
Abstract

Memory structures consume an important fraction of the

total processor energy. One solution to reduce the energy con-

sumed by cache memories consists of reducing their supply

voltage and/or increase their threshold voltage at an expense

in access time. We propose to divide the L1 data cache into two

cache modules for a clustered VLIW processor consisting of

two clusters. Such division is done on a variable basis so that

the address of a datum determines its location. Each cache

module is assigned to a cluster and can be set up as a fast

power-hungry module or as a slow power-aware module. We

also present compiler techniques in order to distribute vari-

ables between the two cache modules and generate code

accordingly. We have explored several cache configurations

using the Mediabench suite and we have observed that the best

distributed cache organization outperforms traditional cache

organizations by 19%-31% in energy·delay2 and by 11%-29%

in energy·delay. In addition, we also explore a reconfigurable

distributed cache, where the cache can be reconfigured on a

context switch. This reconfigurable scheme further outper-

forms the best previous distributed organization by 3%-4%.

1. Introduction

The cache hierarchy consumes an important fraction of the

total processor energy. This is even more noticeable in in-

order or VLIW processors often used in the embedded/DSP

domain, due to the lower complexity of the processor core as

compared to out-of-order processors. For example, in the

ARM10 processor family, 24% of the dynamic power is due to

the data cache and 22% to the instruction cache [15]. One solu-

tion to reduce the energy consumed by cache memories is to

lower their supply voltage VDD and/or increase their threshold

voltage VTH at an expense in access time. Thus, there is a

trade-off between energy consumption and performance.

Furthermore, it has been shown that heterogeneity can be

exploited in several parts of the processor. A processor may

contain some functional units tuned for performance and some

other tuned for energy, pursuing energy efficiency [23][29].

Heterogeneity has also been explored in the memory hierar-

chy. For instance, Abella and González [1] proposed to divide

the data cache into a fast power-hungry module and a slow

power-aware module for out-of-order processors.

In this paper we also divide the data cache into two mod-

ules. This division is done on a variable basis so that the

address of a variable determines the cache module where it

resides. In order to do so, the address space of a process is

divided into two address spaces and each one is bound to a dif-

ferent cache module. This scheme is applied to a VLIW pro-

cessor consisting of two clusters, in which each cluster has a

subset of the functional units, a local register file and a cache

module. Each cache module can be set up as either a fast

power-hungry module or a slow power-aware module, leading

to several cache configurations with different performance

and energy characteristics.

The compiler is responsible for distributing variables

between the two address spaces. Once data have been distrib-

uted, memory instructions have a preferred cluster based on

the accessed variables. Such preferred cluster is described by

an affinity attribute. Affinities are then propagated to the rest

of the instructions to guide the assignment of instructions to

clusters. We develop compiler techniques to efficiently map

variables to cache modules and schedule code accordingly.

The different cache configurations are evaluated for a

clustered VLIW processor using energy·delay (ED) and

energy·delay2 (EDD), and are compared to a clustered VLIW

processor with a unified data cache. Results for the Media-

bench suite demonstrate that the proposed architecture / com-

piler schemes outperform classical cache organizations when

performance and energy are both taken into account. Further-

more, we have observed that there is not a single cache config-

uration that is the best for all benchmarks. Thus, we also

explore a scheme in which the cache may be reconfigured on

a context switch depending on the process being scheduled out

and the process being scheduled in. This dynamic organization

even exploits energy efficiency better.

The rest of the paper is organized as follows. In Section 2,

the proposed variable-based scheme is presented, along with

the different cache configurations. After that, compiler tech-

niques are introduced in Section 3 and all the cache schemes

are evaluated in Section 4. Finally, related work is exposed in

Section 5, while conclusions are drawn in Section 6.
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2. Architecture Configurations

Clustering is a technique in which the processor is divided

into semi-independent units in order to overcome energy-related

problems and wire delays. Each of these units is referred to as a

cluster, which often consists of a local register file and a subset

of the functional units. Communications inside a cluster or local

communications are fast, while inter-cluster communications or

global communications are slow. Hence, instructions should be

assigned to clusters so that global communications are mini-

mized while workload balance among clusters is maximized.

In this section, the proposed cache configurations for a clus-

tered VLIW processor are presented. First, the cluster architec-

ture and an overview of the cache organization is introduced in

Section 2.1. Next, the different cache configurations are pre-

sented in Section 2.2.

2.1. A Variable-Based Multi-Module Cache for
Clustered VLIW Architectures

In this paper, we propose an energy-efficient cache organi-

zation for a VLIW processor consisting of two clusters. Inter-

cluster communications are achieved through a set of register-

to-register communication buses or register buses for short,

which are controlled by the compiler. Hence, the compiler is

responsible to add and schedule an explicit copy operation

whenever it assigns two register-flow dependent instructions to

different clusters.

The L1 data cache is divided into two modules and each

cache module is attached to a cluster. Program variables are stat-

ically distributed between the cache modules. In order to do so,

the address space of a process is split into two address spaces:

data or variables mapped into the first address space are always

cached in the first module at runtime, while data or variables

mapped into the second address space are stored in the second

module at runtime. Thus, the most significant bit of a given

address indicates where the datum resides. This scheme is

known as a variable-based multi-module data cache and it is

shown in Figure 1.

If the stack is distributed between the two address spaces,

two stack pointers must be used. In this paper we do not only

split the stack, but we also split individual stack frames. Hence,

local variables of a given function may reside in different

address spaces.

We assume a stall-on-use processor in which the processor

is not stalled in case of a cache miss until the requested datum is

needed. In particular, upon a miss, the processor continues exe-

cuting instructions until the first consumer of the memory

instruction that missed in the cache is executed. At that point, if

the datum is not ready yet, the processor is stalled.

Memory instructions are statically scheduled in one of the

two clusters. A memory instruction is said to be a local access

when it references a datum mapped in the cache module of the

same cluster. On the other hand, a memory instruction accessing

data mapped in the cache module of the other cluster is referred

to as a remote access.

