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Abstract—In order to harness the full compute power of many-
core processors, future designs must focus on effective utilization
of on-chip cache and bandwidth resources. In this paper, we
address the dual goals of (1) reducing on-chip communication
overheads and (2) improving on-chip cache space utilization
resulting in larger effective cache capacity and thereby potentially
reduced off-chip traffic. We present a new cache coherence proto-
col that decouples the logical binding between data and metadata
in a cache set. This decoupling allows data and metadata for
a cache line to be independently delegated to any location on
chip. By delegating metadata to the current owner/modifier of a
cache line, communication overhead for metadata maintenance is
avoided and communication can be effectively localized between
interacting processes. By decoupling metadata from data, data
space in the cache can be more efficiently utilized by avoiding
unnecessary data replication. Using full system simulation, we
demonstrate that our decoupled protocol achieves an average
(geometric mean) speedup of 1.24 (1.3 with microbenchmarks)
compared to a base statically mapped directory-based non-
uniform cache access protocol, while generating only 65% and
74% of the on-chip and off-chip traffic respectively, and consum-
ing 74% of the corresponding energy (95% of the power) in the
on-chip memory and interconnect compared to the base system.
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I. INTRODUCTION

If the full compute power of current multi-core processors
and future many-core processors [18], [21], [28], [29], [36]
is to be unleashed, conventional on-chip cache designs must
be revised to support both partitioned use and fine-grained
sharing. In order to scale to the many on-chip cores, directory-
based protocols seem the most viable option [2], [23], [24].
In a conventional directory-based protocol, cache lines are
distributed among the nodes in a straightforward interleaved
fashion. Such an interleaving allows easy determination of the
home node, but also creates overheads in coherence activities.
First, communicating processor cores may be close to each
other physically and yet have to route their invalidation and
fetch requests indirectly via the arbitrarily designated home
node. Given the presence of dynamically changing fine-grain
access patterns, it is unlikely that any simple mapping schemes
can ensure that most cache lines are mapped close to or at
the accessing nodes. Second, the home node retains a copy of
data even when the copy is stale. These overheads are a natural
byproduct of the data structure in directory, where the metadata
keeping track of cache line state and sharers for coherence is
bound with the data storage and pinned to the home node.

In this paper, we propose an alternative implementation of the
directory-based protocol, Decoupled and Delegable Data and

Metadata, with the dual goals of reducing on-chip communica-
tion overheads and improving on-chip cache space utilization.
This design allows the metadata to be transferred to one of
the communicating cores so that coherence can be delegated to
the core. This way, coherence is still maintained by the same
logic, but in a directory assist closer to the communication, not
artificially bound to the home node. Such an arrangement can
further improve the efficiency of designs that already move the
indirection through the directory off the critical path [16]. In
addition to decoupling coherence maintenance from the home
node, the design also relaxes the one-to-one binding between
data and metadata, allowing the home node to avoid wasting
storage keeping stale copies of delegated lines. We expect the
following direct benefit from this mechanism.

« Faster Cache Coherence: In a canonical directory-based
protocol, consulting the directory of a line on the home
node is on the critical path for a number of situations such
as transferring a line from the last writer to the next reader.
Proposals like Owner Prediction [1] and ARMCO [16] take
a first step to addressing this indirection problem by pre-
dicting (close-by) owners/sharers and sending coherence
messages directly to the targets. Nevertheless, the designs
still require a substantial involvement of directory, and even
when some of the directory accesses are off the critical
path, they can indirectly appear on the critical path for
future accesses [16].

To further expedite communication, we allow the own-
ership of the metadata (and the responsibility to maintain
coherence) to migrate to accessing nodes — typically the
predominant writer nodes. This allows the owner node to
perform 2-hop invalidations instead of using 3- or 4-hop
requests.

¢ Reduced Coherence Traffic: When the home node dele-
gates the coherence responsibility and sends the metadata
to another node, the home node still keeps a pointer to
the current keeper of coherence in order to redirect any
new requester to the current coherence keeper. The home
node does not maintain an up-to-date sharer list. As a
result, it is “’short-circuited” from the coherence loop. In
the steady state, all indirections via the home node in a
conventional design are avoided, including the often unnec-
essary writebacks to the home node (in a protocol without
the owner state) when a producer repeatedly performs a
cache-to-cache transfer to update the consumer with the
newer version of the cache line.

o Increased Cache Capacity: When the home node dele-
gates coherence responsibility, it also gives up the responsi-
bility to provide data for a request. This means that the data



storage allocated for the cache line is no longer needed. By
decoupling data and metadata, we can free the data block
and use it for other data. The increase in effectiveness of
the storage reduces capacity misses and thus the demand
on off-chip access bandwidth. In the extreme case, no
line in the L1 caches has a replica in the L2 cache,
and the system essentially mimics a non-inclusive cache
structure. However, since the home node still maintains a
degenerate copy of the metadata (pointing to the current
coherence keeper of the line), the L2 cache can still
filter out unrelated (chip-to-chip) coherence checks as an
inclusive cache system can. Of course, this is achieved with
extra storage just for the degenerate metadata.

o Timely Update for Producer Consumer Data: As de-
scribed above, the metadata owner has the complete list
of sharers of the cache line. In the case of a producer-
consumer data access pattern, the producer, being the
owner of the metadata, can perform data pushing in order
to disseminate the data in a more timely fashion to potential
consumers.

