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Abstract—Oblivious routing can be implemented on simple
router hardware, but network performance suffers when routes
become congested. Adaptive routing attempts to avoid hot spots
by re-routing flows, but requires more complex hardware to
determine and configure new routing paths. We propose on-
chip bandwidth-adaptive networks to mitigate the performance
problems of oblivious routing and the complexity issues of
adaptive routing.

In a bandwidth-adaptive network, the bisection bandwidth of a
network can adapt to changing network conditions. We describe
one implementation of a bandwidth-adaptive network in the form
of a two-dimensional mesh with adaptive bidirectional links,
where the bandwidth of the link in one direction can be increased
at the expense of the other direction. Efficient local intelligence
is used to reconfigure each link, and this reconfiguration can be
done very rapidly in response to changing traffic demands.

We compare the hardware designs of a unidirectional and
bidirectional link and evaluate the performance gains provided by
a bandwidth-adaptive network in comparison to a conventional
network under uniform and bursty traffic when oblivious routing
is used.

I. INTRODUCTION

Routers can be generally classified into oblivious and
adaptive [1]. In oblivious routing, the path is completely
determined by the source and the destination address. De-
terministic routing is a subset of oblivious routing, where
the same path is always chosen between a source-destination
pair. Thanks to its distributed nature where each node can
make its routing decisions independent from others, oblivious
routing such as dimension-order routing [2] enables simple
and fast router designs and is widely adopted in today’s on-
chip interconnection networks. On the other hand, today’s
oblivious routing algorithms can have difficulty with certain
traffic patterns, especially when bandwidth demands of flows
vary with time, because routes are not adjusted for different
applications.

In adaptive routing, given a source and a destination ad-
dress, the path taken by a particular packet is dynamically
adjusted depending on, for instance, network congestion. With
this dynamic load balancing, adaptive routing can potentially
achieve better throughput and latency compared to oblivious
routing. However, adaptive routing methods face a difficult
challenge in balancing router complexity with the capability
to adapt. To achieve the best performance through adaptivity,

a router ideally needs global knowledge of the current net-
work status. However, due to router speed and complexity,
dynamically obtaining a global and instantaneous view of the
network is often impractical. As a result, adaptive routing in
practice relies primarily on local knowledge, which limits its
effectiveness. If it is necessary to avoid out-of-order packet
receipt at the destination, additional mechanisms are required.
For example, reorder buffers are required at destination nodes,
or packets in transit on the original path of a flow all have to
reach the destination before the network is reconfigured and
packets are injected into the new path.

We propose bandwidth-adaptive networks to mitigate the
problems of oblivious routing and avoid the complexity of
adaptive routing. In a bandwidth-adaptive network, the bisec-
tion bandwidth of a network can adapt to changing network
conditions. We describe one implementation of a bandwidth-
adaptive network in the form of a two-dimensional mesh
with adaptive bidirectional links!, where the bandwidth of
the link in one direction can be increased at the expense
of the other direction. Efficient local intelligence is used to
appropriately reconfigure each link, and this reconfiguration
can be done very rapidly in response to changing traffic
demands. Reconfiguration logic compares traffic on either side
of a link to determine how to reconfigure each link.

One can think of a bandwidth-adaptive link as a multilane
freeway, where a subset or all of the lanes can be set up to
carry traffic in either direction. Each lane carries traffic in
one particular direction at any point of time, but can be easily
switched to carry traffic in the opposite direction depending on
the number of cars wishing to travel in each direction. Figure
1 illustrates a scenario where this would be helpful!

We compare the hardware designs of a unidirectional and
bidirectional link and argue that the hardware overhead of im-
plementing bidirectionality and reconfiguration is reasonably
small. We then evaluate the performance gains provided by a
bandwidth-adaptive network in comparison to a conventional
network through detailed network simulation of oblivious
routing methods under uniform and bursty traffic, and show
that the performance gains are significant.

IBidirectional links have been referred to as half-duplex links in router
literature.



