Appears inProc. of the 20th Int'l Conf. on Parallel Architectures ana@pilation Techniques
Galveston Island, TX. October 2011.

Coherent Profiles: Enabling Efficient Reuse Distance Analys
of Multicore Scaling for Loop-based Parallel Programs

Meng-Ju Wu and Donald Yeung
Department of Electrical and Computer Engineering
University of Maryland at College Park
{mjwu,yeung @umd.edu

Abstract—Reuse distance (RD) analysis is a powerful mem-
ory analysis tool that can potentially help architects study
multicore processor scaling. One key obstacle though is mul-
ticore RD analysis requires measuringconcurrent reuse dis-
tance (CRD) profilesacross thread-interleaved memory ref-
erence streams. Sensitivity to memory interleaving makes
CRD profiles architecture dependent, preventing them from
analyzing different processor configurations. For loop-based
parallel programs, CRD profiles shift coherentlyto larger CRD
values with core count scaling because interleaving threads
are symmetric. Simple techniques can predict such shifting,
making the analysis of numerous multicore configurations from
a small set of CRD profiles feasible. Given the ubiquity and
scalability of loop-level parallelism, such techniques will be
extremely valuable for studying future large multicore designs.

This paper investigates using RD analysis to efficiently
analyze multicore cache performance for loop-based parallel
programs, making several contributions. First, we provide in-
depth analysis on how CRD profiles change with core count
scaling. Second, we develop techniques to predict CRD profile
scaling, in particular employing reference groups [1] to predict
coherent shift, and evaluate prediction accuracy. Third, we
show core count scaling only degrades performance for last-
level caches (LLCs) below 16MB for our benchmarks and
problem sizes, increasing to 64—128MB if problem size scales by
64x. Finally, we apply CRD profiles to analyze multicore cache
performance. When combined with existing problem scaling
prediction, our technigues can predict LLC MPKI to within
11.1% of simulation across 1,728 configurations using only 36
measured CRD profiles.

I. INTRODUCTION

multi-dimensional nature of the design space. Worse yit, th
design space is becoming more complex as processors scale.

Today, 4-8 state-of-the-art cores or 10s of smaller
cores [10], [11] along with 10s of MBs of cache can fit
on a single die. Since Moore’s law is expected to continue
at historic rates for the foreseeable future, processotis wi
100s of cores and 100+ MB of cache-large-scale chip
multiprocessors (LCMPs) [3], [9]-are conceivable aftelyon
2 or 3 generations. As processors scale to the LCMP level,
evaluating memory performance via simulation alone will
become extremely challenging.

A powerful tool that can help address this probleneisse
distance (RD) analysisRD analysis measures a program'’s
memory reuse distance histogram,RID profile capturing
the locality responsible for cache performance. For sequen
tial programs, RD profiles ararchitecture independent
They can be acquired on one machine, and then used to pre-
dict different cache sizes without additional program runs
This saves time by reducing the number of cache designs
that need to be run or simulated. RD analysis has also been
applied to parallel programs on multicore processors [12],
[13], [14], [15]. For parallel programs, not only can RD
analysis predict performance across cache scaling, it can
potentially predict performance across core count scalsg
well [12], [13]. This can provide even greater leverage to
save time when evaluating cache designs.

Compared to uniprocessors, RD analysis for multicore
processors is more complex. This is because locality in mul-

Multicore processor performance depends in large partithréaded programs depends not only on per-thread reuse,
on how well programs utilize on-chip cache to mitigate off- Put also on how simultaneous threads’ memory references
chip accesses. Many studies have investigated this mudtico INterleave. So, analyzing multicore workloads requires ex

memory bottleneck [2], [3], [4], [5], [6]. [7], [8], [9]- Thee
studies simulate processors with varyiegre countand
cache capacityto quantify how different designs impact

tending RD analysis to account for memory interleaving. For
example,concurrent reuse distance (CRD) profilggantify
reuse globally across thread-interleaved memory referenc

memory performance. A significant problem is the largeStreams [12], [13], [14], [15]. _
number of configurations that must be explored due to the A Major problem is memory interleaving-and hence tech-