Overall, our protocol achieves faster coherence while reduc-
ing traffic on both on-chip and off-chip interconnects. Both
effects lead to reduced energy consumption. Our simulation
results show that on a 16-core CMP with 64KB L1 split-
caches and a 4MB L2 cache (in 16 different banks, 256KB
each), speedup over a baseline directory-based design ranges
from 1.01 to 2.11 for a suite of 12 commercial [34], [37],
scientific [39], mining [7], and branch-and-bound benchmarks,
and two microbenchmarks. The geometric mean of the speedup
is 1.24 excluding the microbenchmarks and 1.30 including
the microbenchmarks. Our decoupled protocol also generates
only 65% of the on-chip interconnection network traffic (flits)
of the base protocol on average, 74% of the off-chip traffic,
and 74% of the dynamic energy consumption in the on-chip
memory hierarchy (95% of the dynamic power consumption).
We also compare our decoupled protocol to ARMCO [16]
and Victim Migration (VM) [40]. The decoupled protocol
outperforms both by a significant margin (speedup of 1.22 (1.15
without microbenchmarks) when compared to VM and 1.13
(1.13 without microbenchmarks) when compared to ARMCO).

II. DESIGN OVERVIEW

Figure 1 presents a high-level view of a generic, modular
CMP architecture we base our design on. Each tile in the CMP
contains a processor core, private L1 caches, and a slice of the
globally-shared L2 cache statically-mapped (line-interleaved)
by physical address. To optimize for fine-grain sharing, this
baseline CMP is augmented with a set of architectural support
(similar to those used in ARMCO [16]) to identify access
patterns and predict coherence targets.

Additionally, the metadata portion of the L1 data cache is
augmented with a sharers list in order to assume the delegated
role of coherence keeper. When an L1 cache miss occurs, the
coherence logic works as usual by sending a request (e.g., read
or upgrade) over the interconnect to the coherence keeper. The
only difference is that the keeper is not necessarily the home
node.

At the L2 cache banks, extra ways of metadata are provided.
If a line is delegated to some other node, the L2 cache line in the
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Fig. 1. Schematic of the underlying CMP architecture depicting a processor
with 16 cores with additions for DDCache and ARMCO identified via shading.

home node gives up its data space. When the line is undelegated
from the current keeper, new data space will be requested.

III. PROTOCOL AND HARDWARE DESIGN
A. Decoupled Data and Metadata Structures

1) Support for delegation: To support delegation, the L1
cache is augmented with a sharers list (Sharers in L1 data
of Figure 2). Note that only the sharers list on the coherence-
keeper node (henceforth referred to as the keeper for short)
tracks the sharers of the line. In all other sharers’ L1 caches,
the sharers list merely points to the keeper, if there is one. If
the line is not delegated, the list remains empty. The sharers
list at the home slice of the L2 cache is used conventionally
when the line is not delegated. When it is delegated, the home
L2’s Sharers points to the keeper. For example, if line A at an
L2 bank is delegated to PO and that line is also shared by P1
and P2, then for line A, Sharers at PO’s L1D will be {1,2}
Sharers at P1’s and P2’s L1D and at the home L2 bank will
all be {0}. PO does not store its id in its own sharers list since
it is implicitly a sharer. For undelegated lines, each core can
thus store its own id in the sharers bit vector to identify that it
needs to communicate with the corresponding L2 bank (rather
than with some other L1).

We currently represent the sharers list using a presence bit
vector, resulting in the directory overhead being linear in the
number of cores/tiles. Previously proposed techniques [13] to
reduce directory overhead and make it more scalable are equally
applicable to this design.

2) Decoupling data and metadata: At the L2 level, the
storage is organized to handle data and metadata in a decoupled
manner. Specifically, within a set, there are more metadata ways
than data ways. When coherence responsibility is delegated to an
L1 cache, the home node’s L2 only needs to keep the metadata
portion to forward requests to the keeper. Thus, the freed-up
data storage can be used for another cache line.

Data and metadata association can be implemented using
pointers and free lists. We chose instead to avoid the complexity
of the corresponding management and create a static pairing
between metadata and data blocks for each data block in the
set.

Placement and replacement are performed using a tree-based
pseudo-LRU algorithm that uses associativity — 1 bits per set
to track recently accessed lines in a binary partitioned way. We
use two trees: one for data with paired metadata (N-way in
Figure 2) and the other for only metadata (t-ways in Figure 2).
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When a line is fetched in normal undelegated state, we select
a replacement candidate from the first tree. On the other hand,
housing a new delegated line requires only metadata and can
select a victim from either tree. In order to avoid unfairly
favoring eviction of delegated lines, we choose either the first
or second tree in a ratio proportional to the number of entries in
each tree, using the last few bits of the clock timer to randomize
the selection. Finally, when a line is being undelegated and
returns home, its metadata may not have a paired data way
and thus some shuffling is needed: A replacement candidate is
selected from the first tree; If the selected line is in delegated
state (and thus does not need its data storage now), swapping
the two lines is enough; Otherwise, the selected line is evicted.

3) Destination predictor: When we let the keeper maintain
coherence, one issue that arises is that the location of the keeper
is not fixed as the home is. If each requester has to go through
the home node to locate the keeper, there will be little if any
benefit from delegation. We use an address-based destination
predictor based on [16] to predict the location of the owner of
the data or a closest sharer that can also provide the data. This
way, for most cases, we avoid indirection via the home.

The predictor table is similar to the one used in [16] and
is a cache-like structure that keeps a valid bit, a tag, and a
processor ID for the predicted destination node (Figure 2).
The table is updated when an invalidation is received: the tag
of the cache line and the ID of the invalidating processor
are recorded in the predictor table. This captures the fixed
producer-consumer relationship very well. Additionally, when a
request is serviced by the keeper or home, the reply piggybacks
information about the closest node that also has a copy of the
data. This information is also updated in the predictor table,
enabling prediction of the closest sharer in case of invalidation.
Each L1D cache line tracks the last reader and writer of the
cache line. During invalidation or eviction of the line, it also
lets the last reader and writer (if not this L1) know that the line
is being evicted so that they may update their predictor tables.

