
Memory Coloring: A Compiler Approach for Scratchpad Memory Management

Lian Li∗, Lin Gao†and Jingling Xue‡

Programming Languages and Compilers Group
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia ∗ † ‡

National ICT Australia ∗ ‡

Abstract

Scratchpad memory (SPM), a fast software-managed on-
chip SRAM, is now widely used in modern embedded pro-
cessors. Compared to hardware-managed cache, it is more
efficient in performance, power and area cost, and has the
added advantage of better time predictability. This paper
introduces a general-purpose compiler approach, called
memory coloring, to efficiently allocating the arrays in a
program to an SPM. The novelty of our approach lies in
partitioning an SPM into a “register file”, splitting the live
ranges of arrays to create potential data transfer statements
between the SPM and off-chip memory, and finally, adapt-
ing an existing graph-colouring algorithm for register al-
location to assign the arrays in the program into the reg-
ister file. Our approach is efficient due to the practical
efficiency of graph-colouring algorithms. We have imple-
mented this work in SUIF and machSUIF. Preliminary re-
sults over benchmarks show that our approach represents a
promising solution to automatic SPM management.

1 Introduction

A scratchpad memory (SPM) is a fast on-chip SRAM
managed by software (the application and/or compiler).
Compared to hardware-managed caches, SPMs offer a
number of advantages. First, SPMs are more energy-
efficient and cost-effective than caches since they do not
need complex tag-decoding logic. Second, in embed-
ded applications with regular data access patterns, an
SPM can outperform a cache memory since software
can better choreograph the data movements between the
SPM and off-chip memory. Finally, such a software-
managed data movement guarantees better timing pre-
dictability, which is critical in hard real-time embedded
systems. Given these advantages, SPMs are increas-
ingly used as an alternative to caches in modern embed-

ded processors such as Motorola M-core MMC221 and
TI TMS370Cx7x. In other embedded processors such as
ARM10E and ColdFire MCF5, both caches and SPMs
are included in order to obtain the best of both worlds.

For SPM-based systems, the programmer or compiler
must schedule explicit data transfers between the SPM and
off-chip memory. The effectiveness of such an SPM man-
agement affects critically the performance and energy cost
of an application. In today’s industry, this task is largely ac-
complished manually. The programmer often spends a lot
of time on partitioning data and inserting explicit data trans-
fers required between the SPM and off-chip memory. Such
a manual approach is time-consuming and error-prone. In
addition, data aggregates such as arrays in large programs
often exhibit cross-function data reuse. Obtaining satisfac-
tory solutions for large applications by hand can be chal-
lenging. Finally, hand-crafted code is not portable since it
is usually customised for one particular architecture.

To overcome these limitations, researchers have investi-
gated a number of compiler strategies for allocating data to
an SPM automatically. In this paper, we address the im-
portant problem of efficiently allocating arrays to an SPM,
allowing arrays to be dynamically swapped into and out of
the SPM during program execution. We are aware of two
such dynamic methods [12, 20], where [12] is restricted to
loop-oriented kernels and [20] applies to whole programs
but solves the problem by resorting to integer linear pro-
gramming (ILP), which may be too expensive to be useful
for large real codes (considering the interprocedural nature
of the problem as discussed in the preceding paragraph).

In this paper, we present a general-purpose compiler ap-
proach, called memory coloring, to automatically allocat-
ing the arrays in a program to an SPM. The novelty of our
approach lies in partitioning an SPM into a “register file”
then adapting an existing graph-coloring algorithm for reg-
ister allocation to allocate the arrays in the program to the
register file. We generate the data transfer statements re-
quired between the SPM and off-chip memory by splitting

the live ranges of arrays based on a cost-benefit analysis.
We determine whether an array should be SPM-resident or
not by graph coloring. While graph-coloring has been fully
studied in register allocation, this work is the first (to our
knowledge) to use such a strategy for SPM management.

Our approach applies to whole programs and is scalable
due to the practical efficiency of graph-colouring.

We have completed an implementation of our approach
in SUIF [14] and machSUIF [17]. Preliminary results from
SimpleScalar show that it represents a promising solution to
the automatic SPM management problem.

The rest of this paper is organised as follows. Section 2
defines precisely the SPM management problem we address
and some challenges we must overcome. Section 3 intro-
duces our methodology for solving the problem. In Sec-
tion 4, we present a concrete implementation (i.e., one in-
stance algorithm) of our methodology in SUIF and mach-
SUIF compilers. In Section 5, we present some prelim-
inary results obtained from SimpleScalar over benchmark
programs, demonstrating the feasibility of our methodol-
ogy. Section 6 reviews the related work. In Section 7, we
conclude the paper and discuss some future work.

2 Problem Statement

Given a program to be executed on an SPM-based em-
bedded system, we address the problem of developing a
compiler approach to determining the dynamic allocation
and deallocation of the arrays in the program in the SPM so
as to maximise the performance of the program.

The overall data set for the array candidates to be allo-
cated to the SPM is assumed large enough so that only part
of the data set can be kept in the SPM at any time during
program execution. As a result, the arrays that reside in the
SPM earlier may be copied back (if they are to be used later)
to the off-chip memory to make room for the other arrays
that will be more frequently accessed in the near future.

Therefore, there are two inter-related tasks to solve:

Task A: Mapping of Array Addresses to the SPM
Space. The compiler identifies when and where an
array should reside in the SPM and translates those
SPM-resident arrays from their addresses in the off-
chip memory to their addresses in the SPM.

Task B: Generation of Data Transfer Statements. The
compiler schedules the explicit data transfers required
between the SPM and off-chip memory.

