
Journal of Instruction-Level Parallelism 9 (2007) 1–26 Submitted 6/07; published 9/07

Deep Jam: Conversion of Coarse-Grain Parallelism to Fine-Grain and
Vector Parallelism

Patrick Carribault ∗ PATRICK@ICES.UTEXAS.EDU

Department of Computer Science, University of Texas, Austin.

Stéphane Zuckerman STEPHANE.ZUCKERMAN@PRISM.UVSQ.FR

LRC Itaca, University of Versailles and CEA DAM.

Albert Cohen ALBERT.COHEN@INRIA .FR

ALCHEMY Group, INRIA Saclay and LRI, Paris Sud 11 University.

William Jalby WILLIAM .JALBY@PRISM.UVSQ.FR

LRC Itaca, University of Versailles and CEA DAM.

Abstract
A number of computational applications lack instruction-level parallelism. This loss is particu-

larly acute on sequences of dependent instructions on wide-issue or deeply pipelined architectures.
We consider four real applications from computational biology, cryptanalysis, and data compres-
sion. These applications are characterized by long sequences of dependent instructions, irregular
control-flow and intricate scalar and memory dependence patterns. While these benchmarks ex-
hibit good memory locality and branch-predictability, state-of-the-art compiler optimizations fail
to exploit much instruction-level parallelism.

This paper shows that major performance gains are possible on such applications, through a
loop transformation calleddeep jam. This transformation reshapes the control-flow of a programto
facilitate the extraction of independent computations through classical back-end techniques. Deep
jam combines accurate dependence analysis and control speculation, with a generalized form of
recursive, multi-variant unroll-and-jam; it brings together independent instructions across irregular
control structures, removing memory-based dependences through scalar and array renaming. This
optimization contributes to the extraction of fine-grain parallelism in irregular applications. We
propose a feedback-directed deep jam algorithm, selectinga jamming strategy, function of the
architecture and application characteristics.

1. Introduction and Related Work

Optimizing compilers perform a wealth of program transformations to maximize the computation
throughput of modern processor architectures. These optimizations improve the behavior of ar-
chitecture components, such as the memory bus (reduction ofthe memory bandwidth), the cache
hierarchy (locality optimization), the processor front-end (removal of stalls and flushes in the in-
struction flow), the processor back-end (instruction scheduling), and the mapping of instructions to
functional units and register banks. Yet superscalar out-of-order execution, software pipelining and
automatic vectorization fail to exploit enough fine-grain parallelism when short producer-consumer
dependences hamper aggressive instruction scheduling [1,2]. Many hardware and software solu-
tions have been proposed.

∗. While at LRC Itaca, University of Versailles and CEA DAM.

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

Hardware Approaches

• Simultaneous multithreading [3] is specifically aimed at the filling of idle functional units
with independent computations. Yet the program must be explicitly threaded, or one may
resort to automatic parallelization.

• Large and structured instruction windows also enable coarser grain parallelism to be exploited
in aggressive superscalar designs [4, 5].

• Load/store speculation and value prediction can also improve out-of-order superscalar execu-
tion of dependent instruction sequences [1, 2].

• Instruction sequence collapsing bridges value predictionand instruction selection. Typical
examples are fused multiply-add (FMA) or domain-specific instructions like the sum of ab-
solute differences (SAD in Intel MMX), or custom operators [6, 7].

Software Approaches

Closer to our work, many approaches do not require any hardware support but rely on aggres-
sive program transformations toconvert coarse-grain parallelism from outer control structures into
fine-grain parallelism. Theseenabling transformations enhance the effectiveness of a back-end
scheduler (for ILP) or vectorizer. Classical loop transformations [8] may improve the effectiveness
of back-end scheduling phases: loop fusion and unroll-and-jam combined with scalar promotion
[9, 10] is popular in modern compilers. Several authors extended software-pipelining to nested
loops, e.g., through hierarchical scheduling steps [11, 12] or modulo-scheduling of outer loops [13].
But these techniques apply mostly to regular, static-control loop nests.

Extension to loops with conditionals may incur severe overheads, and none of these approaches
handle nestedwhile loops. Two approaches deal with ILP beyond branches: speculative scheduling
techniques coalesce consecutive basic blocks, whilesoftware thread integrationmerges instructions
coming from independent procedures to increase ILP.

Speculative Scheduling. Trace scheduling [14] can increase the amount of fine-grain parallelism
in intricate acyclic control-flow, but its ability to convert coarser-grain parallelism is limited. It aims
at using the trace of the program to group consecutive basic blocks and consider these blocks as one.
A function is divided intro traces representing the frequently-executed paths. Side entrances and side
exits are allowed in these traces. Instructions are scheduled within a trace ignoring branches. But
this has a major drawback: the implementation complexity incurred by the need to maintain correct
program execution after moving instructions across basic blocks (bookkeeping).

Superblock scheduling [15, 16] is also a technique for exploiting ILP across basic-block bound-
aries. A superblock is a trace which has no side entrances: side entrances are removed thanks to tail
duplication [17, 18]. Formation of superblocks can be directed thanks to dynamic feedback from
profiling and static analysis [16].

Software Thread Integration. Independently,software thread integration(STI) [19, 20] is de-
signed to map multithreaded applications on small embeddeddevices without preemptive multitask-
ing operating systems. STI proceeds with the static interleaving of independent threads into a single
sequential program, considering arbitrary control flow, including procedure calls. This technique
has recently been proposed to exploit coarse-grain parallelism on wide-issue architectures [21]: it

2

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

statically interleaves several procedures calls (from different procedures or not). Finally, STI has
been extended to iterative compilation [22].

Yet STI does not allow any dependences between the threads being statically interleaved, it only
provides rough support for nested conditionals (decision trees) andwhile loops, and requires the
manual choice of the procedures to integrate.

Contributions. This paper presents a new program optimization, calleddeep jam, to convert
coarse-grain parallelism into finer-grain instruction or vector parallelism.1 Deep jam is a recur-
sive, generalized form of unroll-and-jam; it brings together independent instructions across irregular
control structures, breaking memory-based dependences through scalar and array renaming. This
transformation can enhance the ability of a back-end optimizer to extract fine-grain parallelism and
improve locality in irregular applications. Deep jam revisits STI to (statically) interleave multiple
fragments of asinglesequential program, associating it with optimizations fordecision trees, scalar
and array dependence removal, and speculative loop transformations. We show that deep jam brings
strong speedups on four real control-intensive codes, allowing idle functional units to be fed with
independent operations, with a low control overhead.

This paper is organized as follows: Section 2 introduces theprimitive jamming transformations
of the control-flow, including scalar and array renaming, and states a first deep jam algorithm.
Section 3 explains the criteria of jamming and variations toadapt to dynamic execution profiles.
Section 4 integrates all these analyses and transformations in a generic deep jam algorithm and
proposes hints to design a practical algorithm, reducing the parameter space induced by the generic
one. Section 5 describes four real applications and their performance inefficiencies, then shows how
deep jam can achieve good speedups.

2. Jamming Irregular Control With Data Dependences

Figure 1 shows a single-stage basic control-flow transformation performed by deep jam. In this
example, the outer loop cannot be fused with other loop to increase the ILP with control- and data-
independent instructions. Moreover, the scalar variablea produces many intra-loop — unlabeled
or 0-labeled edges — and loop-carried dependences — edges with positive distance labels [8]. To
improve performance, let us first unroll the loop (step b). The main purpose is to merge (or jam)
structures with similar control-flow and independent instructions. For that, the unrolling of the outer
loop exhibits two pairs of identical structures:if/if andwhile/while. But the data dependences
on a hamper the code motion needed to group these structures. Therefore, a partial renaming is
mandatory: this is a SSA-like renaming, but only one assignment per structure is needed (step b).
Then, step c matches pairs of identical control structures by moving the secondif above the second
while loop, then step d jamsif conditionals andwhile loops pairwise (respectively).

This can be seen as a generalized unroll-and-jam [8] for irregular control, including non-loop
structures. Performance improvements come from the execution of larger basic blocks with in-
creased IPC: when conditionsp1 andp2 (resp.q1 andq2) hold simultaneously, instructions coming
from two subsequent iterations of the outerfor loop may be concurrently executed.

1. Deep jam was first presented in a conference [23]. This longer version describes a compilation algorithm at much
greater depth, and draws a pragmatic roadmap to implement deep jam while optimizing the profitability of its steer-
ing heuristics. It also reports on the successful optimization of two additional applications, including the SPEC
benchmark Gzip.