On L1 cache misses, the predictor table is accessed like a
cache. If there is a hit, the request is sent to the predicted
potential owner/sharer; otherwise it is sent to the home node.
The sensitivity analysis conducted in [16] on predictor table
size (256, 512, 1K, and 2K entries) and associativity (8 and
16 way) pointed to the use of an 8-way associative 1K-entry
predictor table as a good compromise between performance and
complexity. The accuracy of the prediction ranges from 63% to
93% (74% on average) for our benchmark suites, similar to
earlier results [16].

B. Protocol Actions

Our general guideline is to supply data from a location close
to the requester. When an L1 cache miss occurs, the predictor
is consulted to find a nearby node who can potentially supply
the data. This nearby node can be the keeper or just a sharer.
As a result of this distributed data supply system, the coherence
ordering point in our design is also distributed across the nodes,
depending on the supplier of the data:

o At the home L2 bank: When there is a cache miss in both
the L1 and the predictor table, the request is sent to the
home L2. If the line is not delegated, the request is serviced
just as in the conventional design. The only difference
is that if the request is for exclusive access, delegation
is performed: after sending invalidations to the current
sharers and collecting invalidation acknowledgments, the
line enters delegated (D) state at the L2.

A delegated line will be surrendered back to the home
L2 due to eviction either at the owner L1 or at the home
L2. In the latter case, the owner L1 will receive a request
from the home to surrender and invalidate the line.

o At the keeper: When a cache line is delegated, the keeper
will be the coherence ordering point for many requests.
A request may arrive at the keeper in one of three ways.
First, the request may arrive directly from the requester if
the requester correctly predicts the location of the keeper
or has the line in shared state (and thus has metadata that
tracks the keeper).

Second, the request may be forwarded from the home:
When the predictor table misses, or when the prediction
is incorrect, the request is sent either directly to the
home node or is indirectly forwarded to the home by the
predicted target node that does not have the line in its L1
cache.

Finally, a read-exclusive request can be forwarded to
the keeper by a sharer of the line: When the request is
initially sent to a sharer, the sharer can directly forward it
to the keeper if the line is in delegated mode. Recall that
in delegated mode, the line can be shared among multiple
L1 caches. The metadata of the keeper L1 maintains the
sharers list, while all other nodes’ sharers lists point to the
keeper. Note that if a read request is sent to a sharer, like
in the ARMCO design, the data is supplied by the sharer
and coherence information is updated in the background
(as discussed later).

All exclusive requests (upgrade or read-exclusive) entail
a transfer of coherence responsibility unless it is classified
as a write-in-place operation to reduce the ping-pong effect.
The requester gets two separate replies. The first one is a
data or access grant reply for the request. After getting
this reply, the line goes into a transient state that allows
the requester itself to read and write but does not allow
the node to supply the line to another node (unless the
consistency model does not require write atomicity). While
the change of ownership is under way, requests coming
to the old keeper will be forwarded to the new keeper.
After supplying the data or upgrade grant, the old keeper
sends invalidations to all sharers (except the new keeper)
and, in parallel, sends a notice of ownership change to



the home. After getting the notice, the home node updates
the metadata to point to the new keeper. After collecting
invalidation acknowledgments and the acknowledgment
from the home, the old keeper confirms ownership transfer
to the new keeper. At this time, the line transitions into
stable state in the new keeper’s cache and the new keeper
can service other nodes’ requests.

o At a sharer L1: To expedite communication, we allow an
L1 cache to supply data without ownership of the cache
line as in ARMCO [16]. Specifically, if a read miss request
is sent to a node identified by the predictor as a possible
sharer and the node is indeed a sharer, it will provide a re-
ply with data and metadata info — the identity of the keeper.
Meanwhile, a notice to update the sharers list is sent to the
keeper (if the sharers list points to a keeper) or home (if the
sharers list is empty, i.e., holds its own id indicating that the
line is not delegated). Until the keeper acknowledges this
notice, the supplier node is temporarily responsible for the
coherence of the requester node and becomes a coherence
ordering point. The keeper also sends an acknowledgment
to the requester, indicating that the transfer is complete.
One possible race condition is if the keeper initiates an
invalidation for the line prior to receiving the sharers list
update. In this case, the keeper acknowledges the data
transfer with an indication that an invalidation is pending.
The supplier delays any received invalidation until the on-
going data transfer is acknowledged by the keeper. At this
point, the supplier applies the received invalidation. (If the
invalidation message arrives out of order with respect to the
acknowledgment, the supplier will wait for the invalidation
and NACKSs any further read request in the mean time.)
Note that a sharer cannot service any request other than
a read. Exclusive requests are simply forwarded to the
keeper or to the home node depending on whether the line
is delegated.