Fig. 1. Motivation for Bandwidth Adaptivity (from www.panoramio.com)

In Section II, we describe a hardware implementation of an
adaptive bidirectional link, and compare it with a conventional
unidirectional link. In Section III, we describe schemes that
determine the configuration of the adaptive link, i.e., decide
which direction is preferred and by how much. The frequency
of reconfiguration can be varied. Related work is summarized
in Section IV. Simulation results comparing oblivious routing
on a conventional network against a bandwidth-adaptive net-
work are the subject of Section V. Section VI concludes the

paper.
II. ADAPTIVE BIDIRECTIONAL LINK

A. Typical Virtual Channel Router

Although bandwidth adaptivity can be introduced indepen-
dently of network topology and flow control mechanisms, in
the interest of clarity we assume a typical virtual-channel
router on a two-dimensional (2-D) mesh network as a baseline.
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Fig. 2. Typical virtual-channel router architecture with p physical channels
and v virtual channels per physical channel.

Figure 2 illustrates a typical virtual-channel router architec-
ture and its operation [3], [4], [5]. As shown in the figure, the
datapath of the router consists of buffers and a switch. The
input buffers store flits waiting to be forwarded to the next
hop; each physical channel often has multiple input buffers,
which allows flits to flow as if there were multiple “virtual”
channels. When a flit is ready to move, the switch connects
an input buffer to an appropriate output channel. To control
the datapath, the router also contains three major control
modules: a router, a virtual-channel (VC) allocator, and a
switch allocator. These control modules determine the next
hop, the next virtual channel, and when a switch is available
for each packet/flit.

The routing operation comprises four steps: routing (RC),
virtual-channel allocation (VA), switch allocation (SA), and
switch traversal (ST); these are often implemented as four
pipeline stages in modern virtual-channel routers. When a head
flit (the first flit of a packet) arrives at an input channel, the
router stores the flit in the buffer for the allocated virtual
channel and determines the next hop node for the packet
(RC stage). Given the next hop, the router then allocates
a virtual channel in the next hop (VA stage). The next
hop node and virtual channel decision is then used for the
remaining flits of the given packet, and the relevant virtual
channel is exclusively allocated to that packet until the packet
transmission completes. Finally, if the next hop can accept the
flit, the flit competes for a switch (SA stage), and moves to
the output port (ST stage).

B. Bidirectional Links

In the typical virtual-channel router shown in Figure 2, each
output channel is connected to an input buffer in an adjacent
router by a unidirectional link; the maximum bandwidth is
related to the number of physical wires that constitute the link.
In an on-chip 2-D mesh with nearest neighbor connections
there will always be two links in close proximity to each other,
delivering packets in opposite directions.

We propose to merge the two links between a pair of net-
work nodes into a set of bidirectional links, each of which can
be configured to deliver packets in either direction, increasing
the bandwidth in one direction at the expense of the other. The
links can be are driven from two different sources, with local
arbitration logic and tristate buffers ensuring that both do not
simultaneously drive the same wire.
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Fig. 3. Adaptivity of a mesh network with bidirectional links

Figure 3 illustrates the adaptivity of a mesh network using
bidirectional links. Flow A is generated at the upper left corner
and goes to the bottom right corner, while flow B is generated
at the bottom left corner and ends at the upper right corner.
When one flow becomes dominant, bidirectional links change
their directions in order to achieve maximal total throughput.
In this way, the network capacity for each flow can be adjusted
taking into account flow burstiness without changing routes.

Figure 4 shows a bidirectional link connecting two network
nodes (for clarity, only one bidirectional link is shown between
the nodes, but multiple bidirectional links can be used to
connect the nodes if desired). The bidirectional link can be
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Fig. 4. Connection between two network nodes through a bidirectional link (configured going left).

regarded as a bus with two read ports and two write ports that
are interdependent. A bandwidth arbiter governs the direction
of a bidirectional link based on pressure (see Section III) from
each node, a value reflecting how much bandwidth a node
requires to send flits to the other node. Bold arrows in Figure 4
illustrate a case when flits are delivered from right to left; a tri-
state buffer in the left node prevents the output of its crossbar
switch from driving the bidirectional link, and the right node
does not receive flits as the input is being multiplexed. If the
link is configured to be in the opposite way, only the left node
will drive the link and only the right node will receive flits.