Finally, memory disambiguation is performed locally in

each cluster as long as statically-scheduled memory instructions

become local accesses since each cluster stores distinct data. In

the presence of a remote access, memory coherence is guaran-

teed by stalling the processor until the memory access is com-

pleted remotely and a reply is sent back from the remote to the

local cluster. Due to the fact that remote accesses are infrequent

and that there is not any communication mean between clusters

other than the register buses, register buses are used to perform

this request-reply transaction. Thus, when the processor detects

a remote access it stalls execution. Since there may be valid val-

ues in the register buses at that time, the processor waits until the

values have reached all clusters (the latency of the buses), buff-

ers the values in temporary registers in order to continue execu-

tion after the remote access, and performs the request-reply

transaction. After that, it resumes execution.

2.2. Cache Configurations

Since the data cache consumes an important fraction of the

processor energy, we use heterogeneous cache modules for the

proposed architecture. In particular two module types are con-

sidered: a fast power-hungry type tuned for performance and a

slow power-aware type tuned for energy consumption. From

these cache module types, we explore five different architec-

tural configurations as shown in Figure 2. These configurations

consist of:

• one cluster with a fast cache module and the other without

any cache module, referred to as the FAST+NONE

scheme shown in Figure 2(A)

• both clusters with a fast cache module, referred to as the

FAST+FAST scheme shown in Figure 2(B)

• one cluster with a fast cache module and the other with a

slow cache module, referred to as the FAST+SLOW

scheme shown in Figure 2(C)

• both clusters with a slow cache module, referred to as the

SLOW+SLOW scheme shown in Figure 2(D)

HIGH

LOW

STACK

HEAP

GLOBAL DATA

STACK

HEAP

ADDR

GLOBAL DATA

ADDR

USER DATA

ADDRESS SPACE

REGISTER FILE

FIRST

L2 CACHE

FI
R

ST
SE

C
O

N
D

A
D

D
R

E
SS

 S
PA

C
E

A
D

D
R

E
SS

 S
PA

C
E

SECOND

CLUSTER 1

MODULE

UNITS

FUNCTIONAL

REGISTER FILE

communication buses
register-to-register

MODULE

CLUSTER 2

UNITS

FUNCTIONAL

linked stack fram
es

Figure 1. A variable-based multi-module cache for a VLIW
processor with 2 clusters.
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• and one cluster with a slow cache module and the other

without any cache module, referred to as the

SLOW+NONE scheme shown in Figure 2(E)

We have assumed that each cache module has 1 read/write

port. Another important consideration is the latency and power

dissipation of a slow module with respect to a fast one. Proces-

sor energy can be classified as either dynamic (energy due to

activity, consumed when transistors switch), and leakage (due to

subthreshold leakage currents). Nowadays, leakage energy

accounts for around 25% of the total energy, but trends indicate

that this ratio will be soon 50% [22][26]. It is well known that

decreasing the supply voltage (VDD) reduces both dynamic

power and leakage, and slightly increasing the threshold voltage

(VTH) drastically reduces leakage. However, both adjustments

increase the delay. Thus, there is a trade-off between dynamic

power, leakage and access time. Similarly to previous work [1],

we have assumed that the latency of the slow cache should be at

most 2 times larger than the latency of the fast cache. It has also

been assumed that VDD and VTH must reduce both power

sources (dynamic power and leakage) by the same percentage

since optimal generic VDD and VTH values cannot be computed

as explained in [1]. With these constraints, we have found that

increasing the latency from 2 to 4 cycles reduces both power

sources to around 1/3 of the fast module [24]. The characteris-

tics of each cache module and the relations between a fast and a

slow module are also depicted in Figure 2. We have used

CACTI [24] to compute energy consumption.

3. Compiler Techniques

In this section, we present compiler techniques to generate

code for a clustered VLIW processor with a variable-based

multi-module cache. The process of mapping variables to

address spaces and schedule code accordingly can be divided in

several steps which are covered in deeper detail in the following

sections. An overview of the process is shown in Figure 3. First,

the compiler builds the Instructions-to-Variables Graph (IVG),

which is a structure that represents the memory access pattern of

the program, and extends it with additional information. The

compiler then decides a variable mapping. Once a mapping has

been computed, the affinity of memory instructions is computed

and they are assigned a latency. Next, slacks are computed and

affinities are propagated to the other instructions. Finally, code

is scheduled and this information is fed back to the mapping

algorithm in order to refine it. This iterative process finishes

when the compiler estimates that no more benefit can be

obtained in the trade-off between performance and energy con-

sumption.

All this iterative procedure is covered in different sections.

The IVG is introduced in Section 3.1 and is extended as

explained in Section 3.2. The greedy algorithm used to decide a

variable mapping is presented in Section 3.3. Next, the compu-

tation of affinities and the assignment of latencies to memory

instructions is covered in Section 3.4. A graphical example is

shown in Section 3.5 to better understand the use of affinities.

After that, instruction scheduling for cyclic code and for acyclic

code are introduced in Section 3.6 and Section 3.7 respectively.

Finally, the previous example is extended in Section 3.8.

3.1. The Instructions-to-Variables Graph (IVG)

The compiler uses the Instructions-to-Variables Graph

(IVG) when mapping variables to address spaces. The IVG is a

directed graph in which nodes represent memory instructions

and variables of a program, and edges link instructions with

variables. An edge between an instruction and a variable indi-

cates that the instruction accesses that variable a certain amount

of times (the weight of the edge). All this information is gath-

ered through profiling and an example is shown in Figure 4.

The compiler assigns a mapping attribute to each program

variable and to each variable node in the IVG in consequence.

Such mapping attribute indicates the address space where the

variable is bound to and has a value from the set {0, 1}. Variables

mapped to the first address space will be assigned an address

with the most significant bit set to one, while variables mapped

to the second address space will be assigned an address with the

most significant bit to zero.

Variable nodes in the IVG represent global, stack and heap

variables. Each global variable of the program and each individ-

ual local variable in each routine become a node in the IVG.