C. Delegation Decision

Broadly, we can classify data accesses into private, shared
read-only, and shared read-write. The general guideline is to
pick the delegation decision that best suits the access pattern.
Of course, at run-time, given a particular access request, we can
only approximately determine the access pattern for the data.

o Private data: Private data only concerns the accessing
thread and should always be delegated to the accessing
node. This allows faster upgrade requests and reduction
in L2 capacity usage. The predictor and the directory
information combined can help us identify private data.
Specifically, when an access misses in the cache, we use the
line address to check the destination predictor table. Since
the predictor tries to capture the location of other shared
copies in the system, a miss in the table suggests that the
line could be a private line. We then send the request with
a hint bit indicating the line is probably private. When the
request eventually arrives at either the home or the keeper
and the metadata shows that it is indeed not shared by
other nodes, then the line is treated as private and is thus
delegated. If there is a miss at the L2, the line will be
brought in from memory and delegated — the home will

only keep the metadata.

o Shared data: When data is shared, the appropriateness
of delegation becomes more complex. It depends on the
accuracy of the prediction table, which in turn depends
on whether the read-write patterns are stable. In general,
when a line is delegated, correct prediction speeds up
transactions, while misdirections add to the delay. For read-
write data, the home node is likely to have stale data and
has to forward the read request. Therefore, delegating the
line makes more sense as it avoids unnecessary storage
use in the L2 and repeated traffic to update the home
version. For read-only data, maintaining a version at the
home node does not incur extra traffic and allows the
home to provide data without forwarding to the keeper. As
such, it favors not delegating the line. For implementation
simplicity, we delegate for read-write shared data and do
not delegate read-only shared data. Thus, if a line is first
believed to be private and thus delegated, and subsequently
read by another node (thus suggesting shared read-only),
we undelegate from the first requester node.

D. Sharing Pattern Optimization

When data is shared, unnecessary communication and in-
direction via the directory can be avoided by tailoring the
coherence protocol to the access pattern. We use ARMCO [16]
as our base design, which uses 2logs N + 2 bits (/N being the
number of tiles in the system) in each cache line to track the
access patterns and perform in-place accesses when warranted.
The bits are Pr,r (logs N bits to identify the last reader), Pry
(log2 N bits to identify the last writer), C,, (1 bit flag to track
whether multiple accesses happened from the local tile), and
Loy (1 bit flag to determine whether the last access in the
cache line was read or write), as shown in Figure 2. Hossain
et al. [16] describe how these bits are used to identify and
optimize the communication for migratory, producer-consumer,
and false-shared access patterns. In addition to optimizing the
data communication as in this protocol, we also delegate the
metadata to the current modifier as described in Section III-C,
thereby avoiding metadata updates to the directory, even though
such an update would be off the critical path.

E. Forwarding for Producer-Consumer Data

One final benefit of delegating the coherence responsibility
is that in producer-consumer access patterns, the producer has
knowledge of the previous sharers and thus can proactively push
data to them. This consumer list is simply the sharers list before
the producer sent the invalidations. Rather than clear the list
when performing an invalidation, we keep it. Previous sharers
are distinguished from current sharers by the state of the cache
line.

One policy issue with forwarding is when to send the update.
We use a simple, albeit reactive approach which is to update
all consumers when one of them generates an on-demand read.
To cleanse the sharers list of nodes no longer consuming the
data, we leverage the tracking bit C,, (used in [16]) included
in the L1D cache lines, which is set when multiple accesses
occur to the line from the local processor. If Cy, is O when
the next invalidation is received, it means the line has not been



accessed since the last update (at most one access, in which
case read-in-place is better than copying the whole cache line).
The acknowledgment message piggybacks this information and
the producer will reset the bit corresponding to this consumer,
preventing future updates to that node. Finally, when the line is
in dirty state and the producer receives a read request from
outside the current sharers list, we treat it as a signal of a
changing producer-consumer pattern and flash-clear the sharers
list.

IV. PERFORMANCE EVALUATION
A. Evaluation Framework

For evaluation of our new DDCache, we used a Simics-
based [25] full-system execution-driven simulator that models
the SPARC architecture faithfully. We used Ruby from the
GEMS toolset [27], modified to encode the decoupled data and
metadata protocol, for cache memory simulation. We simulated
a 16-core chip multiprocessor (CMP) using a 4x4 mesh intercon-
nect to connect the tiles. Each tile contains private L1 instruction
and data caches and a slice of the 16-way shared L2 as in the
base system. The L1 cache and local L2 cache can communicate
directly without going through the switch (Figure 1). The main
parameters are summarized in Table 1.

For the baseline coherence protocol, we used a statically-
mapped line-interleaved non-uniform-shared L2 (L2S) MOSI-
style directory-based protocol. We encode all stable and tran-
sient states and all required messages for a detailed network
model simulation of DDCache, ARMCO [16], Victim Migra-
tion [40], and L2S using SLICC [27].

For interconnect modeling, we use GEMS’s [27] network
model. We employ virtual cut-through switching. The network
link width is 16 Bytes and so is the flit size. For L2S, we have
8B and 72B message sizes. For DDCache, we have 8B, 16B,
and 72B messages. We use a configuration where the network
link is shared at an 8B granularity, i.e., two 8B messages (or
one 8B message and part of a 16B or 72B message) can be
transmitted simultaneously, assuming both messages are ready
for transmission. Messages sent between L1s and L2s are treated
as on-chip flit-hops and messages communicated between L2
and memory controller are treated as off-chip flit-hops.

For power consumption modeling, we use Cacti 6.0 [31]
to model power, delay, area, and cycle time for the individual
cache banks as well as the interconnect switches. All process-
specific values used by Cacti 6.0 are derived from the ITRS
roadmap. We use a 45 nm process technology and focus on
dynamic energy.