3

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

for (i=0; i<10; i++)
if (p)
a = ···;

while (q)
··· = a + ···;

≥1 ≥0

≥1

-a- Original nest.

for (i=0; i<10; i+=2)
a1 = φ(a, a2)
if (p1)
a1 = ···;

while (q1)
··· = a1 + ···;

if (p2)
a2 = ···;

a2 = φ(a2, a1)
while (q2)
··· = a2 + ···;

-b- Unroll, renaming.

for (i=0; i<10; i+=2)
a1 = φ(a, a2)
if (p1)
a1 = ···;

if (p2)
a2 = ···;

a2 = φ(a2, a1)
while (q1)
··· = a1 + ···;

while (q2)
··· = a2 + ···;

-c- Match.

for (i=0; i<10; i+=2)
a1 = φ(a,a2)
if (p1 && p2)

a1 = ···;
a2 = ···;

else if (p1)
a1 = ···;

else if (p2)
a2 = ···;

a2 = φ(a2, a1)
while (q1 && q2)

··· = a1 + ···;
··· = a2 + ···;

while (q1)
··· = a1 + ···;

while (q2)
··· = a2 + ···;

-d- Single jamming stage.

a1 = a;
for (i=0; i<10; i+=2)

if (p1 && p2)
a1 = ···;
a2 = ···;

else if (p1)
a1 = ···;
a2 = a1;

else if (p2)
a2 = ···;

while (q1 && q2)
··· = a1 + ···;
··· = a2 + ···;

while (q1)
··· = a1 + ···;

while (q2)
··· = a2 + ···;

a1 = a2;

-e- Convert from renaming.

Figure 1: Irregular jam with scalar dependences.

2.1. A Single Jamming Stage

Throughout the deep jam process, the termthreadletwill name any structured code fragment can-
didate for jamming with another one. In the previous example(Figure 1), eachif structure and
while loop represent a threadlet.

A stage of the jamming process uses the control-dependence graph (CDG) [24] to extract and
process the threadlets. Starting from any control node of this graph, applying asingle jamming
stageboils down to the following sequence of operations:

1. Among children of the parent control node, choose pairs ofcontrol structures — called
threadlets— to be jammed together. If few matching pairs can be built this way, and if
the parent control node is a loop, unroll it by an unspecified factor before identifying pairs of
threadlets.2

2. For each pair of threadlets, apply the following operations:

(a) Rename scalar and array variablesthreadlet-wiseto remove all memory-based depen-
dences between threadlets.

2. A factor of 2 is most of the time a good trade-off to exhibit matching threadlets without code size explosion. But this
factor is not limited.

4

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

(b) Match the selected threadlets. Apply code motion on one threadlet to obtain a sequential
code of these two threadlets. Assuming the lack of flow dependences across structures
between the selected threadlets, this code motion is valid.

(c) Fuse each pair of loops and each pair of conditionals [21]. Generate the appropriate loop
epilogs to compensate for unbalanced trip counts. Compute the cross-product of the
control-state automata associated with conditionals, andgenerate an optimized nested
conditional structure from the resulting automaton [21].

The example in Figure 1 follows this informally-stated algorithm. The parent control node is a
for loop containing 2 children: awhile loop and anif structure (Figure 1-a). Because the control
flow of these 2 structures is not similar, and the root node is aloop, the first step advises to unroll
the loop by a factor of 2 (Figure 1-b). Then, the algorithm selects theif-if pair of threadlets and,
after applying renaming, groups it by moving the second structure next to the first one. Then, these
threadlets are jammed creating a new conditional structurewith the merged bodies. Finally, the
algorithm goes back to step 2 and selects thewhile-while pair. These structures are matched and
jammed according to the final steps of the algorithm (Figure 1-c). The final code corresponds to the
Figure 1-d.

2.2. Threadlet-Relative Renaming

STI targets independent threads only; this is a reasonable simplification for real-time system design
[19], but this would kill most jamming opportunities in our compilation context. As seen in Figure 1,
we perform a threadlet-wise SSA-like renaming in order to remove memory-based dependences.
This is a major improvement on [21].

Scalar Renaming. Many dependence removal techniques have been designed in the context of
automatic parallelization [25, 26, 27, 28, 29]. Typically,control dependences can be converted into
data dependences (if-conversion), and memory-based data-dependences (output- and anti-dependences)
can be removed by expansion, like privatization or renaming. Speculation or data-flow restoration
induce an execution overhead; we must make sure the extra parallelism is worth what we pay for
it. Fortunately, in most cases, deep jam reschedules the program in such ways that the overhead
of dependence removal techniques can be minimized. Indeed,only a renaming concerning scalars
written in at least one threadlet is needed.

This threadlet-relativerenaming is a derived form of SSA transformation [30]: variables pro-
duced before the second threadlet are subscripted by 1 whilethose produced inside the second
threadlet and after are subscripted by 2. This partial renaming is sufficient because it removes every
memory-based dependence hampering the grouping of these 2 threadlets. Phi-functions are added
following the SSA rules but many of these functions are useless because they concern the same
variable names. Converting from this renaming behaves likethe DeSSA transformation [30].

Array Renaming. Dealing with array dependences is much more complicated. ArraySSA [28] is
the most natural extension of SSA. It is a good candidate to jam irregular control structures since
it does not assume any particular control-flow or dependenceinformation, and since it is mostly an
array renaming transformation.3 Although DeArraySSA is more complex than DeSSA, the flow of

3. Unlike array expansion [25, 29] and privatization [27].

5

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

data can be regenerated with low overhead in many cases [28],although precise static analysis of
the array data-flow may be required [31].

Since it is not always possible to find a DeArraySSA with low overhead, alternate solutions
consist in pre-constraining array renaming to cases where it is statically known how to regenerate the
correct data-flow efficiently [32, 29], based on array data-flow analysis [25, 31]. These sophisticated
expansion schemes have a lower runtime overhead but requireaccurate static analyses.

In general, it is important to take into account the overheadof array renaming in the performance
estimate of any jamming strategy. Unfortunately, few quantitative evaluations of this overhead are
available for the above-mentioned expansion schemes, especially for sequential execution.

2.3. Speculative Threadlet-Relative Renaming

This threadlet-relativerenaming does not remove every dependence: when flow dependences ham-
per the reordering of the threadlets candidate for jamming,a speculative variant of this renaming
can be used. This is valuable when this dependence is guardedby a rarely-occurring condition.
Consider the example in Figure 2-a, the parent root node contains two children with different con-
trol flows, so the loop is unrolled by a factor of 2 according tothe previously-stated algorithm. The
next step is the threadlet-relative renaming, detailed in the previous sections (Figure 2-b). However,
despite this renaming, a dependence remains from the secondif to the firstwhile, preventing the
reordering phase to match the corresponding structures. But the producer of this dependence is
guarded byp1: by speculating that thisif is not taken, the reordering can be done, but a recover
mechanism is necessary if the speculation was not appropriate.

Let t1 andt2 be two threadlets that cannot be jammed because of flow dependences. Assuming
that a dependence analysis gives us the setScontaining every block producing such dependences,
every block in this set will then be speculated as not taken.

Generic Speculation. When no unrolling is involved, there is an intuitive way of speculating.
Each time we movet2 across a speculated blockB ∈ S – i.e. we movet2 to the left on the CDG
[24], overB –, the code oft2 must be duplicated at the control-flow join ofB to ensure that we still
maintain the proper semantics of the program.

Transactional Model. If the parent control node is an unrolled loop (as in the example Figure 2),
we perform atransaction-liketransformation [33]. Eachφ-function associated with a speculated
block B ∈ S becomes aφu

S-function, whereu is the name of theupdated-statevariable associated
with B. When we reach the DeSSA-like stage, the conversion of unannotatedφ-functions does not
change; only the annotated ones are influenced by the result of the speculation. Indeed, to remove
the φu

S-functions, a special processing is applied: if we did not traverseB, thenu is false and the
φu

S-function becomes a classicalφ-function. Otherwise, we must not commit variable updates that
occurred during the misspeculated iteration – we must cancel the whole iteration. To do so, we
simply do not allow variables to be updated past the first misspeculated unrolled iteration

In Figure 2-b, let us speculate that theif block onp1 is not taken. Of course, this choice needs to
be justified by a static or dynamic path profiling. This block is added to the setS. Theφ-function at
the control-flow merge point of these two iterations is annotated withSandu, the latter representing
the variable used to guard the commit of the second iteration(Figure 2-c). This variable appears
in the speculated blockS: u is put to 1 meaning that the speculation is then incorrect. Thus the
φ-definition a1 = φu

S(a, a2) can be read asa1 is equal toa at the entry point of the loop, and

6

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

is updated toa2 if the previous iteration was correctly speculated on the set of blocks S or is not
written otherwise. Next, apply the jamming phase leads to the code in Figure 2-d.

Only annotatedφ-functions are converted from this renaming in a special way; here theφ-
function ona1 is influenced by the result of the speculation. At the end of the loop, ifu is equal to
0, then the speculation is valid, so the update ofa1 is performed. Otherwise,a1 is not updated and
the induction variable is brought back to the value it would have had at the end of the last correct
iteration. In our example, when we misspeculate on the outcome of the second threadlet, we must
decrement the value of the induction variable to re-executethe misspeculated iteration.4 This leads
to the code in Figure 2-e.