However, heap variables must be managed carefully since they

are created, resized and freed at runtime. On one hand, heap

variables should be distributed between the two address spaces
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Figure 2. Cache configurations and relations between a fast and a slow modules.
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Figure 3. Overview of the compiler techniques used to map
variables to address spaces and schedule code accordingly.
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at a fine granularity. This is translated into a rather large number

of heap variables and gives more freedom to the compiler to dis-

tribute them with the best performance/energy consumption

trade-off. On the other hand, heap variables must be managed so

that such distribution is valid when the program is executed with

different input sets. For example, we could assume that all heap

variables must be mapped into the same address space. In this

case, the computed distribution works with any input set. How-

ever, we may be losing opportunities to spread heap variables

with different performance and energy characteristics between

address spaces.

Our prior work showed that a good compromise between

granularity and input independence (generality) is achieved by

grouping together all heap variables created from the same

dynamic call trace into the same IVG node [12]. A dynamic call

trace consists of the run-time call trace at the point where malloc

is called, avoiding cycles due to recursive function calls. For

example, if function main calls function foo, that calls function

foo2, that recursively calls itself and finally calls malloc, the

dynamic call trace at this point consists of the tuple {main, foo,

foo2, malloc}.

In such scenario, the distribution of heap variables is trans-

parent to the user. Thus, there is a single malloc function and a

single free function from the programmer’s perspective. The

compiler collects dynamic call traces during profiling and com-

putes an address space for each of these traces. When malloc is

called, the routine extracts the dynamic call trace at that point1

and compares it with the traces collected during profiling. The

memory allocation library then decides whether to allocate

memory from one address space memory pool or another. There

is no need for functions such as malloc_first_addr_space,

malloc_second_addr_space, free_first_addr_space, and

free_second_addr_space, which would make programming

more complex and less portable.

3.2. Extending the IVG

The IVG is built with profiling information. Although pro-

filing gives a good overview of the access pattern of memory

instructions, there may still be missing information in the IVG.

This may be translated into a considerable amount of remote

accesses, which stall the processor and have an impact on per-

formance. We have especially observed this phenomenon in

benchmarks gsmenc and mpeg2dec.

One way to extend the IVG and augment it with information

not observed during profiling consists of using the high-level

name of variables. The name of the referenced variable is gath-

ered for each memory instruction in the front-end of the com-

piler and it is propagated as instruction attributes to the back-

end, where our mapping algorithm takes place. This information

is used to add new edges in the IVG so that memory instructions

are later scheduled in the correct cluster. For example, if load L5

in Figure 4 is load r1,@V3, the high-level name of the refer-

enced variable is V3, and we can add an edge connecting load

L5 to variable V3. The weight of the edge is not important in this

case. Hence, load L5 will be scheduled in cluster 2 if variable V3

is mapped into the second address space.

This technique is only helpful when the name of the variable

is not a pointer. For pointer accesses, an aggressive points-to

analysis can be used to refine the IVG. Note that this points-to

analysis can be aggressive, since it is not used for correctness,

but for performance (avoid remote accesses).

We have applied these two techniques to benchmarks

gsmenc and mpeg2dec and we have reduced the amount of

remote accesses in these cases. For example, there were some

instructions not executed during profiling in mpeg2dec that

access global variables. In this case, their names were used to

extend the IVG. On the other hand, a local variable is often

passed by reference to a subroutine in gsmenc. This could be

easily detected by a points-to analysis. However, we have

extended the IVG by hand in this case. We believe it was not

worth the effort to develop a full points-to analysis since this

only affected a few instructions of one benchmark. Remote

accesses results are shown in Section 4.2.

3.3. The Greedy Mapping Algorithm

The compiler is responsible for distributing variables

between the two address spaces and generate code accordingly

trying to maximize an objective function. The objective func-

tion takes into account performance and energy consumption at

the same time. In this paper, we have used energy·delay (ED)

and energy·delay2 (EDD) [5] as objective functions, and results

using both are later shown in Section 4.

The mapping algorithm receives the IVG as input, along

with the Data Dependence Graphs (DDGs) of all code regions

of a program. Since our target processor has two clusters, a vari-

able can be mapped into two different address spaces and each

variable is assigned a mapping attribute from the set {0, 1}. The

mapping algorithm starts by mapping all variables to the first

address space. It then assigns the corresponding latency to

memory instructions, computes the affinity of all instructions as

explained later in Section 3.4, and schedules code as explained

later in Section 3.6 and Section 3.7. After this initial assignment,

the algorithm proceeds in a greedy manner trying to remap each

variable from the first address space to the second one. In par-

ticular, for each variable, the algorithm computes the benefit
1. The dynamic instruction call trace is part of the function call convention. It im-

plies the assignment of a unique id to each function and pushing/popping them
from the stack along with their corresponding stack frames.
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Figure 4. An example of an IVG. Note that each variable has
been assigned to an address space.
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from remapping it to the second address space and remaps the

variable with the best benefit if it is positive. Such benefit is

computed using either ED or EDD depending on the experi-

ments. Execution time (delay) is estimated for each variable by

rescheduling the code regions that access that particular variable

considering the new mapping. Energy, on the other hand, is esti-

mated from the cache configuration and the schedule. A positive

benefit is understood as a benefit that improves the current map-

ping configuration. The mapping algorithm iterates remapping

one variable at a time from the first to the second address space

until no more benefit is expected.

3.4. Computing Affinities and Assigning Latencies

Once variables are mapped into one of the two address

spaces, memory instructions have a preferred cluster depending

on the accessed variables. In order to describe this preference,

we attach an affinity attribute to each memory instruction that

will be later used to assign instructions to clusters. Such affinity

is a value that ranges between 0 (the preferred cluster of the

instruction is definitively cluster 1) and 1 (the preferred cluster

of the instruction is definitively cluster 2) and is computed by

the ratio between the number of accesses to variables mapped

into the second address space and the total number of accesses.

Since most memory instructions access a single variable [12],

the affinity of most memory instructions is either 0 or 1. How-

ever, affinities between 0 and 1 are possible in case a memory

instruction accesses variables mapped in different address

spaces.