For our evaluation, we use a wide range of benchmarks,
which include commercial, scientific, mining, branch and bound,
and microbenchmarks. In order to demonstrate efficiencies for
specific access patterns, we have developed microbenchmarks
with producer-consumer and migratory access patterns. As
commercial workloads, we use the Apache webserver with the
surge [5] request generator and SPECjbb2005. Alameldeen et
al. [3] described these commercial workloads for simulation.
As scientific benchmarks, we have a large set of applications
and kernels from the SPLASH2/SPLASH suites [39], which
includes Barnes, Cholesky, FFT, LU, MP3D, Ocean, Radix,
and Water. Our benchmark suite also includes a graph mining

TABLE I
SYSTEM PARAMETERS

16-way CMP, Private L1, Shared L2

Processor cores | 16 3GHz in-order, single issue, non-memory IPC=1,
sequentially consistent

L1 (I and D) cache | 64KB 2-way each, 64-byte blocks, 2-cycle

Predictor table | 1K entry 8-way associative

L2 cache | 4MB in L2S, 20-way tag and 15-way data for DD-
Cache (16-way tag and data for others), 16 banks,

64-byte blocks, Sequential tag/data access, 14-cycle

Memory | 4GB, 300-cycle latency

Interconnect | 4x4 mesh, 4-cycle link latency, 128-bit link width,

virtual cut-through routing

application [7] and a branch-and-bound based implementation of
the traveling salesman problem (TSP). All these applications are
thread-based except Apache, which is process-based. Table II
lists the problem sizes, access patterns, and .1 miss rates for
L2S at 16 processors.

B. Effect of Delegation on Speed of Coherence

The first benefit of the DDCache protocol is a reduction in the
coherence latency. Figure 3 shows the effect in terms of speedup
with respect to L2S. DDCache builds on top of ARMCO [16],
which is also shown for comparison. In this comparison, we do
not take advantage of the capacity benefit of delegation, so all
configurations use 16 way tags and data (T16D16).
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Fig. 3.  Effect of metadata delegation to some L1 on execution speedup
normalized to L2S. Note that the Y axis begins at 0.8 for all speedup charts
in order to more clearly see the differences among protocols.

From Figure 3, we see that for some workloads (e.g., MP3D,
TSP, and Producer-Consumer), the benefit of delegation is
significant. Delegation benefits are due to the faster coherence
communications, especially in stable producer-consumer sharing
patterns: the producer can invalidate consumers directly without
going through the home node and similarly consumers can get
the data directly from the producer.

For certain applications, such as Apache, the sharing is mostly
on read-only data. In that case, cache lines are not delegated
and DDCache provides no benefit. In fact, some read-shared
data would be identified as private initially and would have to
be undelegated in a subsequent read from another node. That
slows down the second read access. This accounts for lack of
performance gain from DDCache compared to ARMCO.

Overall, we see significant performance improvement: the
speedup of enabling delegation over ARMCO is 1.11 (geometric
mean).

We also measured the frequency of keeper transfers while
a cache line is delegated. We count the number of times the



TABLE 11
PROBLEM SIZE, DATA ACCESS PATTERNS, AND MISS RATES FOR THE BENCHMARKS EVALUATED ON A 16-CORE CMP WITH THE BASE PROTOCOL.

Benchmark | Simulated problem size Major data access pattern rag;l(ir;;?
Apache 80000 requests fastforward, 2000 warmup, and 3000 for data collection | mostly read-shared,read-write-shared 11.2%
JBB2005 350K Tx fastforward, 3000 warmup, and 3000 for data collection read-shared and producer-consumer 7.3%
Barnes 8K particles; run-to-completion single producer-consumer and read-shared 1.9%
Cholesky Ishp.0; run-to-completion migratory, read-shared, read-write-shared 1.5%
FFT 64K points; run-to-completion read-shared 3.7%
LU 512x512 matrix,16x16 block; run-to-completion producer-consumer, false-sharing 2.0%
MP3D 40K molecules; 15 parallel steps; warmup 3 steps migratory, read-shared, read-write-shared 16.6%
Ocean 258x258 ocean producer-consumer 6.9%
Radix 550K 20-bit integers, radix 1024 read-shared, producer-consumer 3.2%
Water 512 molecules; run-to-completion little read-shared 1.3%
GraphMine | 340 chemical compounds, 24 different atoms, 66 atom types, and 4 | migratory and false-sharing 4.3%
types of bonds; 200M instructions; warmup 300 nodes exploration
TSP 18 city map; run-to-completion false-sharing 13.8%
Migratory 512 exclusive access cache lines migratory 5.2%
ProdCon 2K shared cache lines and 8K private cache lines single producer-multiple consumer 7.1%

keeper changes for a delegated line in a time period where there
is at least one L1 sharer including the keeper. Interestingly, we
found that most of the time the keeper is not changed. Across
all benchmarks, 96.9% of the delegations remain at one keeper,
while for 1.7%, 0.5%, and 0.9% of the delegations the keeper
changes once, twice, or more than twice respectively.

C. Effect of Decoupling Data and Metadata on L2 Cache
Capacity

1) Unused lines in L2: As discussed in Section III-A, dele-
gated lines do not need data storage. To see how many lines are
being delegated in general, we perform a sampling run where at
every 25K cycle interval (10K cycles for microbenchmarks), we
take a snapshot of the L2 cache and count the number of sets
with one, two, or more lines delegated. Thus this sampling is
both in space (all sets) and time. Figure 4 shows the breakdown
of frequency of the number of lines delegated.
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Fig. 4. Percentage of total execution time specific number of lines per L2
cache set were delegated to L1s. Numbers are collected for each set using a
25K cycle sample interval.

From the figure, we can see that sometimes a significant
number of lines in a set are delegated. In general, most of the
time, only a handful of lines are delegated: except for three
applications, in 80% of the cases, the number of lines delegated
is less than 4. The average number of delegated lines per set
ranges from 0.8 to 3.82 lines (with a suite-wide average of 2.1).
This suggests that having a few extra metadata blocks per set
would be an economic approach to improving cache capacity
utilization. For the rest of the evaluation, we choose to add 4

extra metadata blocks per set, and reduce one data block from
the base configuration in order to compensate for the metadata
area overhead.