Annotating everyφ-function associated to the join point of the unrolled loop is sufficient to
control the data flow from the second unrolled iteration to the next one. Indeed, if a misspecula-
tion occurs, then the second unrolled iteration has to be played again. In that case, the variable
consistency is guaranteed through the non-update of every scalar written during the misspeculated
iteration.

This approach has two main advantages: (1) it involves a verylow overhead (almost no recovery
code is needed, save for the induction variables shift) and (2) since we speculate on scarcely-taken
blocks, re-runs of a single iteration rarely happen, and as such barely worsen the program perfor-
mance when the speculation was wrong.

This speculative renaming can also be extended to arrays butdepends on the array data-flow
analysis to avoid run-time recovery overhead [34, 32].

2.4. Breaking Dependences Speculatively

Dependences may remain after renaming (even speculative one), including def-use dependences
carrying the actual flow of data and memory-based dependences whose removal through array re-
naming would incur too much runtime overhead. Such dependences may disappear by runtime
inspection mechanisms, and more generally, any dependencecan be speculatively broken with the
appropriate recovery mechanism; see, e.g., [35, 36] for compile-time approaches to runtime de-
pendence analysis and speculative parallelization. Sincethese techniques target massively parallel
systems it is unlikely their overhead would be compatible with the comparatively limited speedup
expected from deep jam.

Nevertheless, we will see in Section 5 that speculation can be profitable if restricted to critical
cases where, (1) it incurs limited squash overhead, and (2) it is required to enable any jamming.
In practice, it may be profitable to speculate on control-dependences due to early exits, and when
ad-hoc algorithmic information can be used to avoid squashing the (whole) speculative threadlet.

2.5. Jamming Recursively

Quite naturally, jamming stages are designed to be recursively applied to inner control structures,
until all the control flow dominated by the initial control statement has been covered. In addition,
if an isolated loop appears at any jamming stage, it has to be unrolled by a factor of two before
descending recursively in its body.5 This way, any parallelism among outer loop iterations will

4. In general case, induction variables are updated according to the speculation outcome.
5. As an exception, innermost loops that can be efficiently optimized with traditional software pipelining (and possibly

if-conversion) should not be unrolled.

7

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

for (i=0; i<10; i++)
while (q)

··· = a + ···;
if (p)

a = ···;

-a- Original nest.

a = ···;
for (i=0; i<10; i+=2)

a1 = φ(a, a2)
while (q1)

··· = a1 + ···;
if (p1)

a1 = ···;
while (q2)

··· = a1 + ···;
if (p2)

a2 = ···;
a2 = φ(a2, a1)

-b- Unroll, threadlet-relative renaming.

a = ···; u = 0;
for (i=0; i<10; i+=2)

a1 = φu
S(a, a2)

while (q1)
··· = a1 + ···;

while (q2)
··· = a1 + ···;

if (p1) // Block S
u = 1;
a1 = ···;

if (p2)
a2 = ···;

a2 = φ(a2, a1)

-c- Match, speculation onif (p1).
a = ···; u = 0 ;
for (i=0; i<10; i+=2)

a1 = φu
S(a, a2)

while (q1 && q2)
··· = a1 + ···;
··· = a1 + ···;

while (q1)
··· = a1 + ···;

while (q2)
··· = a1 + ···;

if (p1) // Block S
u = 1;
a1 = ···;

if (p2)
a2 = ···;

a2 = φ(a2, a1)

-d- Single jamming stage.

a = ···; a1 = a; u = 0;
for (i=0; i<10; i+=2)

while (q1 && q2)
··· = a1 + ···;
··· = a1 + ···;

while (q1)
··· = a1 + ···;

while (q2)
··· = a1 + ···;

if (p1) // Block S
a1 = ···; u = 1;

a2 = a1;
if (p2)
a2 = ···;

if (u == 0) a1 = a2;
else i = i - 1; u = 0;

-e- Convert from threadlet-relative renaming.

Figure 2: Irregular jam with speculative scalar-dependence removal.

ultimately be narrowed down to inner basic blocks, hence converting coarse grain parallelism into
finer grain instruction-level or vector parallelism. Of course, we are still far from an automatic
deep jam algorithm. The real challenge in designing such an algorithm lies in the integration of a
quantitative profitability analysis. This will be done in Section 4.

Managing code size is another challenge. Compared to STI, the urge to fuse as much control-
flow as possible may lead to unacceptable expansion: specialcare is needed to reduce branch over-
head resulting from the product control-state automaton. To mitigate this overhead, we compute —
and generate code for — product-states associated with paths where basic blocks from the jammed
threadlets will effectively be concatenated in further stages. Code associated with the remaining
control states (single and mismatching conditional branches,while epilogs) is not jammed any fur-
ther. For example, Figure 3 shows a binary decision tree (nested conditionals) where each node has
only one (isomorphic) match when applying a jamming stage. Since jamming, e.g., a square with a
circle, would not extract any additional fine-grain parallelism, the 12 associated product states are
not computed, and the original subtrees are appended for default unjammed cases. This optimiza-
tion preserves the amount of extracted fine-grain parallelism while avoiding the duplication of code
and control for execution paths which would not benefit from the transformation.

8

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Default Decision TreeProduct States

;

for
for

if if
for

for

Figure 3: Jamming decision trees.

3. Jamming Criteria and Variants

The previous section outlined the primitive operations applied in our algorithm. Due to the variety of
motivations, overheads and nested control structures, this algorithm needs a more complex model.

3.1. Optimization Criteria

Hot Paths. Deep jam has a chance of bringing actual speedups only when significant parts of the
execution trace traverse jammed control paths: a single jamming stage should considerall pairs
of matching control structures to maximize opportunities of building larger basic blocks from in-
dependent threadlets. From feedback-directed optimization, one may promote the formation of
larger basic blocks occurring on hot execution paths. To reduce control overhead and lower register
pressure, one should not fuse basic blocks occurring on coldpaths in general. However, special
cases exist when jamming results in simplified control-flow (factoring identical conditions) or when
hot inner loops cannot be jammed without processing colder enclosing control structures: fusing
control-structures enclosing the hot basic-block may require prior fusion of external colder one. For
example, a coldif conditional including a hotwhile loop may have to be jammed to exhibit the
potential gain in fusing the innerwhile loops.

Trip Count. Dynamic information is needed to make the optimization profitable. Loop jamming
depends on the loop trip count and on its stability. Indeed, jammingwhile loops in the previous
example will be efficient if the respective trip counts are close. Furthermore, when jamming loops
whose trip-count is often close to zero, it is critical to make sure that no additional branches will
be encountered on short execution paths (e.g., on zero-tripcases), compared to the original non-
jammed loops.

Impact on ILP. Besides profile information, feedback from the effectiveness of a jamming strat-
egy is needed to quantify its benefit on ILP — through scheduleor vectorization improvements.
If deep jam is used in an iterative optimization environment[37, 38], we may assume instruction-
per-cycle (IPC) statistics are available for each basic block and for each variant; such statistics can
be easily obtained from actual runs and hardware counters, or using static estimates [39]. These
measurements take into account transformations applied inthe back-end part of the compiler, these
transformations having a strong impact on the profitabilityof our technique [40].

Compiler Transformations. From the compiler/architecture features and dynamic feedback, the
way to jam two threadlets may evolve and lead to different possible variants. This is due to specific
architectural features or compiler potential transformations.

9

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

If-conversion is an important optimization (and enabling transformation) on architectures which
support predicated execution (like Intel Itanium or Philips TriMedia). The profitability heuristic for
converting conditionals to predicated instructions needsto be revised in our context, for two reasons:

• predication reduces code duplication from the product-state control automaton;

• deep jam is profitable when coalescing basic blocks allows tofeed idle functional units: this
effect will be reinforced in a predicated implementation.

Practically, we found that if-conversion was more profitable than usual when applied to nested
conditionals, and to sequences of conditionals that were not fused by deep jam.

Interestingly, if-conversion can also improve the performance of jammed loops: if an execution
profile shows that the trip-count difference is much lower than the total number of iterations, it
is advisable to speculatively let the shorter loop continueuntil the termination of the longest one,
predicating loop bodies accordingly.

Tail-duplication is often associated with if-conversion to improve software pipelining [8]. Deep
jam has a similar impact on the tail-duplication heuristic as on if-conversion: if a significant part
of the execution is spent on non-fused code (after jamming all matching control structures), tail-
duplication can enable further jamming, e.g., of loop epilogs with subsequent straight-line code
from independent threadlets.

Eventually, as unroll-and-jam is not limited to unrolling factors of 2, it is possible to extend
deep jam to triples of matching control structures, or even more. Our current experience shows that
the control overhead and code size increase practically offset the additional ILP extraction. But this
extension should be considered on wider-issue architectures like grid processors [41, 42].