The major challenge is to keep in the SPM the data that
are frequently accessed in a region when that region is ex-
ecuted while minimising the overall data transfer cost be-
tween the SPM and off-chip memory. To this end, we need
to identify the “frequently used data” at compile time since

Scratch Pad Memory

Arrays

SPM

Partitioning
Memory Coloring

Live-range Splitting

Figure 1. An SPM management methodology.

an array may have a live range spanning multiple functions
and be accessed frequently only at parts of its live range.

An array whose size exceeds that of the SPM can not be
allocated in the SPM. Large arrays can be split into smaller
“arrays” by means of loop tiling [21] and data tiling [7, 12].
Its integration with this work is part of future work.

We do not deal with scalars in this work. However,
scalars can be considered as special cases of arrays. Al-
ternatively, a scalar spill buffer can be reserved in the SPM
space so that all scalar spills during register allocation for
scalars can be directed to the buffer.

3 Methodology

The basic idea is to formulate the SPM management
problem into one that can be solved by an existing graph-
coloring algorithm for register allocation. As illustrated in
Figure 1, our methodology has three main components:

SPM Partitioning. The arrays in a program considered for
SPM allocation are clustered into equivalent classes,
called array classes. All arrays in an array class are
normalised to a common size. Accordingly, the SPM
is partitioned (multiple times) into a register-file so that
different registers thus obtained can hold arrays of dif-
ferent sizes. By partitioning the SPM multiple times,
we introduce aliases between registers. Two registers
are aliases if their SPM spaces overlap and indepen-
dent otherwise. Two registers are interchangeable if
they have the same size but disjoint SPM spaces.

Live-Range Splitting. This aims at solving Task B as
stated in Section 2. An array may be frequently ac-
cessed at some parts of its live range. Based on a cost-
benefit analysis, we are therefore motivated to split its
live range at suitable points and insert the array copy

…

Loop 1: A[i] = A[i-1]...

…

BB 2: … = A[j]

…

Loop 3: A[k] = ...

...

(a) Before

…

 A1=A

Loop 1: A1[i]=A1[i-1]...

 A=A1

…

BB 2: … =A[j]

…

 A2=A

Loop 3: A2[k]= ...

 A=A2

...

(b) After

before after .

(c) Live Ranges

A A

A1

A2

Figure 2. Live-range splitting.

statements at the splitting points. These copy state-
ments become potentially the data transfer statements
between the SPM and off-chip memory. The unnec-
essary copies will be eliminated by coalescing during
and after graph coloring (Section 4.4). As illustrated
in Figure 2, the live range of an array, A, has been split
twice, possibly because the two new ranges A1 and A2
are more frequently accessed than the remaining ones.
Note that the last copy statement “A = A2” will not
be inserted if A is not live at that point.

Memory Coloring. This aims at solving Task A as stated
in Section 2. The register class for an array class con-
sists of all registers to which the arrays in that class
can be assigned. Two register classes are disjoint if
they do not contain a common register and non-disjoint
otherwise. The proposed approach is flexible to em-
brace both disjoint and non-disjoint classes. All regis-
ter classes will be mutually disjoint if all arrays in an
array class of a given size are assignable only to the
registers of that size. Non-disjoint register classes will
result if larger registers are also permitted.

By treating the arrays (including the ones obtained af-
ter live-range splitting) as register candidates, we can
adapt an existing graph-coloring algorithm such as the
one in [18] to color all the arrays, resulting in each ar-
ray to reside either in the SPM or the off-chip memory.

Finally, the program is modified so that the accesses to
the SPM-resident arrays are accessed correctly.

A compiler-directed SPM management strategy can have
difficulties in dealing with functions whose source codes are
unavailable. For example, there are complications if an as-
sembly function accesses some global arrays that happen to
be allocated to the SPM by the compiler. This is because we

Source Code

MachSUIF

Alias Analysis

SUIF1to2

SUIF1 Frontend

…...

SUIF1

SUIF2

SUIFVM

…...

Profiling Collection

SPM Partitioning

Instructionlist2Cfg

Live-range Splitting

Assembly Code

Code Generation

Memory Coloring

Figure 3. A concrete implementation of our
methodology in SUIF and machSUIF.

may be unable to perform Task A as stated in Section 2 for
the function. However, there will be no problems if an as-
sembly function does not access global arrays. In embedded
systems, the SPM is typically mapped into an address space
that is disjoint from the off-chip memory, but connected to
the same address and data buses [15]. If an array is passed
from a non-assembly function to an assembly function by
reference (or pointer as in C), then the address of the array
(be it in the SPM or off-chip) will be passed correctly.

4 A Concrete Implementation

Figure 3 depicts a concrete implementation of our
methodology in SUIF1 and SUIF2 [14] as well as mach-
SUIF [17]. The three components of our methodology are
positioned in the boxes as highlighted in gray.

Initially, a given program is translated into an intermedi-
ate representation called the SUIF1 format using the SUIF1
frontend on the Alpha architecture. The Alpha architecture
is chosen because it is supported by SimpleScalar, which
will be essential for performance evaluation. The SUIF2
frontend does not support the Alpha architecture.

Once the SUIF1 format has been converted to the SUIF2
format, the SUIF2 frontend will conduct its passes includ-
ing alias analysis. The alias analysis is performed based on
Bjarne Stenensgaard’s points-to analysis algorithm [19] im-
plemented in SUIF2. The alias information will be used in
live-range analysis and live-range splitting.