Router logic invalidates the input channel at the driving
node so that only the other node will read from the link.
The switching of tri-state buffers can be done faster than
other pipeline stages in the router so that we can change
the direction without dead cycles in which no flits can move
in any direction. Note that if a dead cycle is required in a
particular implementation, we can minimize performance loss
by switching directions relatively infrequently. We discuss this
tradeoff in Section V.

Long wires in on-chip networks require repeaters. In this
paper we are focused on a nearest-neighbor mesh network.
As can be seen in Figure 4, only a short section of the link
is bidirectional. Tri-state buffers are placed immediately to
either side of the bidirectional section. This will be true of
links connecting to the top and bottom network nodes as well.
Therefore, the bi-directional sections do not need repeaters.
If a bi-directional link is used to connect faraway nodes in
a different network topology, a pair of repeaters with enable
signals will be required in place of a conventional repeater on
a unidirectional link.

C. Router Architecture with Bidirectional Links

Figure 5 illustrates a network node with b bidirectional
links, where each link has a bandwidth of one flit per router cy-
cle; gray blocks highlight modules modified from the baseline
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Fig. 5. Network node architecture with u unidirectional links and b

bidirectional links between each of p neighbor nodes and itself.

architecture shown in Figure 2. Adjacent nodes are connected
via p ports (for the 2-D mesh we consider here, p =4 at most).
At each port, b input channels and b output channels share
the b bidirectional links via tri-state buffers: if a given link
is configured to be ingressive, its input channel is connected
to the link while the output channel is disconnected, and vice
versa (the output channels are not shown in the figure).

We parametrize architectures with and without bidirectional
links by the number of unidirectional links u and the number
of bidirectional links &; in this scheme, the conventional router
architecture in Figure 2 has u =1 and b = 0. We will compare
configurations with the same bisection bandwidth. A router
with u =0 and b =2 has the same bisection bandwidth as
u=1 and b =0. In general, we may have hybrid architectures
with some of the links bidirectional and some undirectional
(that is, u > 0 and b > 0). A (u,b) router with bidirectional
links will be compared to a conventional router with u+b/2
unidirectional links in each direction; this will be denoted as
(u+5b/2,0).

We assume, as in typical routers, that at most one flit from
each virtual channel can be transferred in a given cycle — if
there are v virtual channels in the router, then at most v flits
can be transferred in one cycle regardless of the bandwidth



available. In a (u,b) router, if i out of b bidirectional links
are configured to be ingressive at a router node, the node can
receive up to u+i flits per cycle from the node across the link
and send out up to (u+b —i) flits to the other node. Since each
incoming flit will go to a different virtual channel queue,” the
ingress demultiplexer in Figure 5 can be implemented with
b instances of a v-to-1 demultiplexer with tri-state buffers
at the outputs; no additional arbitration is necessary between
demultiplexers because only one of their outputs will drive the
input of each virtual channel.

In a bidirectional router architecture, the egress link can
be configured to exceed one flit per cycle; consequently, the
crossbar switch must be able to consider flits from more than
one virtual channel from the same node. In the architecture
described so far, the output of each virtual channel is directly
connected to the switch and competes for an outgoing link.
However, one can use a hierarchical solution where the v
virtual channels are multiplexed to a smaller number of
switch inputs. The Intel Teraflops has a direct connection of
virtual channels to the switch [6]. Most routers have v-to-1
multiplexers that select one virtual channel from each port for
each link prior to the crossbar.