This research was supported in part by the Defense AdvaneseéaRch
Projects Agency (DARPA) under grant #HR0011-10-9-0009e Wews

and conclusions contained herein are those of the authdrstauld not be
interpreted as necessarily representing the official fgslior endorsement,
either expressed or implied, of the Defense Advanced Rdsdamgjects

Agency (DARPA) or the U.S. Government.

niques like CRD profiles—ararchitecture dependenin par-
ticular, scaling core count increases the number of memory
streams that interleave. So, CRD profiles are not valid for
machine sizes that differ from what was profiled. Even
scaling cache capacity can alter relative thread speed and
memory interleaving. So, strictly speaking, CRD profiles ar

not even valid across different cache sizes atdhmmecore previously used to predict RD profiles across problem scal-
count. Such architecture dependences prevent a single CRBg, to predict coherent shifting. We also propose unifgrml
profile from analyzing different multicore configurations, distributing the portion of CRD profiles associated with
defeating the predictive benefits of RD analysis. shared references to predict spreading. To evaluate our

Recently, researchers have investigated constructing CRE2chniques, we use the Intel PIN tool [16] to acquire CRD
profiles from per-thread RD profiles [12], [13]. By compos- profiles across 9 benchmarks running 4 different problem
ing an increasing number of threads, CRD profiles for scaledizes on 2-256 cores. We find our techniques can predict
CPUs can be derived and used to predict cache performanameasured CRD profiles with 90% accuracy.

Unfortunately, existing techniques are complex, emplgyin Third, we study the performance impact of core count
trace-based analyses (some with exponential time complexscaling. Because CRD profile shifting stops beyond a certain
ity) to account for the combinatorially large number of point, core count scaling only impacts cache performance
ways that threads can interleave and interfere. Moreadver, t below the stopping point, which we cdll.,,... We measured
techniques require at-scale profiling and traces. Heneg, th C.,,.. across our benchmarks and problem sizes, and found
are impractical for even moderately-sized machine/prable it is usually < 16MB. But if problem size scales by 64x,
sizes, and completely out of the question for LCMPs. C.ore iINCreases to 64-128MB.

In this paper, we show the complexity of analyzing Finally, we demonstrate our techniques’ ability to acceler
memory interleaving depends in large part on how programste design analysis. Using the M5 simulator [17], we model
are parallelized. Parallel programs generally expreseeit a tiled CMP, and simulate our benchmarks on processors
task-level or loop-level parallelism. In task-level parallel with 2-256 cores and 4-128MB of last-level cache (LLC).
programs, threads often execute dissimilar code in an uncadn total, we simulate 1,728 configurations. Our core count
ordinated fashion, giving rise to irregular memory intasle prediction techniques can predict the LLC MPKI (misses
ings and complex thread interference. In loop-level patall per kilo-instructions) for all configurations within 11% of
programs, however, simultaneous threads execute similasimulation using 72 measured CRD profiles. When com-
code-.e., from the same parallel loop—so they exhibit almostbined with existing problem scaling prediction techniques
identical locality characteristics. Suckymmetric threads we can predict all configurations with similar accuracy gsin
produce regular memory interleavings with less complex36 measured CRD profiles.
thread interference. This can be exploited to greatly siynpl The rest of this paper is organized as follows. Sec-
CRD profile prediction, and enable practical RD analysis fortion Il discusses CRD profiles and how they change with
LCMP-scale systems. core count scaling. Then, Section 1l develops techniques

While analysis techniques borne out of this observatiorto predict the scaling changes. Next, Section IV studies
will be specific to loop-level parallel programs, such work-the performance implications of scaling. Lastly, Section V
loads are pervasive. For example, all data parallel codesdemonstrates our techniques’ ability to accelerate cache
e.g, scientific, media, and bioinformatics programs—deriveevaluation. Sections VI and VIl end with related work and
all of their parallelism from loops. Programs written in conclusions.