Next, the SUIF2 format is converted to the SUIFVM for-
mat using machSUIF, a backend developed for the SUIF
compilers [17]. The SUIFVM format for a function is
then translated into the CFG (control flow graph) for that
function. Based on the profiling infrastructure provided by
machSUIF, we have added a profiling module to gather the
frequencies in which all arrays are accessed in a program.

Our method operates on the CFGs of the functions in a

1 #DEFINE ALIGN UNIT = a tunable constant (in bytes)
2 PROCEDURE SPM Partitioning()
3 // Part I: define array classes
4 Let A be the set of all arrays that are to be allocated to SPM
5 for every array A in A
6 Let A.size be its (declared) size (in bytes)
7 A.aligned size = � A.size

ALIGN UNIT
� ∗ ALIGN UNIT

8 Define ArrayClassn = {A ∈ A | A.aligned size = n}
9 Set ArrayClassn.size = n

10 Define ArrayClassSet=∪n∈{A.aligned size|A∈A}{ArrayClassn}
11 // Part II: define the register file
12 for every array class Ac in ArrayClassSet
13 for (i = 0; i < �SPM SIZE

Ac.size
�; i ++)

14 start addr = SPM BASE + i ∗ Ac.size
15 Create register RAc.size,ID, where ID = i
16 Set RAc.size,ID.addr = start addr
17 Set RAc.size,ID.size = Ac.size
18 RegClassAc.size∪ = {RAc.size,ID}
19 PRF ∪ = {RegClassAc.size}

Figure 4. An algorithm for SPM partitioning.

program. We first give an overview of our implementation
and then describe the three components of our method.

4.1 An Overview

In our current implementation, we consider programs
free of recursion. No previous method can place any data in
recursive functions either. Recursive functions can be han-
dled if we adopt the caller-callee save register mechanism
used for scalars also for arrays. Since there are no recursive
functions, we will treat local and global array objects identi-
cally during graph coloring. As we shall see in Section 4.4,
this will affect how the live ranges of arrays are defined.

The alias information is used in live-range analysis and
splitting. Aliases will not affect the address translations per-
formed in Task A as stated in Section 2. In programs such
as those written in C, pointers create aliases with arrays.
A pointer p to an array A is always initialised in the form
of p = A + offset (in C). So making the array A SPM-
resident causes p to point the SPM-resident array correctly.

4.2 SPM Partitioning

Figure 4 gives a simple algorithm for partitioning an
SPM of size, SPM SIZE, into a pseudo register file, de-
noted by the set PRF (in bytes). Let SPM BASE be the
start address of the SPM space (line 14). This algorithm
has two parts. In Part I (lines 3 – 10), we cluster all the
arrays in the program into array classes such that the ar-
rays in the same class have the same aligned (or normalised)
size. The motivation for using a tunable parameter (line 1),

ALIGN UNIT, is to avoid introducing a large number of ar-
ray classes containing arrays with similar sizes, resulting in
an unnecessarily large register file. On the other hand, the
larger ALIGN UNIT is, the worse the SPM space will be
utilised. In Part II (lines 11 – 19), we divide the SPM space
(multiple times) by creating the (pseudo) registers for hold-
ing arrays, the register classes for array classes and a regis-
ter file for the SPM. For every array class Ac, the SPM is
sliced into �SPM SIZE

Ac.size � consecutive chunks starting from
its beginning. These chunks are the so-called (pseudo) reg-
isters to which the arrays in Ac can be assigned. The reg-
ister class for Ac consists of �SPM SIZE

Ac.size � such registers.

The remaining SPM SIZE−�SPM SIZE
Ac.size �Ac.size bytes

in the SPM are unused by this register class. There are
as many register classes as there are the number of array
classes: |PRF | = |ArrayClassSet| (lines 18 – 19). The
register file, PRF, is the set of these register classes.

According to this SPM partitioning algorithm, two reg-
isters in the same register class are never aliases and all reg-
ister classes are mutually disjoint. However, the registers in
different register classes can be aliases.

Figure 5 illustrates our algorithm using an example. We
start with seven arrays in the program shown in Figure 5(a)
and end up with five array classes as shown in Figure 5(b).
Figure 5(c) depicts the five register classes obtained (with
the SPM space divided five times). For example, R320,1

and R256,1 are aliases since their SPM spaces overlap.

4.3 Live-Range Splitting

In order to keep frequently accessed arrays in the SPM,
we adopt the idea of live-range splitting used for scalars in
the recent register allocation work [2] for arrays. The objec-
tive is to solve Task B as stated in Section 2 and illustrated
in Figure 2. By splitting the live ranges of some selected ar-
rays, we introduce copy statements that will become poten-
tially data transfer statements between the SPM and off-chip
memory. As we shall see in Section 4.4, we will eliminate
unnecessary array copies during and after graph coloring.

In this initial study, we focus on the arrays that are fre-
quently accessed in loops. The basic idea is to split the live
range of a frequently accessed array in a loop nest. The
array is copied to a new array at the earlier splitting point
(at the beginning of the loop) and restored back at the later
splitting point (at the end of the loop). During memory col-
oring, all these new arrays will be candidates to be colored
first so that they will likely be allocated to the SPM.