3.2. Jamming Variants and Quantitative Evaluation

We first model the variants and profitability of the jamming ofleaf control structures: innermost
control nodes enclosing straight-line code, then extend itto nestedstructures.

3.2.1. Jamming Leaf Control Nodes

We detail the different possibilities of jamming single control structures with their relative quanti-
tative evaluation. Indeed, each jamming variant may be evaluated with respect to a set of charac-
teristic parameters of the application and architecture. In this paper, we will focus on three specific
frequently-used pairs of threadlets:if-if, while-while andfor-for.

Along these evaluations,W denotes the issue width of the processor (e.g. 6 on the Itanium 2)
andP its branch misprediction penalty.6 Each jamming variant of a pair of threadlets is statically
evaluated and its evaluation is denoted NCt,v: the number of cycles to execute the jammed code of
t-type threadlets with the variantv. Furthermore, we suppose that static and/or feedback-directed
analyses have gathered the following set of parameters: (1)IPC1 (resp. IPC2) the average number of
instructions per cycle for the first (resp. second) threadlet, (2) i1 (resp.i2) the number of instructions
for the first (resp. second) threadlet, after back-end optimization (3)n1 (resp.n2) the number of
iterations if the threadlet involves a loop and (4)i1&2, IPC1&2 andn1&2 the corresponding metrics
for the jammed body of these two threadlets.

6. Such parameters are rough estimates in general, but they happen to be quite effective on the IA64 architecture.

10

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

if (p1)
S1

if (p2)
S2

-a- Original pair.

// p1 ≡ p2
if (p1)

S1
S2

-b- Equivalence.

// p1 ⇒ p2
if (p1)

S1
S2

else
if (p2)

S2

-c- Implication.

if (p1 && p2)
S1; S2

else
if (p1)

S2
if (p2)

S2

-d- Generic.

(p1) S1
(p2) S2

-e- Predication.

if (p1)
S1

(p2) S2
else

(p2) S2

-f- Unbalanced.

if (p1)
if (p2)

S1; S2
else

S1
else

if (p2)
S2

-g- Branch Prediction.

p = p1 | (p2 << 1); %>>
switch(p)

case 1:
S1; break ;

case 2:
S2; break ;

case 3:
S1; S2; break ;

-h- Tree.

Figure 4: Jamming variants ofif-if threadlets.

Jamming Variants for if-ifThreadlets. Figure 4 depicts the different ways to jam two matched
if structures, and Table 1 its associated jamming variant evaluations. The original sequential code
is presented in Figure 4-a.

A static data-flow analysis may exhibit correlations between the conditionsp1 andp2 leading
to the possible jammings in Figure 4-b and Figure 4-c. Noticethese cases may occur resulting from
the unrolling of a surrounding loop.

When static analysis fails, the most generic form of jammingis presented in Figure 4-d. Fur-
thermore, if the target architecture handles predication,then the variant in Figure 4-e is viable only
if the twoifs are mostly taken or when their bodies do not reach a significant size. Indeed, the size
of S1 andS2 plays an important role in the jamming decision: if these twoblocks are unbalanced, the
smallest one or the most taken one can be integrated inside the other to reduce the control overhead.
This leads to the variant in Figure 4-f.

Branch predictors are accurate as soon as a set of branches exhibits a bias in their respective
outcome. Of course, if the threadlets are not taken — when both p1 andp2 are false most of the time
— then it is useless to jam, but if this case occurs during the execution alternatively with a situation
beneficial for jamming, then the algorithm has to deal with the potential branch mispredictions as the
variant in Figure 4-g. When both conditions are verified, then no misprediction occurs (assuming
then branches are predictedtaken), and, when both predicates are false, then, at most, only 2
mispredictions arise compared to 3 with previous variants.The final variant requires a robust code
generator because it results in a decision tree: Figure 4-h.Each condition represents a specific
bit-matching pattern ofp and then, a simpleswitch on its value determines which condition was
verified or not.

Jamming Variants for while-whileThreadlets. Consider now a pair of threadlets containing
a while loop as shown in Figure 5-a. An estimate of the number of cycles spent in that unjammed
pair of loops can be found in Table 1.

A performance estimate for thepessimisticstrategy depicted in Figure 5-b is shown also in
Table 1. The “+1” in the instruction count stands for the computation of theconjunction of the loop

11

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

while (p1)
S1

while (p2)
S2

-a- Original pair.

while (p1 && p2)
S1
S2

while (p1)
S1

while (p2)
S2

-b- Generic.

if (p1)
if (p2)

do
S1; S2

while (p1 && p2)
while (p1)

S1
while (p2)

S2

-c- Short loops.

while (p1 || p2)
(p1) S1
(p2) S2

-d- If-converted.

Figure 5: Jamming variants ofwhile-while threadlets.

conditions. Notice IPC1&2 may be over-approximated by min(IPC1 + IPC2,W), which corresponds
to an ideal interleaving of instructions from both threadlets.

If the trip count of at least one loop is low, then the variant in Figure 5-c can be considered. In-
deed, at least one misprediction is saved with respect to thepessimisticcase, and in the best case, the
branch predictor may learn the behavior of the outer conditional, saving up to two mispredictions.
There is a benefit on short loops only: the extra control complexity and code size may degrade the
applicability of back-end optimizations and instruction cache performance.

Conversely, anoptimisticstrategy in Figure 5-d bails out when both conditions are invalidated,
predicating the execution of Letn1|2 denotes the average number of iterations of the fused part; a
performance estimate for theoptimisticstrategy is shown in table 1.

for (i=0; i<N1; i++)
S1

for (i=0; i<N2; i++)
S2

-a- Original pair.

// N1 = N2
for (i=0; i<N1; i++)

S1
S2

-b- Equivalence.

// N1 ≤ N2
for (i=0; i<N1; i++)

S1; S2
for (i=N1; i<N2; i++)

S2

-c- Static generic.

for (i=0; i<min(N1,N2); i++)
S1; S2

if (min(N1,N2) == N1)
for (i=N1; i<N2; i++)

S2
else

for (i=N2; i<N1; i++)
S1

-d- Dynamic general jam.

for (i=0; i<max(N1,N2); i++)
p1 ← i<N1
p2 ← i<N2

(p1) S1
(p2) S2

-e- Predication.

Figure 6: Jamming variants offor-for threadlets.

Jamming Variants for for-for Threadlets. Finally, we deal with the jamming of twofor
threadlets presented in Figure 6-a. In Table 1 the number of iterations of the first loop is denotedN1

and the second oneN2 because the number of iterations is static. In the first formula, the number
of branch mispredictionsx can be equal to 0, 1 or 2 but, on modern architectures, countedloops
prevent a misprediction. Therefore, we consider no misprediction in further variant.

The main jamming variants depend on the ability for the compiler to compareN1 andN2. Indeed,
if a static analysis guarantees the equality of these valuesor their order, the variants in Figure 6-
b and in Figure 6-c can be respectively used. The variant c is relevant only when the number
of iterations becomes important (otherwise, other back-end optimizations have to be turned off,

12

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Case Evaluation Number of branch
mispredictionsx

NCif,a
i1

IPC1
+ i2

IPC2
+xP {0,1,2}

NCif,b
i1&2

IPC1&2
+xP {0,1}

NCif,c, NCif,d
i1&2

IPC1&2
+xP {0,1,2}

NCif,e
i1&2

IPC1&2

NCwhile,a
n1i1

IPC1
+ n2i2

IPC2
+2P

NCwhile,b
n1&2(i1+i2+1)

IPC1&2
+ (n1−n1&2)i1

IPC1
+ (n2−n1&2)i2

IPC2
+3P

NCwhile,c NCwhile,b−2P

NCwhile,d
n1|2(i1+i2+1)

IPC1|2
+P

NCfor,a
N1i1
IPC1

+ N2i2
IPC2

+xP {0,1,2}

NCfor,b
N1i1&2

IPC1&2

NCfor,c
N1i1&2

IPC1&2

NCfor,e
max(N1,N2)(i1|2+2)

IPC1|2

Table 1: Jamming variant evaluation ofif-if, while-while, and for-for threadlets (see Fig-
ures 4, 5 and 6).

like prefetching or software pipelining) and when the difference between the two trip counts is
significant too. Otherwise, thetail code has to be generated in another way (software pipelining,
versioning, . . .). Finally, if the compiler and/or the target architecture handle if-conversion and the
trip count of both loops is close, then the loop with the lowest trip count can be aligned on the largest
by predicating the corresponding blocks. The resulting code is presented in Figure 6-e. The number
of instructions of this new loop body isi1|2 + 2 — to model the computation of each predicate —
and an IPC equal to IPC1|2.

3.2.2. Jamming Intermediate Control Nodes

Non-leaf structures with nested control may immediately benefit from a jamming stage, if they
contain significant straight-line blocks with chains of dependent instructions. More generally, the
profitability of jamming intermediate control nodes derives from the further jamming stages they
enable on nested control structures. One may adapt the previous performance estimates to handle
this case, thanks to two simple observations:

1. instruction countsi1 andi2 correspond to the number of dynamically executed instructions in
every inner conditional structure and block of straight-line code;

2. the IPC for each version can be derived from the division ofthe previous instruction count by
the sum of the performance estimates of the same inner structures.