In addition, the crossbar switch must now be able to drive
all p-(u+ b) outgoing links when every bidirectional link
is configured as egressive, and there are u unidirectional
links. Consequently, the router requires a p-v-by-p- (u+b)
crossbar switch, compared to a p-v-by-p- (u+b/2) switch of
a conventional (#+b/2,0) router that has the same bisection
bandwidth; this larger switch is the most significant hardware
cost of bidirectional router architecture. If the v virtual chan-
nels are multiplexed to reduce the number of inputs of the
switch, the number of inputs to the crossbar should be at
least equal to the maximum number of outputs in order to
fully utilize the bisection bandwidth. In this case, we have
a p-(u+b/2)-by-p-(u+b/2) crossbar in the (u+b/2,0)
case. In the (u,b) router, we will need a p- (u+ b)-by-
p-(u+Db) crossbar. The v virtual channels at each port will be
multiplexed into (u+ b) inputs to the crossbar.

To evaluate the flexibility and effectiveness of bidirectional
links, we compare, in Section V, the performance of bidirec-
tional routers with (u,b) = (0,2) and (u,b) = (0,4) against
unidirectional routers with (u,b) = (1,0) and (u,b) = (2,0),
which, respectively, have the same total bandwidth as the
bidirectional routers. We also consider a hybrid architecture
with (u,b) = (1,2) which has the same total bandwidth as
the (u,b) = (2,0) and (u,b) = (0,4) configurations. Table I
summarizes the sizes of hardware components of unidirec-
tional, bidirectional and hybrid router architectures assuming
four virtual channels per ingress port (i.e., v =4). There are
two cases considered. The numbers in bold correspond to the
case where all virtual channels compete for the switch. The
numbers in plain text correspond to the case where virtual
channels are multiplexed before the switch so the number of

2Recall that once a virtual channel is allocated to a packet at the previous
node, other packets cannot use the virtual channel until the current packet
completes transmission.

inputs to the switch is restricted by the bisection bandwidth.
While switch allocation logic grows as the size of crossbar
switch increases and bidirectional routers incur the additional
cost of the bandwidth allocation logic shown in Figure 4,
these are insignificant compared to the increased size of the
demultiplexer and crossbar. In our simulation experiments we
have compare the configurations in bold, as well as the ones
in plain text.

Architecture Ingress Demux Xbar Switch
(u, b) = (1, 0) one 1-to-4 demux 4-by-4 or 16-by-4
(u, b) = (0, 2) two 1-to-4 demuxes 8-by-8 or 16-by-8
(u, b) = (2, 0) two 1-to-4 demuxes 8-by-8 or 16-by-8
(u, b) = (0, 4) four 1-to-4 demuxes  16-by-16 or 16-by-16
(u, b) = (1, 2) three 1-to-4 demuxes 12-by-12 or 16-by-12

TABLE I
THE SUMMARY OF DIFFERENCES IN HARDWARE COMPONENTS BETWEEN
4-VC ROUTER ARCHITECTURES

When virtual channels directly compete for the crossbar,
the number of the crossbar input ports remains the same in
both the unidirectional case and the bidirectional case. The
number of crossbar output ports is the only factor increasing
the crossbar size in bidirectional routers (u,b) = (0,4) and
(1,2) when compared with the unidirectional (2,0) case; this
increase is size is roughly equal to the ratio of the output ports.
Considering that a 32 x 32 crossbar takes approximately 30%
of the gate count of a switch [7] with much of the actual area
being accounted for by queue memory and wiring which is
not part of the gate count, we estimate that a 1.5x increase in
crossbar size for the (1,2) case will increase the area of the
node by < 15%. If the queues are smaller, then this number
will be larger. Similar numbers are reported in [8].

There is another way to compare the crossbars in the
unidirectional and bidirectional cases. It is well known that
the size of a n x n crossbar increases as n® (e.g., [9]). We can
think of n as p-(u+b/2)-w, where w is the bit-width for the
unidirectional case. If a bidirectional router’s crossbar is 1.5x
larger, then one can create an equivalent-size unidirectional
crossbar with the same number of links but v/1.5x bit-width,
assuming zero buffer sizes. In reality, the buffers will increase
by V1.5 =1.22x due to the bit-width increase, and so the
equivalent-size undirectional crossbar will have a bit-width
that is approximately 1.15x of the bidirectional crossbar,
assuming typical buffer sizes. This implies the performance
of this crossbar in a network will be 1.15x the baseline uni-
directional case. As can be seen in Section V, the bidirectional
link architecture results in greater gains in performance.