We use a cost-benefit analysis to identify the arrays
whose live ranges can be split beneficially. Our cost model
takes into account the access frequencies of arrays (obtained
by runtime profiling) and the data transfer cost between the
SPM and off-chip memory. The cost of communicating n
bytes between the SPM and off-chip memory is typically
approximated by Cs +Ct×n [12] (cycles), where Cs is the

Array Size (Bytes)

A 512
B 320
C 256
D 104
E 100
F 18
G 8

Array Class Size (Bytes)

{A} 512
{B} 320
{C} 256

{D, E} 128
{F, G} 64

R512,0

R256,1R256,0 R256,2 R256,3 R256,4 R256,7R256,6R256,5

R64,0 R64,2 R64,3R64,1

64B

SPM_SIZE = 2K

0.5K

R512,3R512,2R512,1

R128,12 R128,14 R128,15R128,13

128B

R320,0 R320,1 R320,4R320,3R320,2 R320,5

RegClass 512

RegClass 320

RegClass 256

RegClass 128

RegClass 64

(a) Arrays (b) Array classes (c) Register file

Figure 5. An illustration of the SPM partitioning algorithm in Figure 4 (SPM BASE = 0, SPM SIZE =
2KB and ALIGN UNIT = 64B). The last portion in the SPM space is unused by RegClass320.

startup cost and Ct the transfer cost per byte. We write Sspm

and Mmem for the number of cycles required per array ele-
ment access to the SPM and off-chip memory, respectively.

Figure 6 gives an algorithm, Live Range Splitting, that
operates on the CFG of a function. To simplify the pre-
sentation of this algorithm, every call site is assumed to be
contained in a loop nest (since it could be made so triv-
ially otherwise). In line 2, we process all the loop nests in
a function one by one. In line 3, we examine all the loops
of a particular loop nest, starting from its outermost to in-
nermost loop. We will split the live range of an array A
with respect to a loop L (line 4) at most once (line 5). We
skip A if CanSplit(A, L) returns false (line 6) since it can
be generally difficult to perform the code rewriting in lines
30 and 33. In line 7, we check if it is beneficial to split the
live range of A. In the function SplitCost, num of copies
is set to 1 or 2 depending on the dynamic number of copy
statements executed (lines 29 and 32). If the splitting is
beneficial, Split and Copy is called in line 8 to split the live
range of A. In line 28, a new array A′ is introduced, and
it is made to inherit the same SPM partitioning information
from A. In lines 29 and 32, the copy statement(s) required
are inserted as indicated. In line 30, all the accesses to A
(explicit or implicit (via pointers pointing only to A) inside
L are changed to the accesses to A′. In line 33, any pointer
that pointed to A (uniquely due to lines 10 – 11) is restored
to point to A again if it is visible outside the loop L.

Figure 7 illustrates our live-range splitting algorithm us-
ing a double loop taken from a Media benchmark program.
Figure 7(a) shows the double loop. In the CFG for the dou-
ble loop given in In Figure 7(b), the outer loop is shown
but the basic blocks for the inner loop are suppressed. Fig-
ure 7(c) shows that the live ranges of two arrays, rpf and
uf are split. The corresponding new arrays, rpf 1 and
uf 1, are introduced. The copy statements required are in-
serted in the basic blocks BBi and BBj as shown. (Accord-
ing to the algorithm, the copy statement inserted for uf in
BBj should have been inserted on its incoming edge. No

copy statement is needed for rpf since it is not modified.)

4.4 Memory Coloring

Given the register file and array candidates as defined
in SPM Partitioning (including also the new arrays intro-
duced by Live Range Splitting), we determine which arrays
should reside in which parts of the SPM by adapting an
existing graph-coloring algorithm for scalars. This solves
Task A as stated in Section 2. Recall that the live-range
splitting we discussed earlier aims at solving Task B.

Section 4.4.1 describes our live-range analysis for arrays
(local or otherwise), which is interprocedural and needs to
be carried out only once for a program. Section 4.4.2 gives
our memory coloring algorithm for arrays.

4.4.1 Live-Range Analysis

The live ranges of all arrays are required in order to con-
struct the interference graphs used during memory coloring.
Due to the global nature of memory coloring, we extend the
live-range analysis for scalars to compute the live ranges of
arrays interprocedurally. The predicates, DEF and USED,
local to a basic block B for a particular array A are:

DEFA(B) returns true if A is killed in block B by a copy
statement introduced in Split and Copy

USEDA(B) returns true if the elements of A are read
or written (possibly via pointers) in block B

By convention, the CFG of a function is assumed to have
a unique entry block, denoted ENTRY, and a unique exit
block, denoted EXIT. These are pseudo blocks that do not
contains instructions. The standard data-flow equations that
are applied to an array A in a function are given by:

LIVEINA(B)=(LIVEOUTA(B)−DEFA(B)) ∨ USEDA(B)

LIVEOUTA(B)=
_

S∈succ(B)

LIVEINA(S) (1)

1 PROCEDURE Live Range Splitting()
2 for every N -dimensional loop nest in a function
3 for every loop L starting from outermost to innermost
4 for every array A accessed inside L
5 if A has been already split in this nest continue
6 if ¬CanSplit(A,L) continue
7 if SplitCost(A, L) ≥ SplitBenefit(A, L) continue
8 Split and Copy(A, L)
9 BOOLEAN FUNCTION CanSplit(A,L)
10 if there exists a pointer access in the loop body of L such that

the pointer may point to both A and a distinct array B
11 return false
12 if A is a global array and accessed in a function that may be

called inside L directly or indirectly
13 return false
14 return true
15 INT FUNCTION SplitCost(A, L)
16 SplitFreq = frequency of the pre-header of L
17 if A is modified in L
18 num of copies = 2 × SplitFreq
19 else
20 num of copies = SplitFreq
21 SplitCost = (Cs + Ct × A.aligned size) ∗ num of copies
22 return SplitCost
23 FUNCTION SplitBenefit(A, L)
24 AccessFreq = access frequency of A in L
25 SplitBenefit = AccessFreq × (Mmem − Mspm)
26 return SplitBenefit
27 PROCEDURE Split and Copy(A,L)
28 Create a new array A′ and insert A′ into the same array class

as A (Figure 4), where A′.aligned size = A.aligned size
29 Add A′ = A (for array copy) at the pre-header of L
30 Replace every access of A by an access to A′ in L
31 Add the following code on the outgoing edges of all L’s exits:
32 A=A′ // when A is modified in L
33 Code for restoring a pointer to A // when modified & visible

Figure 6. An algorithm for live-range splitting.

where succ(B) denotes the set of all successor blocks of B.
By convention, LIVEINA is initialised to false for all blocks.