13

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

4. Deep Jam Algorithm

Deep jam is more complex than a recursive application of the single jamming stage defined in
Section 2.1.. A wide spectrum of transformations, static analyses and performance estimations
must be coordinated in a complex interplay. Selecting a profitable strategy within the resulting
search space seems challenging.

The deep jam algorithm starts from any node in the CDG and takes 3 steps. First of all, every
jamming variant among pairs of threadlets inside the current body is generated. Then, for each pre-
viously generated tree, its performance is evaluated — statically or dynamically — before choosing
the best one.

Variant Generation. Figure 7 summarizes the algorithm generating variants of a code after ap-
plication of deep jam. It tries iteratively to jam all matching pairs of threadlets, considering all
possible variants in a breadth-first fashion. A queueF stores a tuple of 3 elements: the generated
tree, its associated current node and a list of threadlet pairs to test. Initially, it contains CDGt, the
root noder and an empty set. As the list is initially empty, the next iteration has to look for among
child nodes. Thus, the algorithm finds all possible matchingpairs of threadlets among children of
the current node. If current node is a loop it also considers unrolling the loop by a factor of two (or
more) to form new threadlets. The potential updated tree with the same root and the listL is then
appended toF .

When the element retrieved fromF contains a non-empty listL, then its first element(c,c′)
indicates two subtrees candidate for jamming. This pair is then dequeued and processed: if these
threadlets can be jammed together, guided by the call ofpossibleJam, then each variant is built
thanks to the modulebuildAllVariants and stored inside the setV. The new tree is generated ac-
cording to each variant and appended to the queue with the updated threadlet-pair list. Finally, the
whole set of jammed codesT is returned.

Two functions determine the scope and efficiency of the algorithm: possibleJamandbuildAll-
Variants. The first one checks if a pair of threadlets can be reordered in order to be matched together
(thanks to threadlet-relative renaming with or without speculation — see Sections 2.2. and 2.3.). No-
tice this module has to store the set of speculated blocksS in order to avoid the useless jamming of
speculated blocks. The second function isbuildAllVariantswhich iterates over the variants proposed
in Section 3.2. depending on threadlet type, content, static and/or dynamic feedback.

Profitability Evaluation and Selection. The second step executes or estimates the IPC of each
code inT. (Section 3.1..) With these measurements, an inner-to-outer profitability analysis is run.
(Section 3.2..) Finally, the code with the highest profitability is chosen.

The output of the whole algorithm is a jammed code with the best potential profitability. The
first step (see Figure 7) is realistic only if the number of control nodes is quite small (size oft). In
practice, the depth of an exhaustive search for the best jamming strategy should be bounded.

Towards an Implementation. Fortunately, the manual application of deep jam in the following
section tends to indicate that the size of the search space isreasonable. Indeed, only a few alternative
schemes compete for each jamming operation. Due to the nature of the quantitative performance es-
timates, a practical algorithm should combine static information and dynamic feedback (application
profile and iterative optimization runs) [43, 44, 38].

Although we did not yet implement deep jam in a compiler, the previous study and algorithm
allow us to outline a more practical deep jam algorithm refining the one presented in Figure 7:

14

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Inputs: t Control-dependence graph
r Root of the control-dependence graph

Output : T Set of variants
Algorithm (Deep jam’s variant generation):

T← /0; F ← (t, root, /0)
While F 6= /0

(t ′, r ′,L)← nextElement(F)
F ← F \ (t ′, r ′,L)
If L = /0

L′← findAllMatchingPairs(r ′, t ′)
If L′ = /0 andr ′ is a loop

t ′′← unroll(t ′,2)
L′′← findAllMatchingPairs(r ′, t ′′)
F ← F ∪ (t ′′, r ′,L′′)

Else
F ← F ∪ (t ′, r ′,L′)

Else
(c,c′)← firstElement(L); L← L\ (c,c′)
If possibleJam(t ′,c,c′)

V ← buildAllVariants(t ′,c,c′)
For v∈V

t ′′← generateVariant(t ′,v,c,c′)
T ← T ∪ t ′′

If L = /0
r ′′← nextBreadthFirstElement(r ′, t ′)
F ← F ∪{(t ′′, r ′′, /0)}

Else
F ← F ∪{(t ′′, r ′,L)}

Return T

Figure 7: Deep jam — variant generation algorithm.

1. Starting from the parent control node, unroll it by a factor of 2 if this is a loop (the probability
that each loop initially exhibits similar control flow is notsignificant). In our experiments, the
parent node has always been a loop containing the most time consuming part of the procedure.
If several loops share the time spent in this procedure, theycan be processed separately.

2. Apply threadlet-relative renaming on the two loop bodiesto remove superfluous dependences
flowing from one iteration to the other. Potentially, apply speculative renaming if the set of
speculative blocks is small and located on cold paths.

3. Among the children of the loop, try the different jamming variants for each pair of matching
threadlets.

15

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

4. Repeat recursively the previous step for each pair of threadlets. The level of recursion has to
be bounded by 2 or 3.

These steps simplify the previously-stated algorithm by unrolling the outer loop, renaming only
once and recursively jamming each matching pair. But the level of recursion is bounded (typically
by 2 or 3) to reduce the parameter space.

Overall, even if, thanks to the previous guidelines, the compilation time expected is reduced,
deep jam is a challenging compilation problem. It involves complex transformations, relies on
precise static analysis, including array-dependence analysis, and its profitability is hard to assess
statically. In addition, although deep jam combines multiple (classical and original) transformations,
applying any of these transformations in isolation does notbring any speedup or may even degrade
performance. Nevertheless, our experiments in the next section will confirm that it can bring strong
speedups. Moreover, it will show that, with precise static cost models, the compilation time could
be low enough to incorporate deep jam inside a compiler.

5. Experiments

Let us study four real compute-intensive applications characterized by long sequences of dependent
instructions, irregular control-flow and intricate scalarand array dependence patterns. We apply
deep jam at programmer level as source-to-source transformation using the Intel ICC compiler to
generate the binary object. We followed the guidelines of the practical algorithm. Special care
was taken to ensure that the compiler did not undo transformations made by deep jam. The fol-
lowing experiments demonstrate the strong potential of deep jam, exercising the tuning of the main
parameters driving the selection of a profitable deep jam strategy.

5.1. SHA-0 Attack

We first study the attack of the SHA-0 cryptographic hash algorithm [45], which lead to a full
collision in August 2004 [46, 47]. This algorithm belongs tothe family of iterative hash functions.
It relies on a compression functionf taking as input a message and a tuple of five 32-bit values. The
application off returns another tuple forming, after an addition with the initial one, the 160-bit hash
value of the message. Compression is decomposed into 80roundsof (mainly) bitwise operations.
The attack applies the SHA-0 algorithm iteratively to a pairof messages, checking at each round
if they may possibly collide or not at the end (i.e., after the80 rounds). The research of colliding
messages is not exhaustive: messages are tested so that firstcomputations (more or less the first
14 rounds) can be reused from a pair of messages to another, leading to a rather irregular control
structure with guarded compute kernels and early exits.

The experimental platform is a NovaScale 4020 server from Bull featuring two Itanium 2
1.3GHz (Madison) processors, using the Intel C compiler version 8.1, choosing the best result from
-O2 and-O3 with -fno-alias.

Performance analysis of this code highlights several limiting factors: memory pressure, com-
plex control flow and limited amount of parallelism. To release memory pressure, we apply two
optimizations:scalar promotion(via loop unrolling), thenvectorizationof straight-line 32-bit op-
erations (using 64-bit registers and SIMD instructions), to save registers and avoid the spills created
by the previous step (and of course, to reduce the number of operations). Strangely, this version

16

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

does not provide significant speedup. Hardware counters detect a large rate of pipeline stalls due to
register-register dependences:

IPC = 2.48 nops = 13.4% Reg-reg stalls = 15.0%

This code is composed of a main loop iterating on messages. Because, at this level, this loop is
alone and children of this control node contains no clear matching pairs, the deep jam algorithm first
unrolls this loop by a factor of two. The loop body is large (a thousand lines of code, implementing
up to 80 rounds on the selected message), and its control flow is apparently unpredictable. Alone,
this transformation only brings 1% speedup.

Before attempting to jam resulting threadlets (instances of every inner conditional and loop
in the unrolled body), a large number of scalar dependences are eliminated by threadlet-relative
renaming. One array of 80 elements needs to be renamed to remove output and anti-dependences.
After this expansion step, the remaining def-use dependences are compatible with a one-to-one
fusion of every matching pair of conditionals and inner loops.