III. BANDWIDTH ALLOCATION IN BIDIRECTIONAL LINKS

Bidirectional links contain a bandwidth arbiter (see Fig-
ure 4) which governs the direction of the bidirectional links
connecting a pair of nodes and attempts to maximize the con-
nection throughput. Keys to our approach are the locality and
simplicity of this logic: the arbiter makes its decisions based
on very simple information local to the nodes it connects.



Each network node tells the arbiter of a given bidirectional
links how much pressure it wishes to exert on the link; this
pressure indicates how much of the available link bandwidth
the node expects to be able to use in the next cycle. In our
design, each node counts the number of flits ready to be sent
out on a given link (i.e., at the head of some virtual channel
queue), and sends this as the pressure for that link. The arbiter
then configures the links so that the ratio of bandwidths in the
two directions approximates the pressure ratio, additionally
ensuring that the bandwidth granted does not exceed the free
space in the destination node. Consequently, if traffic is heavier
in one direction than in the other, more bandwidth will be
allocated to that direction.

The arbitration logic considers only the next-hop nodes of
the flits at the front of the virtual channel queues and the
available buffer space in the destination queues, both of which
are local to the two relevant nodes and easy to compute. The
arbitration logic itself consists of threshold comparisons and
is also negligible in cost.

When each packet consists of one flit, the pressure as
defined above exactly reflects the traffic that can be transmitted
on the link; it becomes approximate when there are multiple
flits per packet, since some of the destination queues with
available space may be in the middle of receiving packets
and may have been assigned to flows different from the flits
about to be transmitted. Although more complex and accurate
definitions of pressure are possible, our experience thus far is
that this simple logic performs well in practice.

In some cases we may not want arbitration to take place
in every cycle; for example, implementations which require a
dead cycle after each link direction switch will perform poorly
if switching takes place too often. On the other hand, switching
too infrequently reduces the adaptivity of the bidirectional
network, potentially limiting the benefits for quickly changing
traffic and possibly requiring more complex arbitration logic.
We explore this tradeoff in Section V.
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Fig. 6. Deadlock on deadlock-free routes due to bidirectional links

When analyzing link bandwidth allocation and routing in
a bidirectional adaptive network, we must take care to avoid
additional deadlock due to bidirectional links, which may arise
in some routing schemes. Consider, for example, the situation
shown in Figure 6: a flow fp travels from node B to node C
via node A, and all links connecting A with B are configured

in the direction B — A. Now, if another, smaller flow f4 starts
at D and heads for B, it may not exert enough pressure on the
A — B link to overcome that of fp, and, with no bandwidth
allocated there, may be blocked. The flits of f4 will thus
eventually fill the buffers along its path, which might prevent
other flows, including fp, from proceeding: in the figure, fp
shares buffering resources with f4 between nodes C and D, and
deadlock results. Note that the deadlock arises only because
the bidirectional nature of the link between A and B can cause
the connection A — B to disappear; since the routes of fy4
and fp obey the west-first turn model [10], the deadlock does
not arise in the absence of bidirectional links. One easy way
to avoid deadlock is to require, in the definition of pressure,
that some bandwidth is always available in a given direction if
some flits are waiting to be sent in that direction. For example,
if there are four bidirectional links and there are eight flits
waiting to travel in one direction and one in the opposite
direction, we will assign three links to the first direction and
one to the opposite direction.

IV. RELATED WORK
A. Routing Techniques

A basic deterministic routing method is dimension ordered
routing (DOR) [2] which becomes XY routing in a 2-D mesh.
ROMM [11] and Valiant [12] are classic oblivious routing
algorithms, which are randomized in order to achieve better
load distribution. In olturn [13], Seo et al show that simply
balancing traffic between XY and YX routing can guarantee
provable worst-case throughput. A weighted ordered toggle
(WOT) algorithm that assumes 2 or more virtual channels [14]
assigns XY and YX routes to source-destination pairs in a way
that reduces the maximum network load for a given traffic
pattern. While we have focused on dimension-ordered routing
in this paper due to its speed and simplicity, other methods
can be used in conjunction with bandwidth adaptivity.