To permit the data reuse information to be propagated
across the functions, two additional sets of equations are
introduced next. For convenience, we assume that each call
statement forms a basic block by itself. Let CallSite be the
set of all call statement blocks in a program. Let FB be the
set of functions invoked at the call statement block B.

An array A is live on entry to a call statement block if it
is live on entry to a callee function invoked from the call site
(note that A could be accessed via pointers in the callee):

∀ B ∈ CallSite : ∀ f ∈ FB :
LIVEINA(B) ∨= LIVEINA(f ′s ENTRY)

(2)

k_n = …

s = ...

for (; k_n--; s++){

 sav = di = *s;

 for (i=0; i<8; i++) {

 register float rpfi = rpf[i];

 register float ufi = uf[i];

 uf[i] = sav;

 temp= rpfi *di +ufi;

 di += rpfi *ufi;

 sav = temp;

 }

 *s = di;

}

output (s)

k_n =...

s =...

...=rpf[i]

...= uf[i]

uf[i] =…

output(s)

k_n =...

s =…

rpf_1 rpf

uf_1 uf

...=rpf_1[i]

...= uf_1[i]

uf_1[i] =…

uf uf_1

output(s)

(a) (c)(b)

BBi

Loop

BBj

*s = …

… = *s … = *s

*s = …

BBi

Loop

BBj

Figure 7. Live-range splitting in a program.

Presently, we do not use caller-callee register saving. an
array A that is live out of a call site is assumed to be live on
entry of the exit of every function invoked at the call site:

∀ B ∈ CallSite : ∀ f ∈ FB :
LIVEINA(f ′s EXIT) ∨= LIVEOUTA(B)

(3)

4.4.2 Algorithm

Our algorithm, Memory Coloring, given in Figure 8 is an
adaptation of a generalised graph-coloring algorithm for ir-
regular register architectures [18], which is implemented in
machSUIF [17] on top of an iterated-coalescing framework
described in [1]. Therefore, Iterative Coalescing invoked in
our algorithm is essentially the procedure “Main” described
in [1, p. 251] and will thus not be discussed in this paper.

Standard graph-coloring algorithms process functions
separately since they rely on caller-callee register saving to
handle the live ranges across call sites. Presently, such a
mechanism is not used. Instead, our algorithm operates on
the call graph of a program interprocedurally. As a result,
we only need to compute (interprocedurally) the liveness in-
formation for a program once. Thus, the procedure “Live-
nessAnalysis” invoked in “Main” [1, p. 251] is not needed.

Our algorithm performs two graph-coloring passes on a
program. This is realised by calling ColorProgram twice
with different array candidate sets. In lines 2 – 3, A.reg for
every array A is initialised to −1 to indicate that A has not
been colored, i.e., register-allocated. ArrayClassSet is the
set of array classes defined in SPM Partitioning and later
extended in line 28 of Live Range Spitting. Here, we have
abused the notation by writing ArrayClassSet to mean the
set of all arrays extracted from ArrayClassSet.

In the first call to ColorProgram (line 5), only the new
arrays obtained due to live-range splitting are considered.
These are frequently accessed arrays. Thus, we try to allo-
cate them to the SPM space first. In the second pass, Color-

1 PROCEDURE Memory Coloring()
2 for every array A in ArrayClassSet in the program
3 A.reg = −1
4 Let HotArrays be the set of all new arrays that are

introduced due to live-range splitting in Figure 6
5 ColorProgram(HotArrays)
6 ColorProgram(ArrayClassSet)
7 Rewrite Program()
8 PROCEDURE Color Program(ArrayCandidates)
9 for every function f in the call graph of the program

10 Iterative Coalesce()
11 CoalesceSpill()
12 for every A ∈ ArrayCandidates that has been colored
13 A.reg = the color assigned
14 PROCEDURE Build()
15 Build the interference graph such that A ∈ArrayCandidates

is in the graph if (1) A is live in the function f or (2) A and
B interfere, where B ∈ ArrayCandidates is in the graph

16 PROCEDURE Iterative Coalesce()
17 Build()
18 MakeWorklist()
19 do
20 if simplifyWorklist �= ∅ Simplify()
21 if moveWorklist �= ∅ Coalesce()
22 if freezeWorklist �= ∅ Freeze()
23 if spillWorklist �= ∅ SelectSpill()
24 while simplifyWorklist = ∅ ∧ moveWorklist = ∅ ∧

freezeWorklist = ∅ ∧ spillWorklist = ∅
25 AssignColors()
26 if SpilledNodes�= ∅
27 for every array A in SpilledNodes
28 A.spill = true
29 Iterative Coalesce()
30 PROCEDURE Rewrite Program()
31 for every array A in ArrayClassSet
32 if A.reg �= −1
33 Replace all occurrences of A’s base address by

the base address of the register A.reg

Figure 8. An algorithm for memory coloring.