2) Effect on L2 misses: Clearly, the benefit of better cache
space utilization is a (highly non-linear) function of the working
sets. If cache size is increased just enough to capture the next
working set size, L2 misses would reduce dramatically. The bars
in Figure 5 show the L2 misses under different configurations
normalized to that of L2S. For example, L2S_T20D20 increases
the number of ways from 16 to 20, adding 25% capacity. We
also show the absolute L2 miss rate of the baseline configu-
ration (L2S) (measured in MPKI — misses per 1K non-sync
instructions) in the form of a curve.
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Fig. 5. Normalized L2 misses with respect to base L2S protocol (bar chart)

and L2 miss rates for base protocol (square markers in dashed line). TxDy
(in protocol names) indicates x tag and y data lines.

We see that for some applications (e.g., LU and MP3D),
an increase in capacity substantially reduces the number of
L2 misses (by about 80%). We also see that by adding only
4 metadata ways to DDCache (DDCache_T20D16), DDCache
can largely match the reduction in misses as a result of adding
4 data and metadata ways in L2S, but with a much smaller
extra storage cost. In fact, even if we reduce 1 way of data to
(over)compensate for the storage cost of adding 4 metadata ways
(it uses 4% less space than the baseline L2S), the resulting DD-
Cache_T20D15 still compares favorably against the baseline.
For Apache, Ocean, and Radix, workloads with substantial L2
misses, on average, L2S_T20D20 still eliminates 19% of the L2
misses incurred by L2S_T16D16, while DDCache_T20D16 and
DDCache_T20D15 eliminate 14% and 10% of the L2 misses



respectively.

3) Performance impact of cache capacity: To quantify the
performance impact of just the capacity saving feature of our
design, we simulate two DDCache configurations: both with 16
data ways, but one with 16 tag ways and the other with 20
tag ways. The difference in execution speed is therefore due
to the cache capacity improvement. For contrast, we also show
the impact of increasing the cache from 16 ways to 20 ways in
L2S. The results are shown in Figure 6.
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As can be expected, a significant performance gain is only
possible when both the absolute miss rate is high and the
reduction in that miss rate is significant. In our suite of ap-
plications, only Radix falls into this category as can be seen
by the large performance gain of adding 4 extra ways to the
baseline L2S. In DDCache, at a much lower cost of adding
only 4 extra tags, we also achieve significant performance gain
for Radix. It is worth noting that for some applications (e.g.,
Apache), the effect of adding 4 extra tags to DDCache is even
more pronounced than that of adding 4 full-blown ways to
L2S. This is because L2 evictions will cause mispredictions
in our keeper/sharer predictor. The additional effective capacity
reduces such mispredictions and thus also helps the acceleration
of coherence.

Effect of extra tags in terms of speedup with respect to L2S.

D. Overall Performance Improvement

We now perform an evaluation of the complete system. For
DDCache, we choose the configuration that has 20 metadata
ways and 15 data ways (DDCache_T20D15). Considering all
the extra storage needed for our design, this configuration still
takes less total storage than the baseline L2S. We start with a
performance analysis when all features are turned on, including
the producer forwarding feature discussed in Section III-E.
Figure 7 shows the speedup achieved by the target DDCache
configuration relative to the baseline L2S.

We see that the DDCache design achieves significant perfor-
mance improvement. Among the applications, MP3D, Graph-
Mine, TSP, and Producer-consumer benefit mainly from dele-
gation and direct L1-L1 communications. Apache, JBB, Ocean,
and Radix mainly benefit from extra L2 capacity. Barnes,
Cholesky, FFT, and LU have small additive contributions from
extra capacity, delegation, and direct L1-L1 communications.
Water does not benefit from any of these features as it is not L2
capacity hungry nor does it have any predictable access patterns
that can utilize delegation and direct L1-L1 communications.
Migratory has the advantage of direct L1-L1 communications
for migratory, read-modify-write accesses.
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Fig. 7. Performance improvement of DDCache (20-tag and 15-data) normal-
ized to L2S.

Overall, DDCache_T20D15 achieves a speedup over the
baseline L2S of up to 1.78 with a geometric mean of 1.24.
Counting the two microbenchmarks, the mean speedup goes up
to 1.30.

E. Interconnect Traffic Reduction

Figure 8 shows the breakdown of the number of on-chip flit-
hops for baseline L2S and DDCache_T20D15, normalized to
L2S (Table I). The flit-hop numbers are accumulated by adding
the number of hops traversed by all the flits. The flits are
classified as (1) Data traffic between tiles, (2) Control traffic
including requests and non-data responses between caches, and
(3) Misprediction induced extra request traffic in DDCache. As
we can see, while DDCache incurs some overhead in the form
of extra control traffic, the amount of data traffic is cut almost by
half. Since data traffic dominates, the end result is a significant
reduction of overall on-chip traffic. Although not shown in the
figure, the off-chip traffic is also significantly lower thanks to the
higher effective on-chip cache capacity. Across all benchmarks,
DDCache_T20D15 generates only 65% on-chip and 74% off-
chip traffic (both geometric mean) compared to L2S. Bandwidth
or traffic generation rate is also reduced for DDCache despite
its faster execution speed; on average, DDCache demands only
82.6% of the bandwidth of L2S.
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Fig. 8. Breakdown of interconnect flit-hops normalized to L2S.