Classic adaptive routing schemes include the turn routing
methods [10] and odd even routing [15]. These are general
schemes that allow packets to take different paths through the
network while ensuring deadlock freedom but do not specify
the mechanism by which a particular path is selected. An
adaptive routing policy determines what path a packet takes
based on network congestion.

Adaptive routing policies can be classified as either
congestion-oblivious or congestion-aware, based on whether
they take output link demand into account [8]. Some ex-
amples of congestion-oblivious routing strategies are random
[16], zigzag [17] and no-turn [10]. Congestion-aware routing
policies use various metrics to determine congestion. For
example, Dally and Aoki [18] favor the port with the largest
number of available virtual channels, and give results that
have better performance than congestion-oblivious algorithms.
In [19] a scheme that switches between deterministic and
adaptive modes depending on the application is presented,
where local FIFO information is used to adapt routes. Buffer
availability at adjacent routers has been used as a congestion
metric [20], as well as output queue length [21], [22]. These



routing algorithms all rely on local congestion indicators. Re-
gional Congestion Awareness (RCA) [8] is an adaptive routing
approach that propagates congestion information across the
network in a scalable manner, improving the ability of adaptive
routers to spread network load.

We have used oblivious routing methods in this paper,
and therefore the hardware requirements are smaller than for
conventional adaptive routing methods. The router only has
to support DOR, and we have used simple, local congestion
metrics to determine how best to configure each link. Rather
than making decisions on a per-packet basis, our network
makes decisions on a per-link basis.

B. Router Designs

Dally’s virtual channels [23] allocate buffer space for virtual
channels in a decoupled way from bandwidth allocation. Many
designs of virtual channel routers have been proposed (e.g.,
[51, [24], [25], [26]). Our virtual channel router design is
modified to enable adaptive bidirectional links in the network.

Router designs with bidirectional or half-duplex links have
been proposed. For example, Ariadne [27], the Intel Cavallino
[28] and NetworkDesignFrame [29] use half-duplex links, with
the Cavallino using simultaneous bidirectional signalling. The
MIT J-Machine [30] has bidirectional links where flits waiting
on either side are sequentially transferred. Our architecture
differs from previous architectures in the fine-grained adaptive
control of multiple channels based on the amount of waiting
data that can be accepted by the destination.

A recent paper also proposes reconfigurable bidirectional
links [31]. Our work was carried out independently ([32] is
an earlier version of this paper), and has significant differences
with the BiNOC architecture of [31]. We use pressure-based
control as opposed to request-based control in BINOC which
incurs direction-switching delays. BINOC does not incorporate
multiple virtual channels, and does not discuss any additional
deadlock possibilities (cf. Figure 6). These possibilities are
precluded by our definition of pressure.

V. RESULTS AND COMPARISONS
A. Experimental Setup
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Fig. 7. Link configurations used in the experiments. The configurations on
each row have the same bisection bandwidth.

A cycle-accurate network simulator was used to model the
bidirectional router architectures with different combinations
of unidirectional (#) and bidirectional (b) links in each con-
nection (see Figure 7 and Table II for details). To evaluate per-
formance under general traffic patterns, we employed a set of
standard synthetic traffic patterns (transpose, bit-complement,

Characteristic
Topology
Link configuration

Configuration
8x8 2D MESH
(u, b) = (1,0), (0,2)
(2,0), (1,2), (0,4)

Routing DOR-XY and DOR-YX
VC output multiplexing None,

Matching maximum bandwidth
Per-hop latency 1 cycle
Virtual channels per port 4
Flit buffers per VC 4
Average packet length (flits) 8

Traffic workload transpose, bit-complement,
shuffle, uniform-random
profiled H.264 decoder

Markov modulated process

20,000

100,000

Burstiness model
Warmup cycles
Analyzed cycles

TABLE I
SUMMARY OF NETWORK CONFIGURATION

shuffle, and uniform-random) both without burstiness and with
a Markov Modulated Process (MMP) bursty traffic model.
For the evaluation of performance under real-world appli-
cations, we profiled the network load of an H.264 decoder
and employed the traffic pattern on the unidirectional and the
bidirectional networks. We also examined several frequencies
of bandwidth allocation to estimate the impact on architectures
where a dead cycle is required to switch the link direction.