Program is called again with all array candidates extracted
from ArrayClassSet. During this second call (line 6), Color-
Program will attempt to allocate to the SPM the arrays that
are not yet colored in the first call.

ColorProgram processes all functions in the call graph of
a program one by one (line 9). In line 10, Iterative Coalesce
(from [1]) is called to perform graph coloring for all array
candidates in ArrayCandidates with respect to f . In line 17,
Build constructs the interference graph for f (line 15). Note
that Iterative Coalesce is also called recursively in line 29.
Thus, all those arrays whose spill flags are true are ignored
during all subsequent invocations of Iterative Coalesce. An
array A that is pre-colored (when A.reg �= −1) is dealt with
in the standard manner.

Two arrays are move-related if one is obtained as a result
of splitting the live range of the other. The corresponding

Benchmark Data Size (Bytes) #Arrays #Lines

rawcaudio 2.9K 5 1019
rawdaudio 2.9K 5 1019
g721decode 1.1K 26 1704
g721encode 1.1K 26 1704
toast 17.8K 62 6031
untoast 17.8K 62 6031
queens 2.5K 5 850
bj 13K 19 2109

Table 1. Application programs.

copy statement(s) introduced by Live Range Splitting will
be eliminated when the two move-related arrays are coa-
lesced during graph coloring (line 21).

When AssignColors is called in line 25, we will select
the color that has the smallest number of register aliases and
pick one of such registers with the smallest ID when is a tie.
This tends to improve the colorability of the other arrays.

If an array is “spilled” (line 26), we simply set its spill
flag to true (line 28), indicating that the array will be ignored
when Iterative Coalesce is called recursively next time (line
29). There is no need to generate any spill code. By remov-
ing a node from the interference graph, more coalescing op-
portunities may be created. Thus, the recursive calls made
in line 29 can help eliminate more unnecessary array copies
that may be introduced due to live-range splitting.

After Iterative Coalesce returns to the invocation site in
line 10, we call CoalesceSpill in line 11 to coalesce all the
“spilled” arrays. Essentially, this undoes the effect of live-
range splitting by removing the associated copy statements
inserted before. In lines 12 – 13, we update A.reg for ev-
ery colored array so that the information will be used when
Iterative Coalesce is called to process the next function.

5 Experimental Results

We evaluate this work using the eight benchmarks given
in Table 1. The first six are from the Media benchmark
suite, queens is a program for solving the N -queens prob-
lem and bj is a program for the BlackJack game. The data
size of a benchmark accounts for the space taken by only
the arrays in the application of the benchmark.

All programs are compiled into assembly programs for
the Alpha architecture using our implementation depicted
in Figure 3. These assembly programs are then translated
into binaries on a DEC Alpha 20264 architecture. The pro-
filing information for the Media benchmarks is obtained us-
ing the so-called “second data sets” available in the Media-
bench web site. These benchmarks are evaluated using the
data sets that come with their source files. The profiling for
the other two benchmarks is obtained using inputs different

0
50

100
150
200

rawcaudio

rawdaudio

g721encode

g721decode
toast

untoast

queens bj

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 C
yc

le
s

(%
)

0.5K 1K 2K 4K 8K 16K

Figure 9. Effect of varying the size of the SPM
on runtime gain.

0
20
40
60
80

100

rawcaudio

rawdaudio

g721encode

g721decode
toast

untoast

queens bj

N
o

rm
al

is
ed

 S
P

M
 A

cc
es

se
s

(%
)

05.K 1K 2K 4K 8K 16K

Figure 10. Effect of varying the size of the
SPM on the SPM accesses.

from those when they are actually evaluated.
We have modified SimpleScalar to allow us to carry out

performance evaluations for this work. Recall that there are
four parameters involved in an SPM-based embedded sys-
tem. The cost of communicating n bytes between the SPM
and off-chip is approximated by Cs+Ct×n in cycles, where
Cs is the startup cost and Ct is the cost per byte transfer.
Two other parameters are Mspm and Mmem, which repre-
sent the number of cycles required for one memory access to
the SPM and the off-chip memory, respectively. The values
of the four parameters are Cs = 20, Ct = 1, Mmem = 20
and Mspm = 1 unless otherwise specified.

In rawcaudio and rawdaudio, there is a single loop
iterating over an array of 2K bytes. We have manually tiled
the loop so that the array is split into four equally sized ar-
rays of 512B each. This creates the arrays of data sizes
compatible with the other benchmarks so that they can be
evaluated using some common sizes for the SPM. Unless
otherwise specified, by rawcaudio and rawdaudio, we
mean the tiled versions obtained this way.

5.1 Performance Improvements

Figure 9 illustrates the performance improvements of the
eight benchmarks as the size of the SPM, SPM SIZE, in-
creases. The execution time of a benchmark is normalised
to that achieved when the SPM is not used. As SPM SIZE
increases, all eight benchmarks show non-decreasing per-

0

5

10

15

20

0K 0.25K 0.5K 0.75K 1K 2K 4K 8K 16K

SPM Size

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

ts
 (

%
)

Figure 11. Effect of splitting on runtime gain.

0

20

40

60

80

100

0K 0.25K 0.5K 0.75K 1K 2K 4K 8K 16K

SPM Size

N
o

rm
al

is
ed

 S
P

M
 A

cc
es

se
s

(%
) Splitting Non-splitting

Figure 12. Effect of splitting on the SPM ac-
cesses.

formance improvements. Each of the eight benchmarks ar-
rives at the best speedup at one of the SPM sizes used.