F. Dynamic Energy and Power Requirements

Table III lists the energy consumption per access derived
from Cacti 6.0. These numbers, along with collected access
statistics, are used to derive dynamic energy numbers for
DDCache_T20D15. Power (dynamic) is calculated from energy
divided by execution time.

Figure 9 shows dynamic energy and dynamic power con-
sumption of DDCache normalized to L2S. Dynamic energy



TABLE III
DYNAMIC ENERGY CONSUMPTION VALUES PER ACCESS FOR INDIVIDUAL
STRUCTURES IN DDCACHE USING 45NM TECHNOLOGY (VALUES ARE IN
FEMTO-JOULES (FJ))

L1$ Predictor L2% Router/Interconnect
Tag Data | Access Tag Data |BufRd BufWr Xbar Arbiter
2688 16564 | 18593 [58299 76621 | 760 1187 24177 402

consumption of DDCache ranges between 38% and 106% of the
dynamic energy consumed by L2S, with a suite-wise average
of 74%, whereas the average dynamic power consumed is
95% that of L2S (ranges from 81% to 130%). Due to the
increase in execution speed when using DDCache, reduction
in energy is higher than reduction in power. These energy and
power numbers compare only on-chip storage resources and do
not include energy consumed for off-chip communication and
DRAM accesses.
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Fig. 9. Normalized dynamic energy and power consumption of DDCache
with respect to L2S.

G. Storage Reduction/Overhead

Section III-A describes the extra fields and structure added
in DDCache when compared to L2S. For the target system
(Table 1), at the L2 level, we reduce 1 data block (64B) and
add 4 metadata blocks per set. This reorganization reduces 188
KB (-4.3%) storage bits compared to our baseline L.2S.

At the L1 level, delegation requires an added 16-bit sharing
bit-vector per L1 data cache line, which implies an extra 32 KB
for all 16 cores. DDCache uses prediction and fine-grain sharing
pattern optimizations as in ARMCO [16], which results in 70
KB of overhead for the 16 cores in the target configuration. On
balance, the modifications reduced storage needs by a little over
1%.

H. Comparison with ARMCO and Victim Migration

We now contrast three different designs: ARMCO [16], Vic-
tim Migration (VM) [40], and DDCache (DDCache_T20D15).
Compared to DDCache and ARMCO, VM uses a very differ-
ent mechanism to reduce on-chip communication latency. By
migrating private or replicating read-shared data to the local
L2, remote accesses are reduced. However, when remote access
is required, such as when servicing coherence misses, latency
increases because all L1 misses have to check the local L2 first.
Also, data migrated from the home results in extra indirection
for access by other nodes. Finally, replication reduces on-chip
remote access at the expense of reduced L2 capacity and thus
may result in more expensive extra off-chip accesses.
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Fig. 10. Comparative performance improvement of ARMCO, Victim Mi-
gration (VM) and DDCache with respect to L2S. Each protocol is simulated
with both 4MB and 16 MB L2.

Figure 10 shows the performance comparison. Two different
L2 sizes (4MB and 16MB) are simulated. VM has 16 regular
tag-data ways and 16 extra victim tags per set, L2S has 16 tag-
data ways, and DDCache has 20 tag ways and 15 data ways.
Results are shown as speedups relative to L2S (either the 4MB
or 16MB configuration).

We first analyze VM’s performance. Microbenchmark Mi-
gratory has a small L2 footprint and all the data are accessed
in a read-modify-write pattern by each processor in sequence.
Hence, the use of victim tags and local replicas results in a
reduction in performance. Accesses that miss in the L1 are
further delayed by checking the local L2 slice. Overall, we
see a 6.1% performance degradation for Migratory with VM.
Similarly, performance improvement is insignificant for LU,
FFT, Water, Cholesky, and Producer-Consumer. In contrast,
TSP, Ocean, and Radix are the best performing among the
benchmarks. Radix and Ocean are L2 capacity hungry and
so VM provides a performance boost. TSP gets benefits from
migrating private data lines to the local L2 slice.

ARMCO achieves performance improvements from direct
Ll1-to-L1 data transfer by predicting the closest potential
sharer/owner of the requested data and using fine-grain sharing
pattern optimizations. The simulated performance improvements
are consistent with those presented in [16]. With a smaller L2
cache size in our target system, the speedup is also smaller.

DDCache outperforms both VM and ARMCO. With a 4MB
L2, the average (geometric mean) speedup against the base-
line is 1.08 and 1.09 for VM and ARMCO respectively. In
contrast, DDCache achieves an average speedup of 1.24 (w/o
microbenchmarks). For a 16MB L2, average speedups for VM,
ARMCO, and DDCache are 1.07, 1.12, and 1.25 respectively.

1. Performance Scalability

So far, our results and analysis have focused on a 16-core
CMP. We simulated L2S and DDCache for a 32-core CMP.
Figure 11 compares the performance of DDCache on a 32-core
CMP to that on a 16-core CMP. Speedup increases with the
increase in the number of cores in the system. Most of the
benchmarks’ 32-core speedup relative to L2S is higher (1.3
versus 1.24 at 16 cores). With the increase in the number of
cores, the number of hops to access the home node increases,
resulting in greater savings with DDCache when home node
access is eliminated. DDCache achieves this via localized and
direct communication by delegation.



e

% 1.5 ! ; . , 178207 157 176 191 2.11 207

4 1.4f [ 16-core CMP i

g L

7 l32-core CMP

o 13F ]

]

g 127 L2S ]

£

£ L1f ]

St

510

[-Y]

_g 0.9- ]

SR i ‘ P RS 5

2 £ 38 £ E2¢%2 5§ % 248 5 %
g = 5 0 0~ S 51 < =

= 2" Z S g 2 & § = £

Fig. 11.  Speedup of ARMCO, VM, and DDCache on a 16-core and 32-core
CMP normalized to the corresponding L2S performance (with the same L2
cache size).