Once the affinity of memory instructions is computed, a

latency is assigned to each one. Memory instructions with an

affinity greater than 0.5 are assigned the latency of the cache

module residing in cluster 2 because they will probably be

scheduled in that cluster, whereas instructions with an affinity

lower than or equal to 0.5 are assigned the latency of the cache

module residing in cluster 1.

After computing the preferred cluster for each memory

instruction, the preferred cluster of all other instructions is com-

puted by propagating the affinity of memory instructions. The

idea is to assign similar affinities to instructions that depend on

the execution of the same memory instruction in order to avoid

inter-cluster register communications. Since the execution of an

instruction may depend on more than one memory instruction,

affinities are combined.

In particular, affinities are computed by propagating the

affinity of memory instructions to the other instructions only

through register-flow dependences in the DDG. This is so

because register-flow dependences are the only ones that

require an inter-cluster register communication in case their

source and target nodes are scheduled in different clusters. The

rest of the edges are ignored in this step. In addition, the perfor-

mance loss incurred by an inter-cluster register communication

is often inversely proportional to the slack of its corresponding

edge. Thus, the edge slacks are computed and affinities are

propagated through the most critical edges first.

The slack of an edge is the number of cycles by which it can

be stretched without increasing execution time. It is computed

in a different manner for cyclic and acyclic code. Computing it

for cyclic code is explained in Section 3.6, while it is explained

in Section 3.7 for acyclic code.

The algorithm we have used to propagate affinities is shown

in Figure 5. First, all non-memory instructions are assigned an

unknown affinity and variables max_slack and slack are initial-

ized to the largest edge slack in the graph and to zero respec-

tively (lines ➊➋➌). After that, the algorithm iterates (line ➍)

assigning affinities to instructions considering certain edges in

each iteration. In particular, only register-flow dependences

whose slack is lower than or equal to variable slack are consid-

ered in each iteration. Since variable slack was first initialized

to zero and is increased in each iteration, affinities are propa-

gated from most to least critical edges. In order to do so, the

algorithm builds a subgraph with only the specified depen-

dences (line ➎). This subgraph is transformed to an undirected

graph in order to propagate affinities in any direction. For each

node without a known affinity in the resulting subgraph (line ➏),

its affinity is computed if there is a path between a memory

instruction and it, and this path does not contain other memory

instructions (line ➐). The affinity of the instruction is the arith-

metic mean of the affinities of all reachable memory instruc-

tions avoiding paths with memory instructions within (line ➑).

At the end of each iteration, variable slack is increased so that a

“less critical” subgraph is built in the next iteration and affinities

are propagated to nodes with an unknown affinity (line ➒).

algorithm propagate_affinities

➊ set the affinity of all non-memory instructions to UNKNOWN

➋ slack=0

➌ max_slack = maximum slack of an edge in the DDG

➍ while slack <= max_slack

➎ build undirected graph DDG’={V,E’} from DDG={V,E} 

| ( e’ E’ --> (e’ E) and (slack(e)<=slack) and (type(e)=REG_FLOW))

➏ for each node v of DDG’ | (affinity(v)=UNKNOWN) and (v is not a mem. inst)

➐  if there exists a path between v and a memory instruction in DDG’ 

and this path does not contain any other memory instruction ; then

➑ affin(v)=average affin. of all mem. instructions rechable from v

end if

end for each

➒ slack=slack+1

end while

end algorithm

Figure 5. Pseudo-code of the algorithm used to propagate affinities from memory instructions to the other instructions.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05) 

1089-795X/05 $20.00 © 2005 IEEE 



An example of how affinities are computed for a particular

graph and used throughout instruction scheduling is presented

next.

3.5. Example of Affinity Use

Let us use a simple example to show how affinities are com-

puted and used. Imagine the scenario shown in Figure 6 where

variables V1 and V2 have been mapped into the first address

space and variables V3 and V4 have been mapped into the sec-

ond address space as shown in the IVG in Figure 6(A). In addi-

tion, the DDG of an acyclic code region is depicted in Figure

6(B) where only register-flow dependences have been consid-

ered. For simplicity we assume that the latency (L) of all

instructions is 1 cycle, except for the multiplication, whose

latency is 3 cycles. Note that we assume that the latency of both

cache modules is the same.

First, the affinity of memory instructions is computed. Since

each memory instruction accesses a single variable, their affin-

ities are binary. Instructions LD1, LD2 and ST1 have an affinity

of 0, and instructions LD3 and LD4 have an affinity of 1 as

shown in Figure 6(A). Thus, LD1, LD2 and ST1 are assigned the

latency of the first address space whereas LD3 and LD4 are

assigned the latency of the second address space, which is 1

cycle in both cases. Once latencies have been assigned, the edge

slacks are computed and are pictured close to each edge in Fig-

ure 6(B). In this case, since the code region is acyclic, all slacks

are length slacks as later explained in Section 3.7.

Next, affinities are propagated. Only edges with a slack of

zero are considered in the first iteration, leading to a subgraph

shown in Figure 6(C). The resulting subgraph is transformed

into an undirected graph structure. At this point, the affinity of

instructions add1, add2, mul1 and add6 is computed. Since all

reachable memory instructions in this subgraph have an affinity

of 0, the affinity of these instructions is 0 as well. In the third

iteration, edges whose slack is lower than or equal to two cycles

are considered, and the algorithm computes the affinity of

instructions add3, add4 and add5. The resulting subgraph is

shown in Figure 6(D). Note that the affinity computed previ-

ously for other instructions is not recomputed. Although there

exists a path between LD1 and add3 in the undirected subgraph,

the affinity of LD1 is not considered to compute add3’s because

the path includes another memory instruction (LD3). Hence the

only path considered for add3 is the path consisting of {LD3,

add3}, while the path {LD4, add4} is used for instruction add4.

Both of their affinities are 1. If all the paths were considered, for

example, the affinity of instruction add3 would be 0.4 which is

not intuitive since add3 is very tied to LD3, whose affinity is 1.