However, for some benchmarks such as g721decode
and g721encode, once SPM SIZE has reached a certain
value, no further performance improvements are observed
even when their data size, 1.1KB, as shown in Table 1 are
still larger than some SPM sizes (e.g., 0.5KB and 1KB).
The reasons behind can be explained using the SPM ac-
cesses as shown in Figure 10 normalised to that achieved
in the ideal setting when all the array accesses (from the
array candidates considered) are made to the SPM. When
SPM SIZE � 0.5KB, all array accesses to the SPM are
already maximised . Any further increase in SPM SIZE will
not have any impact on performance improvement. Finally,
we observe from Figure 10 for each benchmark, all array
accesses (from the array candidates considered) are eventu-
ally made to the SPM for a certain SPM size.

5.2 Impact of Live-Range Splitting

In this work, live-range splitting aims at improving graph
colorability, thereby increasing the number of arrays allo-
cated to the SPM space. Figure 11 evaluates the impact
of live-range splitting on the runtime gains for untoast.
When SPM SIZE � 4KB, all the array candidates can be
allocated to the SPM without resorting to live-range split-
ting. So live-range splitting needs not to be performed in
these cases. However, we observe from Figure 11 that split-

0

50

100

150

rawcaudio rawdaudio

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 C
yc

le
s

(%
)

0.5K 1K 2K 4K 8K 16K

0

200

400

600

rawcaudio rawdaudio

N
o

rm
al

is
ed

 E
xe

cu
ti

o
n

 C
yc

le
s

(%
)

0.5K 1K 2K 4K 8K 16K

(a) Cs = 20 and Mmem = 20 (b) Cs = 30 and Mmem = 100

Figure 13. Effect of varying Cs and Mmem on
runtime gain (Ct = Mspm = 1).

ting is beneficial when the SPM is smaller. The resulting
performance improvements are attributed to the increased
SPM accesses as shown in Figure 12. For this particu-
lar benchmark, the number of live ranges split is 16. The
largest interference graph consists of 33 nodes.

While the coalescing heuristics used in the iterative-
coalescing algorithm [10] are designed to reduce unneces-
sary register-move instructions, there is no guarantee that all
will be eliminated. These move instructions will be trans-
lated into array copy operations within the SPM. For ex-
ample, when SPM SIZE = 2KB, one live range suffers
from this problem. We plan to develop coalescing heuristics
that are well suited to data aggregate management.

5.3 Impact of Architecture Parameters

Figure 13 illustrates the impact of varying startup cost
(Cs) and DRAM latency (Mmem) on the runtime gains of
the two benchmarks, rawcaudio and rawdaudio. The
execution times are all normalised to that achieved in the
worst setting when the SPM is not used. This experiment
demonstrates that our current memory coloring algorithm
is capable of taking into account the architectural parame-
ters into account when allocating arrays to the SPM. In both
configurations, our algorithm finds the optimal solution as
soon as SPM SIZE increases to 2KB or beyond. Better
performance speedups are attained as Mmem increases.

5.4 Impact of Loop and Data Tiling

We evaluate the impact of loop and data tiling
on runtime improvements. In this experiment,
untiled rawcaudio is the original program while
rawcaudio is the tiled program obtained as we discussed
above. Figure 14 compares the execution times of both
programs when SPM SIZE varies. The tiled program per-
forms better than the untiled version when SPM SIZE is
below 4KB. As soon as SPM SIZE reaches 4KB, tiling
enjoys no benefit since all the arrays can now be kept in
the SPM even when the program is not tiled. In fact, the

8
10
12
14
16
18

0 0.25K 0.5K 0.75K 1K 1.5K 2K 4K 8K 16K

SPM Size

E
xe

cu
ti

o
n

 C
yc

le
s

(M
ill

io
n

s) rawcaudio rawcaudio untiled

Figure 14. Effect of tiling on execution time.

performance of the tiled program worsens slightly due to
the tiling overhead introduced.

This experiment suggests that loop and data transforma-
tions such as tiling should be integrated into our memory
coloring framework in future work.

6 Related Work

There are a number of research efforts on allocating
program data among different non-cached memory banks
[3, 11, 12, 16, 20]. Most of these existing methods are static
in the sense that an array will reside either in the SPM or
SDRAM throughout the program execution. To our knowl-
edge, there are two dynamic methods [12, 20], by which an
array may be copied into and out of the SPM during pro-
gram execution. In [12], loop and data transformations are
exploited but the proposed technique is restricted to well-
structured kernels. In [20], the SPM management problem
is formulated as an integer linear programming (ILP) prob-
lem and the proposed approach is evaluated using small pro-
grams. ILP can be expensive if applied to large programs
with arrays whose live ranges span multiple functions. Its
feasibility for larger programs remains to be demonstrated.

Graph-coloring is a popular technique in register alloca-
tion. Based on Chaintin’s original formulation [6], a va-
riety of graph-coloring-based register allocators have been
developed [5, 8, 10, 13, 18]. In particular, George and Ap-
pel [10] introduce a well-known iterative-coalescing algo-
rithm. Recently, Smith, Ramsey and Holloway [18] present
a generalised algorithm for irregular architectures with reg-
ister aliases and non-disjoint register classes, which we have
adapted to allocate arrays to an SPM in this work.

An important advance in the field of graph-coloring-
based register allocation is that the live ranges of variables
should be split into small pieces, with copy instructions con-
necting the pieces [2, 4]. A register allocator is responsible
for eliminating the redundant copies introduced due to live-
range splitting. We have adopted this idea in this work.