Although the bidirectional routing technique applies to
various oblivious routing algorithms, we have, for evaluation
purposes, focused on Dimension Ordered Routing (DOR), the
most widely implemented oblivious routing method. While our
experiments included both DOR-XY and DOR-YX routing,
we did not see significant differences in the results, and conse-
quently report only DOR-XY results. In all of our experiments,
the router was configured for four virtual channels per ingress
port under a dynamic virtual channel allocation regimen. The
effect of multiplexing virtual channels in front of the crossbar
switches was also examined.

B. Non-bursty Synthetic Traffic

Figure 8 shows the throughput in the unidirectional and
bidirectional networks under non-bursty traffic. When traffic
is consistent, the improvement offered by bidirectional links
depends on how symmetric the flows are. On the one extreme,
bit-complement, which in steady state is entirely symmetric
when routed using DOR and results in equal traffic in each
direction on any link, shows no improvement; on the other
extreme, in transpose, packets move in only one direction
over any given link, and bidirectional links improve throughput
twofold. Shuffle lies between the two extremes, with the bidi-
rectional network outperforming the unidirectional solution by
60% when total bandwidth is equal.

Uniformly random traffic is also symmetric when averaged
over a period of time. For very short periods of time, however,
the symmetry is imperfect, allowing the bidirectional network
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to track the traffic shifts as they happen and outperform
the unidirectional network throughput by up to 8% without
multiplexing virtual channel outputs.

C. Non-bursty Synthetic Traffic with Multiplexed VC Outputs

If the outputs of virtual channels are multiplexed, the
number of inputs to the crossbar switch can be significantly
reduced, especially in unidirectional networks. However, the
use of multiplexers can limit the flexibility of switch allocation
because less virtual channels can compete for the switch at a
given cycle.

This limited flexibility does not significantly affect perfor-
mance of bit-complement, transpose and shuffle because packet
flow at each network node is in steady-state under these traffic
patterns. If packet flow is in steady-state, each port at each
network node has the same inflows and outflows of flits, which
are bounded by the maximum outgoing bandwidth. There-
fore, multiplexing corresponding to the maximum outgoing
bandwidth does not affect throughput because we need not
connect more virtual channels to the switch than the number
of multiplexer outputs.

On the other hand, if the congestion at each link is not
in steady-state as in the uniform-random example, each port
sees a temporal mismatch between inflows and outflows of
flits. If all virtual channels can compete for the switch without
multiplexers, flits in ingress queues can be quickly pulled out
as soon as the link to the next hop becomes less congested.
The results show the unidirectional networks have 10% less
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throughput under uniform-random when multiplexers are used,
as they cannot pull out congested flits as fast as networks
without multiplexers. Bidirectional networks have more mul-
tiplexer outputs than unidirectional networks because their
maximum outgoing bandwidth is greater than unidirectional
networks. Therefore, the size of crossbar switches of bidirec-
tional networks increases, but they can send out more flits in
congested ports than unidirectional networks. Consequently,
the bidirectional networks outperform the unidirectional net-
work throughput by up to 20% under uniform-random when
virtual channel outputs are multiplexed as shown in Figure 8.

D. Bursty Synthetic Traffic

The temporary nature of bursty traffic allows the bidi-
rectional network to adjust the direction of each link to
favor whichever direction is prevalent at the time, and results
in throughput improvements across all traffic patterns (see
Figure 9). With bursty traffic, even bit-complement, for which
the bidirectional network does not win over the unidirectional
case without burstiness, shows a 20% improvement in total
throughput because its symmetry is broken over short periods
of time by the bursts. For the same reason, shuffle and uniform-
random outperform the unidirectional network by 66% and
26% respectively, compared to 60% and 8% in non-bursty
mode. Finally, transpose performance is the same as for the
non-bursty case, because the traffic, if any, still only flows in
one direction and requires no changes in link direction after
the initial adaptation.
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These results were obtained with virtual channels directly
competing for the crossbar. We have simulated these examples
with multiplexed VC outputs and the results have the same
trends as in Figure 9, and therefore are not shown here.