OpenMP, one of the most popular parallel environments,
consist almost entirely of parallel loops. In addition, peo
level parallel programs are also highly scalable. Most can Reuse distance measures the number of unique memory
provide large amounts of parallelism simply by increasingreferences performed between two references to the same
problem size, so they are a good match for LCMPs. Fodata block. RD profiled-e, the histogram of RD values
these reasons, RD analysis for loop-level parallel programfor all references in a sequential program-are useful for
will be extremely valuable to future multicore designers. analyzing uniprocessor cache performance. Because a cache

Our work makes the following contributions. First, we of capacityC can satisfy references with RB C (assuming
provide an in-depth analysis on how CRD profiles fromLRU), the number of cache misses is the sum of all reference
loop-level parallel programs change with core count sgalin counts in an RD profile above the RD value for capacity
We find that as core count increases, CRD proftbgt This paper studies RD analysis for shared caches in
coherentlydi.e., in a shape-preserving fashion—to larger CRDmulticore processors. Figure 1 shows a typical multicore
values due to CRD dilation for references to private datacache hierarchy with multiple levels of cache on chip. Often
Shifting slows down and eventually stops at large CRDcaches near the cores are private while caches near the off-
due to overlapping references to shared data. Inter-threachip interface are shared. The LLC (the focus of our work),
shared references also cause intercepts that tend to spreadusually shared bwll cores when it is a shared cache.
and distort CRD profiles, but coherent shift is by far the RD analysis can be extended for shared LLCs by
dominant behavior. computing reuse distance across the interleaved memory

Second, we develop techniques to predict the CRD profilstreams from all corese., the concurrent reuse distance
movement. We employ reference groups [1], a techniqu¢CRD) [13]. Figure 2 illustrates CRD for a sequence of

Il. CONCURRENTREUSEDISTANCE

end at barriers. Our PIN tool records profiles in between
every pair of barrier calld-e., per parallel regiod. Multiple

Privats Private | [Private Private loops can occur within a single parallel region so this does
L1 L1 L1 L1 not isolate all parallel loops, but it is sufficient for ouugy.
: : : : Within parallel regions, we acquire CRD profiles for
Shared LLC references to mostly private versus shared data separately

The former, which we calprivate CRD profiles{CRDp),
exhibit very few intercepts, so they show the combined
effects of dilation and overlap. The latter, which we call

ITO Off-chip Memory

Figure 1. Multicore cache hierarchy. shared CRD profilefCRDg), contain frequent intercepts,
so they show intercept effects. We employ a single global
Time: 1 2 3 4 5 6 7 8 LRU stack for computing CRp and CRL;. To acquire
Corel: A B C A these profiles, we record each memory block’s CRD values
Core2: C (E) E F separatel§ as well as the number of times the block is

referenced by each core. After a parallel region completes,
Figure 2. Two interleaved memory reference streams, illisgatilation, ~ we determine each block’s sharing status: if a single core
overlap, and intercept among inter-thread memory references. is responsible for 90% or more of a block’s references, the
block is private; otherwise, it is shared. We then accunaulat

interleaved memory references from two cores. In Figure 2all memory blocks’ CRD counts into either the CRDor
core 1 touches blocks A—C, and then re-references blockRDg profiles based on their observed sharing.
A, while core 2 touches blocks C-F. Core 1's reuse of A Finally, we quantify overlap in CRP profiles. We main-
has RD = 2, but its CRD = 4. In this case, CRDRD tain a second global LRU stack in which we artificially
because some of core 2's interleaving referenéesuid £) remove all overlapping references. This is done by ap-
are distinct from core 1's references, causeigD dilation pending each thread’s ID to the address of their executed

In many multithreaded programs, threads share datapemory references when calculating reuse distance (trgcki
which can offset dilation in two ways. First, it can introduc private vs shared memory blocks still uses the unmodified
overlapping references-or example, in Figure 2, while core addresses). Then, we compute CRprofiles from the
2's reference toC' interleaves with core 1's reuse of A, second global LRU stack exactly as described above. We
this does not increasel’'s CRD because core 1 already call theseprivate no-overlap CRD profile§CRDpy). In
reference<” in the reuse interval. Second, data sharing cafCRDp profiles, inter-thread references are always unique,
also introducentercepts For example, if core 2 references so CRD never contracts. Comparing CRP and CRD»
A instead ofD at time 5, then core 1's reuse dfhas CRD profiles shows the impact of overlapping references.
=1, so CRD actually becomes less than RD.