Cooper and Harvey [9] describe a technique that targets
spilled scalars into a small region of an SPM. This can be
done together with our technique for allocating arrays.

7 Conclusion

In this paper, we have presented a new methodology for
automatically allocating arrays in a program to an SPM. We
transform the SPM management problem into one that can
be solved efficiently by existing graph-coloring algorithms.
The basic idea is to partition the SPM space into a regis-
ter file with registers capable of holding arrays of differ-
ent sizes in the program. This leads to an efficient solution
to the SPM management problem by divide and conquer.
By splitting the live ranges of frequently accessed arrays,
we introduce copy statements that represent potentially data
transfer statements between the SPM and off-chip memory.
The number of unnecessary splits is reduced by copy coa-
lescing during and after graph coloring. This solves Task
B stated in Section 2. By adapting existing graph-coloring
algorithms, we are able to determine efficiently which ar-
rays should be SPM-resident and where. This solves Task
A stated in Section 2.

We have presented one implementation of our method-
ology in SUIF and machSUIF. Preliminary results from
benchmarks are very encouraging. The strategies for SPM
partitioning and live-range splitting as discussed in this pa-
per are simple with a lot of room for improvement. De-
spite this, the prototyping implementation shows that our
methodology is capable of producing optimal performance
results for the benchmarks used.

There are a number of interesting but challenging re-
search directions, including better strategies for SPM par-
titioning, live-range splitting and memory coloring. For ex-
ample, more sophisticated heuristics for live-range splitting
discussed in [2] may be considered in future work. Better
coalescing heuristics are needed to minimise the number of
unnecessary splits for arrays. We will also investigate how
to combine loop and data transformations (e.g., tiling) in
our framework for more effective SPM management. Allo-
cation of heap data, together with arrays, to the SPM space
will be yet another challenging topic.

References

[1] A. J. Appel. Modern Compiler Implementation in C. Cam-
bridge University Press, 1998.

[2] A. W. Appel and L. George. Optimal spilling for CISC ma-
chines with few registers. In PLDI ’01: Proceedings of the
ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 243–253, New York, NY,
USA, 2001. ACM Press.

[3] O. Avissar, R. Barua, and D. Stewart. An optimal memory
allocation scheme for scratch-pad-based embedded systems.
ACM Trans. on Embedded Computing Sys., 1(1):6–26, 2002.

[4] P. Briggs. Register Allocation via Graph Coloring. PhD the-
sis, Rice University, April 1992.

[5] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to
graph coloring register allocation. ACM Trans. Program.
Lang. Syst., 16(3):428–455, 1994.

[6] G. J. Chaitin. Register allocation & spilling via graph col-
oring. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN
symposium on Compiler construction, pages 98–101, New
York, NY, USA, 1982. ACM Press.

[7] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and
M. Thottethodi. Nonlinear array layout for hierarchical mem-
ory systems. In ACM International Conference on Supercom-
puting (ICS’99), pages 444–453, Rhodes, Greece, Jun. 1999.

[8] F. C. Chow and J. L. Hennessy. The priority-based coloring
approach to register allocation. ACM Trans. Program. Lang.
Syst., 12(4):501–536, 1990.

[9] K. D. Cooper and T. J. Harvey. Compiler-controlled mem-
ory. In ASPLOS-VIII: Proceedings of the eighth international
conference on Architectural support for programming lan-
guages and operating systems, pages 2–11, New York, NY,
USA, 1998. ACM Press.

[10] L. George and A. W. Appel. Iterated register coalescing.
ACM Trans. Program. Lang. Syst., 18(3):300–324, 1996.

[11] J. D. Hiser and J. W. Davidson. Embarc: an efficient mem-
ory bank assignment algorithm for retargetable compilers. In
Proceedings of the 2004 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools, pages 182–191. ACM
Press, 2004.

[12] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan,
I. Kadayif, and A. Parikh. Dynamic management of scratch-
pad memory space. In Proceedings of the 38th conference on
Design automation, pages 690–695. ACM Press, 2001.

[13] G.-Y. Lueh, T. Gross, and A.-R. Adl-Tabatabai. Fusion-
based register allocation. ACM Trans. Program. Lang. Syst.,
22(3):431–470, 2000.

[14] The SUIF Compiler Group. SUIF: An infrastructure
for research on parallelizing and optimizing compilers.
http://suif.stanford.edu.

[15] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization
of scratch-pad memory in embedded processor applications.
In Proceedings of the 1997 European conference on Design
and Test, page 7. IEEE Computer Society, 1997.

[16] J. Sjödin and C. von Platen. Storage allocation for embedded
processors. In Proceedings of the 2001 international confer-
ence on Compilers, architecture, and synthesis for embedded
systems, pages 15–23. ACM Press, 2001.

[17] M. Smith. Extending SUIF for machine-dependent optimiza-
tions, 1996.

[18] M. D. Smith, N. Ramsey, and G. Holloway. A generalized
algorithm for graph-coloring register allocation. In Proceed-
ings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, pages 277–288. ACM
Press, 2004.

[19] B. Steensgaard. Points-to analysis in almost linear time. In
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
32–41. ACM Press, 1996.

[20] S. Udayakumaran and R. Barua. Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems.
In CASES ’03: Proceedings of the 2003 international confer-
ence on Compilers, architecture and synthesis for embedded
systems, pages 276–286. ACM Press, 2003.

[21] M. J. Wolfe. Iteration space tiling for memory hierarchies. In
G. Rodrigue, editor, Parallel Processing for Scientific Com-
puting, pages 357–361, Philadelphia PA, 1987.