E. Traffic of an H.264 Decoder Application

As illustrated in the example of transpose and bit-
complement, bidirectional networks can significantly improve
network performance when network flows are not symmetric.
As opposed to the synthetic traffic such as bit-complement, the
traffic patterns in many real applications are not symmetric
as data is processed by a sequence of modules. Therefore,
bidirectional networks are expected to have significant per-
formance improvement with many real applications. Figure
10 illustrates the performance of the bidirectional and the
unidirectional networks under traffic patterns profiled from an
H.264 decoder application, where the bidirectional networks
outperforms unidirectional networks up to 35%. The results
correspond to the case where virtual channels directly compete
for the crossbar, and is virtually identical to the results with
VC multiplexing.

FE. Link Arbitration Frequency

So far, our results have assumed that the bandwidth arbiter
may alter the direction of every link on every cycle. While
we believe this is realistic, we also considered the possibility
that switching directions might require a dead cycle, in which
case changing too often could limit the throughput up to
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50% in the worst case. We therefore reduced the arbitration
frequency and examined the tradeoff between switching every
N cycles (thereby lessening the impact of a dead cycle to
N%H) and limiting the network’s adaptivity to rapid changes in
traffic patterns. The results in this section illustrate the relevant
tradeoffs.

Figure 11 shows how often each bidirectional link actually
changes its direction under bursty shuffle and uniform-random
traffic: the x-axis shows how frequently links directions change
and the y-axis shows how many links switch that often. For
example, under shuffle traffic, about 8% of bidirectional links
change their direction less than once every two hundred cycles.
Traffic exhibiting the uniform-random pattern, in comparison,
is more symmetric than shuffle, and so the link directions
change more often.

The observation that no link changes its direction more
frequently than once in ten cycles led us to investigate how in-
frequent the link switches could be without significantly affect-
ing performance. In Figure 12 we compare the performance
of the bidirectional network under different link arbitration
frequencies; as expected, throughput decreases when the links
are allowed to switch less often.

Even with a switching period as large as 100 cycles,
the bidirectional network still significantly outperforms the
unidirectional design under many loads (e.g., by more than
20% for shuffle). In the case of uniform-random, however, the
bidirectional network performance trails the unidirectional de-



sign when switching is infrequent. This is because, when each
link arbitration decision lasts 100 cycles, any temporary benefit
from asymmetric bandwidth allocation is nullified by changes
in traffic patterns, and, instead of improving throughput, the
asymmetric allocations only serve to throttle down the total
throughput compared to the unidirectional router.

Infrequent link switching, therefore, demands a more so-
phisticated link bandwidth arbiter that bases its decisions on
the pressures observed over a period of time rather than on in-
stantaneous measurements. For uniform-random, for example,
the symmetry of uniform random traffic over time would cause
the link bandwidths to be allocated evenly by such an arbiter,
allowing it to match the performance of the unidirectional
network.

VI. CONCLUSIONS

We have proposed the notion of bandwidth-adaptive net-
works in this paper, given one concrete example of bidirec-
tional links in a 2-D mesh, and evaluated it. Adaptivity is
controlled by local pressure that is easily computed. While
more comprehensive evaluation should be performed, adaptive
bidirectional links provide better performance under both
uniform and bursty traffic for the tested benchmarks.

We have focused on a mesh; however, adaptive bidirectional
links can clearly be used in other network topologies. In
adaptive routing decisions are made on a per-packet basis at
each switch. In bandwidth-adaptive networks, decisions are
made on a per-link basis. We believe this difference makes
bandwidth-adaptivity more amenable to local decision making,
though more rigorous analysis is required.
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