On the other hand, the affinity of instruction add5 is 0.4. This is

the arithmetic mean of the affinities of memory instructions

reachable from add5 in the subgraph, excluding paths contain-

ing other memory instructions. These reachable memory

instructions include LD1, LD2, LD3, LD4 and ST1.

Finally, the algorithm finishes propagating the affinities

after the sixth iteration, when variable slack is equal to the max-

imum edge slack, which is five cycles. The result of the propa-

gation is shown in Figure 6(E). 

3.6. Instruction Scheduling for Cyclic Code

Modulo scheduling is an effective technique to extract

instruction-level parallelism (ILP) from loops by overlapping

the execution of successive iterations of the original loop with-

out the need to unroll it [7]. The parameter that most affects the

performance of a modulo scheduled loop is the Initiation Inter-

val (II), which is the number of cycles between the initiation of

consecutive iterations. Modulo scheduling is a well-understood

technique used by many current compilers. In this work, modulo

scheduling has been applied to innermost loops that iterate at

least 8 times during profiling.

Edges in a Data Dependence Graph (DDG) of a modulo

scheduled loop have two kinds of slack: the recurrence slack

and the length slack. The former represents the number of cycles

that the edge can be stretched without increasing the II, whereas

the latter is the number of cycles that the edge can be stretched

without increasing the schedule length. In order to combine both

slacks into a single slack value, the smallest value is used for

each edge (the most restrictive slack). Note that instructions that

do not belong to any recurrence have an infinite recurrence

slack and their slack corresponds to their length slack.

Nodes in the DDG are ordered using the Swing Modulo

Scheduling (SMS) heuristic [19]. SMS is one of the most effec-

tive modulo scheduling techniques [8]. Once the nodes are

ordered, the algorithm proceeds by scheduling one instruction at

a time. For each instruction, the set of possible clusters where it

can be scheduled is computed. This set contains the clusters

with enough free resources to execute the instruction. If the

instruction cannot be scheduled in any cluster, the II is increased

and instruction scheduling starts again.

AFFINITY=1
CLUSTER=2AFFINITY=0

add1

AFFINITY=0

add1

AFFINITY=1

AFF=0.4

CLUS.=??

add1

AFF=0.4

add2 add3 add4

AFFINITY=0 AFFINITY=1

add1 add2 add3 add4

L=1
slack=0

L=1 L=1 L=1
slack=0 slack=2 slack=2

L=1
slack=0

L=1
slack=0

L=1
slack=2

L=1
slack=2

L=3
slack=0

slack=2
L=1

L=1
slack=5

L=1
slack=0

B) DDG

add4add3add2add4add3add2

add5

LD1 LD2 ST1

V1 V2 V3 V4

LD4LD3
LD1 LD2 LD3 LD4

add6 add7

ST1

LD1 LD2 LD3 LD4

mul1

mul1

ST1

add7add6

add5

LD1 LD2 LD3 LD4

add5mul1

ST1

add7

LD1 LD2 LD3 LD4

ST1

add6add6 add7

add5mul1

D) ITERATION 3: slack = 2C) ITERATION 1: slack = 0 E) AFFINITY OUTCOME

A) IVG

1st ADDR. SPACE 2nd ADDR. SPACE

AFFINITY=0
CLUSTER=1

Figure 6. An example on how affinities are computed and
propagated.
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On the other hand, if the set of possible clusters is not empty,

it is ordered using the following criterion. First, if the instruction

has a “strong” preferred cluster which belongs to the set of pos-

sible clusters, it is added at the beginning of the set so that it will

be probed first. For instructions without a strong preferred clus-

ter, the set of possible clusters is ordered so that clusters where

inter-cluster communications are minimized and workload bal-

ance is maximized are selected first. An affinity range is used to

define when a preferred cluster is a “strong” preferred cluster.

For instance, an affinity range of (0.1, 0.9) specifies that cluster

1 is the “strong” preferred cluster when the affinity of the

instruction is lower than or equal to 0.1, while cluster 2 is the

“strong” preferred cluster when the affinity is greater than or

equal to 0.9. Instructions with an affinity between 0.1 and 0.9

are considered not to have a strong preferred cluster. An affinity

range analysis was performed in order to choose a proper range

and we found that the range (0,1) was the best one [13]. Hence,

we have used such a range throughout the rest of the paper.

Finally, the instruction is scheduled in the first cluster of the set

where a valid slot is found. If the schedule is not possible, the II

is increased and instruction scheduling starts again.

3.7. Instruction Scheduling for Acyclic Code

Acyclic code regions are scheduled using list scheduling. In

this work, these regions include: innermost loops with function

calls within, innermost loops that iterate less than 8 times during

profiling, and hyperblocks and basic blocks not in innermost

loops.

The affinity of memory instructions is computed and propa-

gated to the rest of the instructions as explained in Section 3.4.

However, in this case, the slack of an edge is only restricted by

the length of the schedule and not by recurrences. In the process

of scheduling each instruction, priority is given to the strong

preferred cluster (if any) as was explained in Section 3.6.

3.8. Example Continuation

Recalling the example shown in Figure 6, the instruction

scheduler will try to schedule instructions with an affinity of 0

in cluster 1 and instructions with an affinity of 1 in cluster 2.

Instruction add5 will be scheduled in one cluster or the other

depending on the affinity range. Since we found that the best

range is (0,1), add5 does not have a strong preferred cluster and

it is scheduled in the cluster where register communications are

minimized and workload balance maximized. In this case, add5

will be assigned to cluster 2.

4. Evaluation

In this section, the proposed cache configurations are evalu-

ated. The evaluation framework is presented in Section 4.1.

Next, remote accesses are quantified in Section 4.2. After that,

EDD and ED results are presented in Section 4.3. One of the

main conclusions of these results is that there is no single dis-

tributed configuration that is the best one for all programs. Thus,

we also evaluate a reconfigurable cache scheme in Section 4.4.