V. RELATED WORK

The trend toward utilizing increasing transistor budgets for
larger L2 caches and many cores increases the penalty for a
miss at each processor core. Many non-uniform cache designs
with adaptive protocols have recently been proposed in order to
reduce L1 miss penalties [6], [8], [10], [11], [16], [20], [32],
[33], [40], [41]. We focus here on those most directly related
to DDCache.

Zhang and Asanovic’s Victim Migration (VM) [40] proposal
allows L2 cache lines in a globally shared cache to migrate
among banks for improved locality of access. VM replicates
the tag array (as opposed to DDCache’s extra tag ways) at the
home L2 in order to redirect requests for the cache line to the
current owner. The replicated tags eliminate the need for a data
replica at the L2 home when a cache line has been migrated,
enabling more effective L2 capacity utilization. However, non-
home L2 banks can still hold multiple copies in case data is
accessed by multiple cores, resulting in potentially reduced L2
capacity.

CMP-NuRAPID [11] adapts to different sharing patterns by
either replicating data at the L2 as in VM for read-shared data
or performing in-situ communication in case of active read-
write or false sharing. Data is also migrated to the L2 bank
closest to the accessing cores. In-situ communication requires
a write-through L1 cache, which can increase both bandwidth
and energy demands on the L1-L2 interconnect. Moreover, as
with VM, CMP-NuRAPID doubles L2 tag space and requires
forward pointers (data group and frame number) and backward
pointers (set index, tag, and processor id), resulting in higher
storage costs.

Adaptive Selective Replication [6] enhances CMP-NuRAPID
by controlling replication based on a cost/benefit analysis
of increased misses versus reduced hit latency. Coopera-
tive Caching [8] borrows concepts from software cooperative
caching [4], [15], [38] to allow controlled sharing of essentially
private caches, but requires a centralized coherence engine. Huh
et al. [17] study controlled replication, migration, and cache
sharing in a CMP NUCA cache. In the presence of migration,
however, successive lookups across tags of all banks may be
required.

Eisley et al. [14] reduce cache miss latency and on-chip
bandwidth requirements by using a directory structure em-
bedded in the network in order to get data directly from a
sharer/owner that is on the way to the home node. Set-up/tear-
down of the directory tree, however, can make overall latency

variable due to potential deadlock recovery. Ros et al. proposed
Direct Coherence [32], [33], which tries to avoid the home
node indirection of directory protocols by storing the directory
information with the current owner/modifier of the block and
delegating coherence responsibility to this node. The home node
has the role of storing the identity of the owner and is notified
only if there is a change in ownership. Ownership is changed
on every write miss or write upgrade. As a result of this policy,
direct coherence may result in unnecessary redelegation in the
case of active read-write sharing, which DDCache avoids via
sharing pattern optimizations.

ARMCO [16] is a design that allows data to be sourced
from any sharer (not necessarily the owner) via direct L1-
L1 communication, with the goal of leveraging locality of
access. Although ARMCO removes L2 directory/home access
from the critical path, the directory must still be kept up to
date, requiring global (across chip) communication. DDCache
is implemented on top of ARMCO, leveraging its fine-grain
sharing optimizations, while using delegation to avoid the traffic
required to update the home.

Several coherence protocols that detect and optimize coher-
ence actions for specific sharing patterns have been proposed
in the past [9], [12], [35]. These protocols were leveraged in
the development of ARMCO’s sharing pattern optimizations.
There has also been considerable work in the area of predicting
coherence communication [19], [22], [26], [30]. Based on the
design space outlined in [19], we employ a per-core address-
based predictor of the current keeper or sharer.

VI. CONCLUSIONS

In this paper, we present DDCache, a cache coherence proto-
col that reduces on-chip communication overheads and provides
larger effective cache capacity by eliminating duplication of data
in on-chip cache space. Duplication is eliminated by decoupling
L2 data and metadata. Communication overhead is reduced by
delegating coherence enforcement to an L1 owner/modifier and
away from the home L2 node. DDCache inherently supports
direct L1-to-L1 communication via prediction and fine-grain
sharing optimizations.

Our proposed DDCache protocol is able to reduce the average
L1 miss penalty and reduce L2 misses resulting in an average
(geometric mean) speedup of 1.3 (1.24 w/o microbenchmarks),
with improvements ranging from 1% to 111%. These perfor-
mance gains are coupled with a reduction in both on-chip and
off-chip traffic (traffic generated is 65% and 74% of the on-chip
and off-chip traffic generated by the base, respectively) as well
as a reduction in on-chip memory and interconnect dynamic
energy and power consumption (consuming 74% of the energy
(95% of the power) of the base system). These benefits are
achieved while using comparable total on-chip cache storage
(actually a 1.32% reduction in the design we evaluate) when
compared to a conventional L1-L2 hierarchy, with the caveat of
some added complexity in the cache controllers.

Our design supports truly parallel workloads with actively
shared data by optimizing communication to occur directly
between sharing cores. Private data delegation also increases
overall cache capacity. In future work, we will explore support
for multiprogrammed workloads. While DDCache localizes



communication among sharing nodes, overflow/eviction from
the L1s still requires accessing the home L2. Traffic to the
home L2 is potentially non-local, resulting in interference with
simultaneously executing threads. We will explore the benefits
of some combination of DDCache and victim (or home) migra-

tion.
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