Yet several control-dependences remain; they are due to early exits in the acyclic part and in the
single innerfor loop. Speculatively ignoring these dependences degrades performance, and tail-
duplication is not applicable because of data-sensitive predicates guarding control-dependences. As
a result, some control-dependent code cannot be jammed as effectively as expected. For example,
the inner loop is jammed with its matching pair using thepessimisticstrategy in Figure 5-b, instead
of an optimized scheme with if-conversion. Feedback from a dynamic profile tells that the first three
rounds are only sparsely executed, hence the associatedif conditionals do not need to be jammed;
this saves the generation of a 9-case decision tree and reduces code size.

The resulting code is approximately 4 times larger than the original application (due to un-
rolling andwhile loop epilogs), and provides a43.3% speedup. Hardware counters reveal a major
improvement on the number of stalls andnops:

IPC = 3.17 nops = 10.3% Reg-reg stalls = 7.71%

5.2. ABNDM/BPM String Matching

The second application optimized by deep jam comes from computational biology. It implements
an approximate pattern matching algorithm, named ABNDM/BPM [48], which finds all positions
where a given pattern ofmcharacters matches a text with up tok differences (substitution, deletion
or insertion of a character).7 Assuming an online search, the pattern is known and can be pre-
processed to speedup the search, but the text may not. ABNDM/BPM is a key contribution to the
pattern matching domain, since it combines dynamic programming, filtering and bit-parallelism
[49]. The text is processed through windows ofm− k characters, to decide if an occurrence may
appear inside a window and how many characters to skip (less thanm−2k) before the next window.
Approximate matches are selected from the bit-parallel simulation of a non-deterministic finite-state
automaton with a dynamic programming matrix [50, 49].

The code is composed of a main loop, iterating on the text, window after window. The loop
body contains early exists, conditionals and nested while loops. The processing of a window is split
into a first phase, traversing the window backwards. A firstfor loop iterates unconditionally onk
characters, then awhile loop proceeds with at mostm−2k iterations. The skip distance between

7. In practical searches,k can be as large asm/2.

17

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

two consecutive windows is computed dynamically as a resultof this backward phase, depending on
the text being traversed. If thewhile loop effectively completed the traversal (reading all characters
in the window), a second phase traverses the window forward,checking if an occurrence appears
(beginning at the first character).

The experimental platform is a 800MHz Itanium (Merced) 4-way SMP, using the Intel C com-
piler version 7.1, choosing the best result from-O2 and-O3 with -fno-alias.

Again, the analysis of the generated assembly code and hardware counters indicate a lack of ILP
in chains of dependent instructions. In addition, the complex data-dependent control is reflected
in the high rate of pipeline flushes: up to 30% of the executiontime is waisted in mispredicted
branches. For typical cases, the IPC lies between 1.3 and 1.5.

Deep jam is only applied on the backward phase, since it amounts to more than 90% of the
computation time. Because the main loop has no candidate forjamming, it first unrolls this loop,
yielding several threadlets associated with the backward traversal of two subsequent windows. The
control flow of this backward phase is quite complex and dependent on the input data. The unrolling
transformation alone does not bring any speedup.

Unfortunately, one immediately notices that the dynamic computation of the skip between two
consecutive windows yields several control and data dependences. Indeed, even if a large number
of scalar dependences are eliminated by threadlet-relative renaming, any jamming scheme needs
to speculatively break those dependences. Thanks to domain-specific knowledge, we know that
under-approximating this distance is a conservative solution (yielding lower performances but still
covering all possible matches). Figure 8 sketches a speculative jamming scheme where the position
of the second window is estimated at each iteration of the outer (unrolled) loop.

AG T A C A A T A C A G A TTCT

Speculated window

First window

First window

Misspeculated window

Respawned window

Speculated window

T

Ite
ra

tio
n

1

Ite
ra

tio
n

2

Ite
ra

tio
n

3

Figure 8: Jamming windows speculatively.

The next difficulty comes from the jamming of a very short inner while loop nested in a com-
plex decision tree. This section is responsible for most branch mispredictions identified in the
preliminary analysis. Interestingly, theoptimisticjamming strategy of Figure 5-d results in a strong
reduction of the mispredictions rate, through tail-duplication and if-conversion. This strategy will
be calledoptim in the following experiments. However, the reduction in mispredictions is not al-
ways beneficial, due to the unnecessary (predicated) work overhead in the frequent cases where the
innerwhile loop executes less than 3 iterations. We will thus also consider ashort loopstrategy,
calledpessim thereafter, as defined in Figure 5-c. For some input text and values ofk, the length
of the backward window traversals is very unstable. This reduces deep jam benefits, since most of
the time will be spent in unjammed loop epilogs. It may be moreeffective to squash the execution

18

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

of the second window when the first one terminates early, and restart the traversal from the begin-
ning (at a non-speculative position), jammed with thesubsequentbackward window traversal. This
strategy, calledpriority thereafter, also simplifies the control-flow, eliminating complex loop epilogs.
This strategy is not easily generalized to other deep jam cases, hence its absence from the jamming
variants of Section 3.1..

Figure 9 shows the speedups achieved on the full application, varying the input text and the
number of errorsk, with fixed pattern sizem = 32. Since no jamming strategy dominates in all
contexts, all three are evaluated. The best speedup reaches58.9%, but using the wrong strategy
leads to significant slowdowns. We thus designed an adaptiveselection scheme, to dynamically
select the best strategy. We observed that thepriority strategy is not profitable if the rate of early
exits is high, i.e., if the backward phase quickly discoversthat no match is possible. The adaptive
scheme thus begins in thepriority mode, then switches to theoptim strategy if the number of early
exits reaches a certain threshold. This scheme is fully automatic and incurs only 1% performance
degradation compared to the best speedup achieved with either priority or optim. This adaptive
selection could be extended to thepessim scheme, based on an instrumentation of inner loop trip-
count; yet the benefits would be moderate sincepessim rarely dominates.

k priority pessim optim
0 -6.5% -73.6% 58.9%
1 -7.9% -68.7% 56.5%
2 -8.2% -63.2% 49.9%
3 -9.7% -56.7% 46.5%
4 -12.4% -48.7% 41.5%
5 32.3% 30.5% 22.5%
6 33.1% 30.9% 22.5%
7 30.4% 29.2% 21.2%
8 28.2% 27.4% 19.8%
9 13.3% -13% 53.2%

10 13.6% 7.8% 57.2%

-a- English dictionary.

k priority pessim optim
0 39.2% 38.2% 26%
1 37.7% 34.2% 24.4%
2 35.5% 35.7% 22.3%
3 33.4% 31.1% 25.2%
4 -11.8% -40% 26.5%
5 -12.8% -31% 24%
6 -16.5% -24.6% 21.8%
7 -13.4% -16% 18.9%
8 -17% -17.6% 20.6%
9 -14.7% 7.4% 39.4%

10 11.8% 10.6% 6.3%

-b- LATEX document.

k priority pessim optim
0 -11.5% -68.1% 33.7%
1 -18.7% -58.4% 20.5%
2 -18.2% -46% 21.4%
3 -19% -33.9% 21.8%
4 -21.3% -27.5% 17.4%
5 -20.9% -22.1% 15%
6 -21.4% -18.7% 11.9%
7 -21.3% -17.2% 9.4%
8 -22.5% -16.8% 7%
9 -22.4% -16.3% 4.2%

10 -22.4% -15.5% 2%

-c- DNA of Buchnera bacterium.

k priority pessim optim
0 -15.4% -69.8% 32.6%
1 -22.1% -59.3% 18.0%
2 -20.3% -48.9% 23.2%
3 -20% -36.3% 26.1%
4 -21.8% -31.0% 19.7%
5 -21.7% -25.2% 18.5%
6 -20.7% -18.6% 16.2%
7 -21.3% -16.4% 12.5%
8 -22.5% -14.8% 9.1%
9 -22.4% -14.2% 4.6%

10 -23% -14.2% 3.4%

-d- DNA of bacillus anthracis str. Ames.

Figure 9: Performance of three deep jam variants on ABNDM/BPM.

19

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

CPU Cycles (whole application) IPC Speedup
Original version 373.174×109 2.51 —

Unroll (factor of 2) 372.919×109 2.43 0.1%
Deep jam 350.809×109 2.51 6.4%

Table 2: BLAST — Optimization of the most time consuming loop.

5.3. BLAST

The next benchmark also belongs to computational biology: BLAST (Basic Local Alignment
Search Tool)8 is a set of algorithms used to find similar sequences between several DNA chains
or protein databases. Unlike the previous algorithm, BLASTonly findsexact matches. This pro-
gram, composed of dozens of functions, is an integer, computational-intensive code exhibiting an
important control-flow complexity.

The most time consuming loop is afor loop including a dominatingif conditional with an
unbalancedelse branch. A quick dynamic analysis confirms ILP is low on the most frequently
used path. Indeed, the most executed path is only the first basic block of the loop body, followed
by the shortthen branch of theif conditional. The first basic block loads fields from an array of
records, just before operating on them. This leads to short dependence chains, reducing ILP even if
the compiler assumes that data are prefetched into the L1 cache (latency of 1 cycle).