4.1. Evaluation Framework

The IMPACT compiler [6] has been used to compile the

benchmarks and optimize them. The benchmarks we have used

are the Mediabench suite [17] because they represent typical

workloads to be executed in media or embedded processors

such as DSPs. The benchmarks and their inputs are summarized

in Table 1. All benchmarks have been simulated until comple-

tion.

Different distributed cache configurations have been evalu-

ated: FAST+NONE, FAST+FAST, FAST+SLOW,

SLOW+SLOW, and SLOW+NONE. They have been compared

to a clustered architecture with a unified data cache in terms of

energy·delay (ED) and energy·delay2 (EDD). In each case, the

processor consists of two clusters and each has one integer, one

memory and one floating point functional unit. The address of

memory references is computed in the memory functional unit.

The latency of a fast cache module is 2 cycles, while the latency

of a slow module is 4 cycles.

In the case of a clustered processor with a unified cache, we

have assumed that an extra delay is incurred to access the cache

because it cannot be close to both clusters. Two delay values

have been used: 1 cycle (half cycle to send the request to the

cache, plus half cycle to receive the reply) and 2 cycles. In addi-

tion, we use a banked cache in this case so that each bank has

the same port and latency configuration as a module in the clus-

tered cache scheme. A banked cache configuration where each

bank has 1 read/write port is more energy efficient than a mono-

lithic cache with two read/write ports [24][12]. The banks are

either fast banks or slow banks. These two bank configurations

together with the two delay overheads result in four different

Profile data set Execution data set

adpcmdec clinton.adpcm S_16_44.adpcm

adpcmenc clinton.pcm S_16_44.pcm

epicdec test_image.pgm.E titanic3.pgm.E

epicenc test_image.pgm titanic3.pgm

g721dec clinton.g721 S_16_44.g721

g721enc clinton.pcm S_16_44.pcm

gsmdec clint.pcm.run.gsm S_16_44.pcm.gsm

gsmenc clinton.pcm S_16_44.pcm

jpegdec testimg.jpg monalisa.jpg

jpegenc testimg.ppm monalisa.ppm

mpeg2dec mei16v2.m2v tek6.m2v

pegwitdec pegwit.enc tech_rep.txt.enc

pegwitenc pgptest.plain tech_rep.txt

pgpdec pgptext.pgp tech_rep.txt.enc

pgpenc pgptest.plain tech_rep.txt

rasta ex5_c1.wav ex5_c1.wav

Table 1. Benchmarks and inputs used in simulations.
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unified cache schemes. These are: a fast unified scheme with a

3-cycle latency (half cycle to send the request to the cache, 2

cycles to access the cache and half cycle to send back the reply),

a fast unified scheme with a 4-cycle latency (one cycle to send

the request to the cache, 2 cycles to access the cache and one

cycle to send back the reply), and slow unified schemes with

latencies of 5 and 6 cycles. Furthermore, we have used state-of-

the-art instruction scheduling techniques to generate code for

such architecture [2]. These techniques basically consist of

computing a partitioning of the Data Dependence Graph in

order to guide the assignment of instructions to clusters.

Each cache module or bank is 2-way set-associative and has

a size of 4KB with 32-byte blocks. Hence, the total cache size

for the FAST+NONE and SLOW+NONE is 4KB, while the

total size for the rest distributed schemes and the unified cache

schemes is 8KB.

We have assumed that the cache consumes 1/3 of the proces-

sor energy and that leakage accounts for 50% of the total energy,

which is consistent with trends shown in [15][22][26]. ED and

EDD values reported in the following sections specify the trade-

off between performance and energy consumption in the whole

processor and not only in the cache. Such values are computed

with respect to the same baseline so that numbers can be com-

pared directly. For simplicity, we have chosen the configuration

FAST+NONE to be the baseline architecture. Hence, a configu-

ration with an ED of 0.9 is 10% better in ED than the

FAST+NONE configuration, whereas a configuration with an

ED of 1.1 is 10% worse than this baseline.

Finally, we use two non-pipelined buses to communicate

clusters with a latency of 2 cycles. The energy consumed by

inter-cluster communications cannot be computed easily with-

out a floor plant of the processor since wire widths and distances

between clusters are unknown. Hence, we have simulated three

different energy scenarios. The first one assumes that a register

communication instruction consumes the same energy as any

other generic instruction in the processor. The other two scenar-

ios assume that a register communication instruction consumes

twice and four times the energy of any other generic instruction.

We refer these cases to as W=1, W=2 and W=4 respectively,

which can be understood as the energy weight of communica-

tion instructions with respect to the rest. Since they account for

around 15% of the total number of dynamic instructions, these

three scenarios correspond approximately to situations in which

inter-cluster communications consume 15% of the processor

energy (excluding the cache) for W=1, 26% for W=2 (0.15*2 /

(0.85+0.15*2)), and 41% for W=4 (0.15*4 / (0.85 + 0.15*4)).

4.2. Remote Accesses

Remote accesses occur when one instruction accesses a

datum mapped in the cache module of the other cluster. In Table

2, we show the ratio of remote accesses for each benchmark

over one thousand memory accesses (‰) using the

FAST+SLOW scheme and W=2. In parenthesis we show the

same ratio for benchmarks gsmenc and mpeg2dec before

extending the IVG as explained in Section 3.2. As it can be seen,

the reduction in remote accesses is big in these two cases. We

only chose these two benchmarks because they were the ones

with a larger impact on performance due to remote accesses. In

particular, stall time was reduced from 3.7M cycles to 74 cycles

in gsmenc, leading to an overall execution time reduction of

3.6%, whereas stall time was reduced by 42x in mpeg2dec, lead-

ing to an overall execution time reduction close to 2%. In sum-

mary, remote accesses are infrequent for all benchmarks and

could be reduced further by doing a more exhaustive extension

of their respective IVGs. Remote accesses are also very infre-

quent in the FAST+FAST and SLOW+SLOW schemes.

The impact of remote accesses into execution time is also

shown in Table 2. These results show the proportion of time that

the processor is stalled performing a remote access over total

execution time. This is expressed as per thousand (‰). As can

be observed, the impact of remote accesses is proportional to

their amount and is negligible for all benchmarks.