In the rest of this section, we study how dilation, overlap, ~)
and intercepts in loop-level parallel programs change with Figures 3 and 4 show how core count scaling affects CRD

core count scaling, and show their impact on CRD profiles. Profiles using FFT from SPLASHZ2 [19] as an example. CRD
profiles are presented for the most important parallel regio

A. Profiling in FFT. Each profile plots reference count (Y-axis) versus

To facilitate our study, we acquire CRD profiles using CRD (X-axis). CRD values are multiplied by the block size,
the Intel PIN tool. We maintain LRU stacks of memory 64 bytes, so the X-axis reports distance as capacity. For
blocks for each thread and for all threads in a program. (We&ach profile, reference counts from multiple adjacent CRD
assume 64-byte memory blocks). When a thread performs ¥glues are summed into a single CRD bin, and plotted as
data reference, PIN computes the memory block’s depth i Single Y value. For capacities 0-128KB, bin size grows
the per-thread and global LRU stacks. The former update¥garithmically; beyond 128KB, all bins are 128KB each.

a per-thread RD profile, while the latter updates a CRD 1) Dilation and Overlap:Figure 3A plots FFT's CRPy
profile. Then, the referenced blocks are moved to the MRUProfile for a 4-core execution (labeled “CRMR,") along
stack position. Our PIN tool follows McCurdy and Fischer's With the summation of per-thread RD profiles of the 4
method [18] and performs functional execution only, contex threads (labeled “RP). These two profiles show the di-
switching between threads after every memory referencdation effect without overlap at 4 cores. From Figure 3A,
This tends to interleave threads’ memory references uniwe can see CRPy4 shifts RD, to larger CRD values.
formly in time at the global LRU stack. The dilation is by exactly a factor 4x. More importantly,

Because dilation, overlap, and intercepts occur within IWe instrument PIN to recognize each program’s barrier functio

'nd“_”dual parallel loops, we record profiles on a per_'IOOP 2Individual memory blocks tend to exhibit a small number of distin
basis. In our benchmarks, parallel loops usually begin an@RD values, so this bookkeeping does not increase storggecably.

B. Scaling

1075 105

e | 1 | [T T T T T T T e CRDpps 7 4x Coherent Dilaton | | | . CRD
£ j185 LAF‘ 4x Coherent Dilation RD4 £ 104 :.IA\ —CRD?}G
8104 1\ S 10° H :
107 Dl 1 AT (S S T
102 10t HINWad e] . e,
10 I o H \ : Intercepts, $preading t \
100 10— : ~
o " 2 g g g 2 2 2 2 g ¢
1061 | 4xlCoherent | | [[[e CRDpy cRO & ~ ¥ H &~ 4 &0
E 105__;_;!;&& Dilation Overlap, Distortion CRDp1g = 2 a
o4l
8. 103 ; \ el Figure 4. FFT's CRD profiles for 4 and 16 cores.
© 107 L ¥
o424 i .
107 RD;¢, especially at small CRD where overlap rarely occurs.
100 ® Notice, RDs and RD, exhibit the same shape. This is
105 T T T T T 1 1 1 [[- CRD because threads on 16 and 4 cores execute the same loop
H PN16 . . P . .
5135 s ——RD;g iterations, so they have similar locality. Hence, CRP is
St L1 16x Cohgrent Dilation not only a coherent shift of R, it is also a coherent shift
;.1:3'103 R e . i of RD, and CRD»4. This time, however, scaling is by a
181 TEN P factor 16x. As a result, the net effect is CR[3 coherently
e i scales CRD, by a factor 4x across the smaller CRD values.
10
Q % ,%j % ,ﬂzj % ,ﬂzj % g % % % g % % At larger CRD values, shifting sIovys_ down and eventually
CROY = & § 6 M~ 6 6 & & © © o o stops. Although RE; and RO, exhibit the same shape,