Because thefor does not have potential matching threadlets among its children, the first step
consists of unrolling this loop by a factor of 2. After the threalet-relative renaming, the first basic
block of each iteration is matched and jammed (jamming basicblocks is straightforward). But this
can be done only by speculating on the value ofdiag_coord. Indeed, in thethen, thediag_coord
cell of arraydiag_array is written. During the next iteration, the same array is read. If the indices
match, the code motion is not valid. Therefore we matched andjammed the first instructions of the
loop by checking the outcome of the speculation after theif-else structure of the first iteration,
applying a speculative threadlet-relative renaming todiag_coord.

We did not jam further because, (1) path profiling indicates thethen branch is a hot-path but the
body is very short and (2) the speculation induces control overhead leading the a higher complexity
hampering further jamming. So the final code features a loop unrolled twice, a match of the first
basic block of each iteration and, finally, a speculation ondiag_coord.

Table 2 shows results obtained on a 1.6 GHz Itanium 2 Madison machine with 3MB of L3 cache
and ICC Compiler version 9.1. Three versions have been tested: the original code, the original code
unrolled by a factor of 2 and, finally, the code after applyingdeep jam.

This table presents, for each version, the time spent in thewhole applicationplus the corre-
sponding IPC and the speedup w.r.t. the original code. The IPC of the whole application is good
for an integer irregular code. The unrolling does not bring any speedup. Indeed, after unrolling,
code motion is impossible due to the potential dependence ondiag_array through the value of
diag_coord. The deep-jammed code brings more than 6% speedup on the whole application and
keep the IPC at the same level. Actually, its performance come from the merge of the basic blocks
at the beginning of thefor loop feeding functional units and recovering load latencies.

8. Seehttp://www.ncbi.nlm.nih.gov/BLAST/

20

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

Input setgraphic CPU Cycles IPC % Bubbles Speedup
Initial 13.724×109 1.33 44.2% —

Unroll (factor of 2) 12.824×109 1.45 46% 7%
Deep jam 11.842×109 1.73 44.9% 15.9%

Input setlog CPU Cycles IPC % Bubbles Speedup
Initial 12.797×109 1.70 34.2% —

Unroll (factor of 2) 11.299×109 1.86 36.2% 13.3%
Deep jam 10.464×109 2.33 38.8% 22.3%

Input setprogram CPU Cycles IPC % Bubbles Speedup
Initial 102.748×109 1.67 22.3% —

Unroll (factor of 2) 84.087×109 1.86 26.8% 22.2%
Deep jam 73.186×109 2.62 28.8% 40.4%

Input setrandom CPU Cycles IPC % Bubbles Speedup
Initial 12.642×109 1.20 45.7% —

Unroll (factor of 2) 11.846×109 1.34 46.7% 6.70%
Deep jam 10.903×109 1.60 45.8% 16%

Input setsource CPU Cycles IPC % Bubbles Speedup
Initial 42.503×109 1.6 28.3% —

Unroll (factor of 2) 35.437×109 1.77 31.2% 20%
Deep jam 30.629×109 2.33 34.4% 38.8%

Table 3: Performance results of Gzip benchmark onlongest_match function.

5.4. Gzip

The last code optimized with deep jam is Gzip, extracted fromthe SPEC2000 benchmark suite. In
the most time-consuming function, the outer loop iterates on the current text looking for a match.
A first profiling phase highlights that the firstif is usually taken, ending the iteration prematurely
(due to thecontinue instruction).

Because this loop can not be matched with another one, the deep jam algorithm first unrolls
it by a factor of 2. Even through renaming, dependences on thescan, scan_end andscan_end1
variables remain. Indeed, the main goal is to jam two occurrences of the firstif, but the values read
during the second iteration may have been written during thefirst one. So the speculative threadlet-
relative renaming created new scalar variables and selectsthe subtree after the firstif as speculated
(setS). Indeed, as soon as the first iteration goes through the firsttwo ifs and update the variable
scan (instructionscan += 2), then the speculation is wrong and the second iteration must not be
committed. Thus a new variableu is updated to 1 just before this instruction. During the commit,
if u is equal to 1, then the induction variablescur_match andchain_length are updated from the
first iteration. Otherwise, they are updated with the variables of the second one.

Experimental results are provided Table 3. The target architecture is a Madison Itanium 2 pro-
cessor with 3MB of L3 cache and we use the Intel ICC compiler version 9.1. The% Bubblescolumn
gives the percentage of back-end bubbles occurring in a single run, i.e. the percentage of dynamic
stalls in the processor pipeline. Each table presents the results of each input set given with the Spec
distribution. Overall, the IPC of each input set is low (around 1). Unrolling the loop by a factor of
2 brings a small speedup. This is due to the fact that few instructions can be moved without any
further requirements. But deep jam brings more speedup, up to 40% on theprogram input set.

21

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

6. Conclusion

This papers presents a new program optimization, called deep jam, to convert coarse-grain paral-
lelism into finer-grain instruction or vector parallelism.This optimization is applicable to irregu-
lar control and data flow where traditional optimizations fail to extract parallelism from chains of
dependent instructions. It handles nested loops and unpredictable conditionals, removing memory-
based dependences with modern scalar and array renaming techniques. Several experiments are
conducted on a wide-issue architecture, showing that deep jam brings good speedups on real ap-
plications: 43.3% on a cryptanalysis code, up to 58.9% on computational biology applications and
40% on a SPECINT 2000 benchmark function. We detail strategies and variants associated with the
jamming of irregular control structures, and integrate them in a practical deep jam algorithm. We
also study the implementation of deep jam in a feedback-directed optimization framework.

Deep jam is also appealing for domain-specific program generators [51]; we believe expert
knowledge (from the programmer) will dramatically smooth the implementation challenges, com-
pared with a general-purpose compiler optimization framework. It seems interesting to evaluate
deep jam for grid processors [41, 42], reconfigurable computing and hardware synthesis [52], and
custom extensions to VLIW processors [53, 54]. In this context, deep jam should be extended to
favor the jamming of control structures with non-conflicting usage of functional units; e.g., favoring
the interleaving of floating-point and bitwise operations,or the fusion of array and scalar code [21].
Since deep jam revisits several automatic parallelizationtechniques for irregular programs, coupling
it with hybrid static-dynamic analyses [55] may improve itseffectiveness.

References

[1] J. González and A. González, “The potential of data valuespeculation to boost ILP,” inACM
Int. Conf. on Supercomputing (ICS’98), pp. 21–28, 1998.

[2] B. Calder, G. Reinman, and D. M. Tullsen, “Selective value prediction,” inProc. Intl. Symp.
on Computer Architecture (ISCA’99), pp. 64–74, 1999.

[3] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous multithreading: Maximizing on-chip par-
allelism,” in Proc. Intl. Symp. on Computer Architecture (ISCA’95), jun 1995.

[4] A. Cristal, O. J. Santana, M. Valero, and J. F. Martínez, “Toward kilo-instruction processors,”
ACM Trans. on Architecture and Code Optimization, vol. 1, no. 4, pp. 389–417, 2004.

[5] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A scalable instruction queue design using
dependence chains,” inProc. Intl. Symp. on Computer Architecture (ISCA’02), (Anchorage,
AK), May 2002.

[6] A. Moshovos, P. Banerjee, S. Hauck, and Z. A. Ye, “Chimaera: A high-performance architec-
ture with a tightly-coupled reconfigurable functional unit,” in Proc. Intl. Symp. on Computer
Architecture (ISCA’04), (Vancouver, BC), jun 2000.

[7] S. Yehia and O. Temam, “From sequences of dependent instructions to functions: An approach
for improving performance without ILP or speculation,” inProc. Intl. Symp. on Computer
Architecture (ISCA’04), (Munich, Germany), June 2004.

22

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

[8] R. Allen and K. Kennedy,Optimizing Compilers for Modern Architectures. Morgan and Kauf-
man, 2002.

[9] K. Kennedy and K. McKinley, “Maximizing loop parallelism and improving data locality via
loop fusion and distribution,” inLanguages and Compilers for Parallel Computing, (Portland),
pp. 301–320, 1993.

[10] S. Carr, C. Ding, and P. Sweany, “Improving software pipelining with unroll-and-jam,” in
Proceedings of the 29th Hawaii Intl. Conf. on System Sciences (HICSS’96) Volume 1: Software
Technology and Architecture, IEEE Computer Society, 1996.

[11] M. Lam, “Software pipelining: an effective schedulingtechnique for vliw machines,” inACM
Symp. on Programming Language Design and Implementation (PLDI’88), (Atlanta, GA),
pp. 318–328, July 1988.