4.3. EDD and ED Results

In Figure 7, results are shown for each benchmark with

EDD as the objective function and W=2. The top graph plots

execution time for the five distributed cache schemes:

FAST+NONE, FAST+FAST, FAST+SLOW, SLOW+SLOW

and SLOW+NONE. Execution time is normalized to that of the

FAST+NONE scheme which has been used as the baseline con-

figuration. The middle graph in Figure 7 shows the distribution

of memory accesses between the two cache modules for the

FAST+FAST, FAST+SLOW and SLOW+SLOW schemes.

Memory access results for the FAST+NONE and the

SLOW+NONE schemes are not shown since they only have a

single cache module. In the case of the FAST+SLOW configu-

ration, the white portion of the bar represents accesses to the

slow cache module. Note that around 75% of the memory

accesses are concentrated in the first cache module. This is

explained by the fact that everything is mapped into the first

address space by default and data are moved to the other space

when benefit is observed. With the FAST+SLOW organization,

moving a variable to the slow address space saves energy and

permits a better usage of memory ports and cluster resources,

but at an expense in latency increase and in inter-cluster com-

munications. Moving a variable in the case of the FAST+FAST

Ratio(‰) Exec(‰) Ratio(‰) Exec(‰)

adpcmdec 0.2 0.3 jpegdec 0.2 1.4

adpcmenc 3.4 2.6 jpegenc 0 0

epicdec 0 0 mpeg2dec 0.1 (13.2) 0.3

epicenc 3.1 5.8 pegwitdec 0.2 0.4

g721dec 0 0 pegwitenc 5.5 11.9

g721enc 0 0 pgpdec 1.7 7.6

gsmdec 2.1 2.9 pgpenc 3.7 11.4

gsmenc 0 (34.2) 0 rasta 0 0

Table 2. Ratio of remote accesses and overall execution time due

to them.
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and SLOW+SLOW schemes only implies a better use of mem-

ory ports and cluster resources, at an expense in inter-cluster

communications.

Finally, the bottom graph in Figure 7 shows EDD results for

all configurations with respect to the FAST+NONE baseline.

On average, the FAST+SLOW scheme is the best one in the

trade-off between performance and energy consumption. In par-

ticular, the FAST+SLOW organization is 11% better in EDD

than the FAST+NONE scheme. In addition, it is 4% better than

the SLOW+SLOW approach, which is the second best scheme.

Furthermore, the results for the FAST+SLOW scheme are more

stable than those of SLOW+SLOW. For instance, the

SLOW+SLOW scheme works very well for benchmarks jpeg-

dec, pegwitdec and pegwitenc compared to the other configura-

tions. However, it is a bad configuration for epicdec, mpeg2dec

and pgpdec, where EDD is 1.14, 1.26 and 1.38 that of the base-

line configuration.

One important conclusion that can be extracted from Figure

7 is that there is not a single configuration that is the best for all

benchmarks. The FAST+FAST configuration turns out to be the

most appropriate one when the benchmark is sensitive to mem-

ory latency and the number of memory ports, as is the case for

adpcmenc. In those cases where the programs are sensitive to

latency but insensitive to the number of memory ports, the

FAST+NONE scheme works very well. An example is the

mpeg2dec benchmark. In addition, when a benchmark is sensi-

tive to the number of memory ports, but little sensitive to mem-

ory latency, the SLOW+SLOW scheme outperforms the others.

Programs gsmenc, jpegdec, pegwitdec and pegwitenc are good

examples of this latter group. Finally, the best scheme for

benchmarks that are insensitive to the number of ports and

memory latency is the SLOW+NONE. Although adpcmdec is

slightly sensitive to memory latency, the benefits of having a

single slow power-aware cache module overcomes the perfor-

mance loss due to the restrictions mentioned above. Thus, adpc-

mdec achieves the best results using the SLOW+NONE

configuration. The FAST+SLOW scheme falls in between all

other schemes, achieves a compromise between port and latency

sensitivity, and between performance and energy consumption,

and is the best scheme on average.

Results are similar with other weight factors. These results

are shown in Table 3. Overall, the FAST+SLOW scheme out-

performs the FAST+NONE scheme by 12%, 11% and 10% with

W=1, W=2 and W=4 respectively and it is 4.2%, 4.1% and 3.8%

better than the SLOW+SLOW scheme with W=1, W=2 and

W=4 respectively, which is the second best scheme. However,

trends indicate that results get closer to the baseline architecture

as more energy weight is given to inter-cluster register commu-

nications because everything tends to be scheduled in one clus-

ter. In this situation, it is more efficient to have a scheme with a

single cache module. We have simulated a case in which a

weight of 16 instructions is assigned to inter-cluster communi-

cations, so they consume around 74% of the processor energy

excluding the cache. In this case, the 12% EDD benefit of

FAST+SLOW compared to FAST+NONE with W=1 is trans-
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Figure 7. Execution time, memory accesses and energy·delay2 (EDD) results with W=2.

FAST+

NONE

FAST+

FAST

FAST+

SLOW

SLOW+

SLOW

SLOW+

NONE

W=1 1 0.95 0.88 0.92 0.99

W=2 1 0.96 0.89 0.93 0.99

W=4 1 0.98 0.90 0.93 0.98

Table 3. Energy·delay2 (EDD) results for different W factors.
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lated into a benefit of 7% with W=16, and the amount of fast

memory accesses is increased from 75% with W=1 to 84% with

W=16.

All distributed schemes have better EDD results than any of

the schemes with a unified cache. Results with W=2 are summa-

rized for all configurations in Table 4, where four results are plot

for a processor with a unified data cache depending on the cache

latency and the delay incurred to access it. For instance, the

EDD of a fast unified cache scheme is 1.14 and 1.29 that of the

baseline architecture with a delay overhead of 1 and 2 cycles

respectively, while it is 1.10 and 1.25 for a slow unified cache

scheme depending on the delay overhead. Thus, the best distrib-

uted configuration (FAST+SLOW) is 22%-31% better in EDD

than a fast unified organization and 19%-29% better than a slow

unified configuration.

