards and Technologies, e@e¢cure Hash Standardol. FIPS-180. Information
Processing Standards Publication, may 1993.

[46] A. Joux, “Collisions in SHA-0."” CRYPTO Rump Session,(20

[47] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby, andl&nuet, “Collisions of SHA-0 and
reduced SHA-1," irEUROCRYPT'05Springer-Verlag, 2005.

25

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

[48] H.Hyyro and G. Navarro, “Faster bit-parallel approsta string matching,” ifProc. Symp. on
Combinatorial Pattern Matching (CPM’02ho. 2373 in LNCS, pp. 203-22, Springer-Verlag,
2002.

[49] G. Navarro and M. RaffinotFlexible Pattern Matching in Strings Cambridge University
Press, 2002.

[50] G. Myers, “A fast bit-vector algorithm for approximatdring matching based on dynamic
programming,”J. of the ACMvol. 46, no. 3, pp. 395-415, 1999.

[51] J. Moura, M. Puschel, J. Dongarra, and D. Padua, Bdsceedings of the IEEE. Special Issue
on Program Generation, Optimization, and Platform Adaioiat vol. 93. IEEE Computer
Society, Jan. 2005.

[52] B. So, M. W. Hall, and P. Diniz, “A compiler approach tosilgn space exploration in
fpga-based systems,” MCM Symp. on Programming Language Design and Implementatio
(PLDI'02), June 2002.

[53] R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. Mahlke,Abraham, and G. Snider, “High-
level synthesis of nonprogrammable hardware acceleratech. rep., Hewlett-Packard, May
2000.

[54] “Silicon Hive web site.’ht t p: // www. si | i con- hi ve. com

[55] S.Rus, L. Rauchwerger, and J. Hoeflinger, “Hybrid as@lystatic & dynamic memory refer-
ence analysis,Int. J. of Parallel Programmingvol. 31, no. 4, pp. 251-283, 2003.

26