[12] J. Wang and G. Gao, “Pipelining-dovetailing: a transformation to enhance software pipelin-
ing for nested loops,” inIntl. Conf on Compiler Construction(CC’96), vol. 1060 ofLNCS,
(Linköping, Sweden), pp. 1–17, Springer-Verlag, Apr. 1996.

[13] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R.Gao, “Single-dimension software-
pipelining for multi-dimensional loops,” inACM Conf. on Code Generation and Optimization
(CGO’04), pp. 163–174, Mar. 2004.

[14] J. A. Fisher, “Trace scheduling : A technique for globalmicrocode compaction,”IEEE Trans.
on Computers, vol. C-30, July 1981.

[15] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, “The
superblock: an effective technique for VLIW and superscalar compilation,” J. Supercomput.,
vol. 7, no. 1-2, pp. 229–248, 1993.

[16] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. mei W. Hwu, “Su-
perblock formation using static program analysis,” inMICRO 26: Proceedings of the 26th
annual international symposium on Microarchitecture, (Los Alamitos, CA, USA), pp. 247–
255, IEEE Computer Society Press, 1993.

[17] S. S. Muchnick,Advanced Compiler Design & Implementation. Morgan Kaufmann, 1997.

[18] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M.Crozier, B.-C. Cheng, P. R.
Eaton, Q. B. Olaniran, and W.-M. Hwu, “Integrated predicated and speculative execution in
the IMPACT EPIC architecture,” inProc. Intl. Symp. on Computer Architecture (ISCA’98),
July 1998.

[19] A. G. Dean and J. P. Shen, “Techniques for software thread integration in real-time embedded
systems,” inIEEE Real-Time Systems Symposium (RTSS’98), (Madrid, Spain), Dec. 1998.

[20] A. G. Dean, “Software thread integration for embedded system display applications,”Trans.
on Embedded Computing Sys., vol. 5, no. 1, pp. 116–151, 2006.

23

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

[21] W. So and A. G. Dean, “Procedure cloning and integrationfor converting parallelism from
coarse to fine grain,” in7th Annual Workshop on Interaction between Compilers and Computer
Architectures (INTERACT-7), 2003.

[22] W. So and A. G. Dean, “Reaching fast code faster: using modeling for efficient software thread
integration on a vliw dsp,” inCASES ’06: Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, (New York, NY, USA), pp. 13–
23, ACM Press, 2006.

[23] P. Carribault, A. Cohen, and W. Jalby, “Deep jam: Conversion of coarse-grain parallelism to
instruction-level and vector parallelism for irregular applications,” inPACT ’05: Proceedings
of the 14th International Conference on Parallel Architectures and Compilation Techniques
(PACT’05), (Washington, DC, USA), pp. 291–302, IEEE Computer Society, 2005.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and its use in
optimization,”ACM Trans. Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, 1987.

[25] P. Feautrier, “Array expansion,” inACM Int. Conf. on Supercomputing, (St. Malo, France),
pp. 429–441, July 1988.

[26] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Array dataflow analysis and its use in ar-
ray privatization,” in20thACM Symp. on Principles of Programming Languages, (Charleston,
South Carolina), pp. 2–15, Jan. 1993.

[27] P. Tu and D. Padua, “Automatic array privatization,” in6thWorkshop on Languages and Com-
pilers for Parallel Computing, no. 768 in LNCS, (Portland, Oregon), pp. 500–521, Aug. 1993.

[28] K. Knobe and V. Sarkar, “Array SSA form and its use in parallelization,” in 25thACM Symp.
on Principles of Programming Languages, (San Diego, CA), pp. 107–120, Jan. 1998.

[29] A. Cohen,Program Analysis and Transformation: from the Polytope Model to Formal Lan-
guages. PhD thesis, Université de Versailles, France, Dec. 1999.

[30] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently computing
static single assignment form and the control dependence graph,” ACM Trans. on Program-
ming Languages and Systems, vol. 13, pp. 451–490, Oct. 1991.

[31] J.-F. Collard, “The advantages of reaching definition analyses in Array (S)SA,” in
11thWorkshop on Languages and Compilers for Parallel Computing, no. 1656 in LNCS,
(Chapel Hill, North Carolina), pp. 338–352, Springer-Verlag, Aug. 1998.

[32] D. Barthou, A. Cohen, and J.-F. Collard, “Maximal static expansion,” in25th ACM Symp. on
Principles of Programming Languages (PoPL’98), (San Diego, California), pp. 98–106, Jan.
1998.

[33] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural support for lock-free
data structures,” inISCA ’93: Proceedings of the 20th annual international symposium on
Computer architecture, (New York, NY, USA), pp. 289–300, ACM Press, 1993.

24

DEEPJAM : CONVERSION OFCOARSE-GRAIN PARALLELISM TO FINE-GRAIN AND VECTORPARALLELISM

[34] P. Feautrier, “Dataflow analysis of scalar and array references,”Int. J. of Parallel Program-
ming, vol. 20, pp. 23–53, Feb. 1991.

[35] M. Griebl and J.-F. Collard, “Generation of synchronous code for automatic parallelization of
while loops,” in Euro-Par’95 (S. Haridi, K. Ali, and P. Magnusson, eds.), vol. 966 ofLNCS,
pp. 315–326, Springer-Verlag, 1995.

[36] L. Rauchwerger and D. Padua, “The LRPD test: Speculative run–time parallelization of
loops with privatization and reduction parallelization,”IEEE Transactions on Parallel and
Distributed Systems, Special Issue on Compilers and Languages for Parallel and Distributed
Computers, vol. 10, no. 2, pp. 160–180, 1999.

[37] T. Kisuki, P. Knijnenburg, K. Gallivan, and M. O’Boyle,“The effect of cache models on itera-
tive compilation for combined tiling and unrolling,” inParallel Architectures and Compilation
Techniques (PACT’00), IEEE Computer Society, Oct. 2001.

[38] K. D. Cooper, D. Subramanian, and L. Torczon, “Adaptiveoptimizing compilers for the 21st
century,”J. of Supercomputing, 2002.

[39] S. Winkel, “Exploring the performance potential of itanium processors with ilp-based
scheduling,” inIEEE/ACM International Symposium on Code Generation and Optimization
(CGO’04), (Palo Alto), March 2004.

[40] W. So and A. G. Dean, “Complementing software pipelining with software thread integration,”
in ACM Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’05),
2005.

[41] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R.
Moore, “Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture,” inProc.
Intl. Symp. on Computer Architecture (ISCA’03), (San Diego, CA), June 2003.

[42] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, J.-W.
Lee, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal, “The RAW microprocessor: A computational fabric for
software circuits and general purpose programs,”IEEE Micro, 2002.

[43] M. D. Smith, “Overcoming the challenges to feedback-directed optimization,” inACM SIG-
PLAN Workshop on Dynamic and Adaptive Compilation and Optimization, pp. 1–11, 2000.
(Keynote Talk).

[44] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff,“Iterative compilation in program
optimization,” inProc. CPC’10 (Compilers for Parallel Computers), pp. 35–44, 2000.

[45] N. I. of Standards and Technologies, eds.,Secure Hash Standard, vol. FIPS-180. Information
Processing Standards Publication, may 1993.

[46] A. Joux, “Collisions in SHA-0.” CRYPTO Rump Session, 2004.

[47] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby, and C. Lemuet, “Collisions of SHA-0 and
reduced SHA-1,” inEUROCRYPT’05, Springer-Verlag, 2005.

25

CARRIBAULT, ZUCKERMAN, COHEN & JALBY

[48] H. Hyyrö and G. Navarro, “Faster bit-parallel approximate string matching,” inProc. Symp. on
Combinatorial Pattern Matching (CPM’02), no. 2373 in LNCS, pp. 203–22, Springer-Verlag,
2002.

[49] G. Navarro and M. Raffinot,Flexible Pattern Matching in Strings. Cambridge University
Press, 2002.

[50] G. Myers, “A fast bit-vector algorithm for approximatestring matching based on dynamic
programming,”J. of the ACM, vol. 46, no. 3, pp. 395–415, 1999.

[51] J. Moura, M. Püschel, J. Dongarra, and D. Padua, eds.,Proceedings of the IEEE. Special Issue
on Program Generation, Optimization, and Platform Adaptation, vol. 93. IEEE Computer
Society, Jan. 2005.

[52] B. So, M. W. Hall, and P. Diniz, “A compiler approach to design space exploration in
fpga-based systems,” inACM Symp. on Programming Language Design and Implementation
(PLDI’02), June 2002.

[53] R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. Mahlke, S. Abraham, and G. Snider, “High-
level synthesis of nonprogrammable hardware accelerators,” tech. rep., Hewlett-Packard, May
2000.

[54] “Silicon Hive web site.”http://www.silicon-hive.com.

[55] S. Rus, L. Rauchwerger, and J. Hoeflinger, “Hybrid analysis: static & dynamic memory refer-
ence analysis,”Int. J. of Parallel Programming, vol. 31, no. 4, pp. 251–283, 2003.

26