Lastly, results when ED is used as the objective function

with W=2 are summarized for all configurations in Table 4. In

this case, the SLOW+SLOW configuration turns out to be the

best one when ED is used instead of EDD. In particular, the

SLOW+SLOW scheme outperforms the baseline architecture

by 12%, 11% and 12% with W=1, W=2 and W=4 respectively.

The second best configuration is the SLOW+NONE which out-

performs the baseline by 10%, 11% and 11% with W=1, W=2

and W=4, while the FAST+SLOW scheme outperforms the

baseline by 7%, 6% and 4% with W=1, W=2 and W=4. It is not

surprising that slow configurations are better with ED than with

EDD because in the former energy consumption is more impor-

tant relative to execution time. In this case, the best distributed

cache configuration (SLOW+SLOW) is 24%-29% better than a

fast unified organization and 11%-19% better than a slow uni-

fied scheme.

4.4. Results for a Reconfigurable Cache

Based on the observation that there is not a cache configura-

tion that is the best for all benchmarks, we have also evaluated

a scheme in which the cache may be configured on an applica-

tion basis. In this case, each cache module can operate with

three different modes and the operating system is responsible to

configure it depending on the application that is running. The

three modes are: turn off the cache module, put the cache mod-

ule into fast mode, and put the cache module into slow mode.

For the last two modes, we must set the supply and threshold

voltages accordingly. Thus, we can choose a configuration

among FAST+NONE, FAST+FAST, FAST+SLOW,

SLOW+SLOW and SLOW+NONE for a given application. To

enable such reconfigurable cache architecture we need two dif-

ferent supply and threshold voltages for the cache. This is simi-

lar to drowsy caches [10] but with less complexity, since we do

not allow different voltages for different cache lines. In this

case, the voltage is the same for the entire cache module.

The compiler statically computes the best configuration for

a given application, schedules code accordingly and reflects this

information in the binary file. We have used a simple technique

to compute the best configuration, which consists of scheduling

the benchmark for all five possible configurations and choose

the best one in terms of expected ED or EDD. A more sophisti-

cated approach could be used but we wanted to evaluate the

potential of the reconfigurable cache scheme. On a context

switch, the operating system may decide to reconfigure the

cache depending on the process being scheduled out, and the

process being scheduled in. Based on previous work [10], the

overhead of reconfiguring the cache is 1 or 2 cycles and thus, it

is negligible.

In Table 5 average EDD and ED values are shown for this

reconfigurable scheme. The first column shows the results pre-

sented in previous sections for a non-reconfigurable cache

scheme. In each case, the result for the best scheme is shown

(the FAST+SLOW and the SLOW+SLOW schemes for EDD

and ED respectively). The second column shows the results for

the reconfigurable cache scheme. We can see that results can

still be improved by 3-4% when using reconfiguration depend-

ing on the objective function. 

5. Related Work

Heterogeneity has been exploited in the functional units

[23][29] and in the memory hierarchy [1]. In the latter, the

authors divide the data cache into a fast and a slow module for

an out-of-order processor. In this paper, we explore memory

configurations for a clustered VLIW processor. Hence, the pro-

posed techniques are radically different than those in [1]. Fur-

thermore, the authors of [1] conclude that one of their proposed

schemes is not very energy efficient.

Regarding the embedded domain, in which VLIW proces-

sors are common, several works explore the use of a scratch-pad

memory ([20][4][3][28], among others) because they consume

little energy. However, the use of scratch-pad memories is

orthogonal to the use of a cache hierarchy. In addition, most

high-performance embedded processors include some kind of

memory hierarchy with at least one level of instruction and data

caches ([15][25][9][27]).

Multi-module caches have also been proposed as a solution

to either better exploit data locality [14] or reduce energy·delay

related functions [18][16]. However, none of the proposals tar-

gets clustered processors.

F+N F+F F+S S+S S+N UNIFIED

FAST

UNIFIED

SLOW

L=3 L=4 L=5 L=6

EDD 1 0.96 0.89 0.93 0.99 1.14 1.29 1.10 1.25

ED 1 1.04 0.94 0.89 0.89 1.16 1.25 1.00 1.07

Table 4. Average results with W=2.

Best scheme for 

non-configurable cache

Reconfigurable 

cache scheme

average EDD 0.888  (FAST+SLOW) 0.856

average ED 0.886 (SLOW+SLOW) 0.860

Table 5. Average energy·delay2 (EDD) and energy·delay (ED)

values for a reconfigurable heterogeneous cache.
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Finally, some works explore the use of distributed cache

configurations for clustered VLIW processors [21][11]. In this

case, the goal of the proposals is performance and no attention

is paid to energy consumption.

6. Conclusions

In this paper we have evaluated an architectural scheme that

consists of dividing the cache into two modules and assigning

each module to one cluster in a VLIW processor with two clus-

ters. The cache modules can be set up as fast power-hungry

modules or slow power-aware modules, leading to several cache

configurations. Furthermore, we have developed compiler tech-

niques to exploit the underlying cache configuration efficiently.

With EDD, the best scheme is an heterogeneous one, where

the cache consists of a fast module and a slow module each one

assigned to a different cluster. This scheme outperforms tradi-

tional cache organizations by an average of 19%-31% in EDD

depending on its latency. For example, when compared to a con-

ventional unified cache configured as a fast cache, the proposed

distributed scheme reduces dynamic energy by 8%, leakage by

20%, and execution time by 4%, resulting in a 21% gain in

EDD. On the other hand, when ED is used instead, the best dis-

tributed configuration outperforms traditional cache organiza-

tions by 11%-29%.

We have also observed that there is not a single cache con-

figuration that is the best for all benchmarks. Thus, we have also

explored an approach in which the cache can be reconfigured on

a context switch. Results demonstrate that a reconfigurable dis-

tributed cache is 3%-4% better than any of the proposed non-

reconfigurable distributed organizations and 14%-34% better

than any of the traditional unified cache organizations.
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