© RD;s ends earlier because individual threads execute fewer
Figure 3. FFT's CRn and per-thread RD profiles for 4 (A) and 16 |00p Iter_atlons’ e“mlnat.mg distant reuses. This truieat
(C) cores; CRD» profiles for 4 and 16 cores (B). along with the overlapping references at large CRD, almost
perfectly cancel the additional 4x dilation. So in Figure, 3B
CRDp1g and CRD»4 eventually merge, and end at about
the CRDpy4 profile maintains the shape of the RPprofile the same CRD value. This makes sense: because core count
across the shift. scaling does not change the amount of global data, the
Per-thread RD dilation is shape preserving because athaximum CRD is roughly the same.
interleaving threads are from the same parallel loop with |n summary, core count scaling causes the GRibofile
very similar locality. For a particular intra-thread reuse of loop-based parallel programs to shift coherently by the
distance RD, the other 3 threads tend to interleave RI¥caling factor at small CRD values. Shifting slows down,
unique memory blocks each (due to thread symmetry), s@nd eventually stops at large CRD values. While our detailed
CRD =~ 4 x RD. Consequently, all memory references at all analysis is only for FFT, we find this behavior is pervasive
per-thread RD values shift together such that GRRis @ across all the benchmarks and loops we studied (see Table I).
coherentie,, distortion-free—scaling of RD 2) Intercepts: Figure 4 plots FFT's CRB profiles at 4
Overlap offsets dilation, reducing its shift. To illusiat and 16 cores (labeled “CRf” and “CRDs15"). These show
Figure 3B plots FFT's CRDp profile (labeled “CRD4"). how intercepts change with core count scaling. Figure 4
This shows the combined impact of dilation and overlap atighlights two behaviors. First, at small CRE: (128KB),
4 cores. CRP4 and CRD-y4 are almost identical at small core count scaling induces a coherent shift of GRD
CRD, but CRD»4 exhibits less shift at large CRD due to the by a factor 4x, similar to CRP. As mentioned earlier,
overlapping references. In our benchmarks, overlap affectsharing tends to occur across distant loop iterations.im, |
mostly larger CRD because data sharing tends to occusverlap, intercepts rarely appear within small reuse wivilo
across distant loop iterations. So, overlapping refergncewithout intercepts, CRP scales like CRD.
appear in large reuse windows, but rarely in small reuse And second, at larger CRD~(128KB), core count scaling
windows. More importantly, when it does occur, overlapinduces spreading. The spreading stretches GRBwards
introduces some distortion but the impact is minimal. Sooth smaller and larger CRD values. In this portion of the
CRDp; is still a coherent scaling of RD CRDg profile, intercepts occur frequently and change CRD.
Because dilation and overlap induce coherent per-threaBy how much depends owhere intercepts appear within
RD shift, across different core counts, CRD profiles tendintra-thread reuse windows. For example, Figure 2 shows an
to shift coherently as well. To illustrate, Figure 3B plots intercept bisecting thread 1's reuse, making CRD = 1. But if
the CRD- profile for a 16-core FFT (labeled “CRRg"), the intercept occurs at time 6, CRD = 0, and if the intercept
and Figure 3C plots the corresponding R&nd CRD->x16 occurs at time 2, CRD = 4. In general, intercepts spread
profiles. As in the 4-core case, CRE; coherently scales references with per-thread reuse at distance RD between 0

i the reference group. A prediction is made by shifting each
reference group by its shift rate and desired core count
scaling factor. The prediction from the CRDsamples is
the predicted CRIp profile. The prediction from the CRP
samples, which we call CRR}; ¢+, is combined with spread
prediction below to derive predicted CRDprofiles.
2) Spread: Section I-B shows intercepts spread CRD
i CRDt profiles, with individual reuses moving to CRD values
between 0 and® x RD. As we will see later, the actual
Figure 5. Detecting alignment and shifting using referencaigs. distribution within this range is application dependene W
make the simplifying assumption that references are spread
and P x RD, where P is the core count. Although not so uniformly across the range. To predict spread, we sample
for Figure 4, intercepts often introduce significant distr. the CRD; profile at 4 cores (the same sample used in
Notice the CRI} profile contains fewer memory refer- shift prediction), and uniformly distribute the reference
ences than the CRPprofile. In Figure 4, the CRp profile ~ counts C'RDs_score[k] x plk]) at each CRD between 0
only accounts for 1% of the parallel region’s referencesand k x ere=ceunt where k is a particular CRD value,
(compared to Figure 3). While the exact percentage is appliandp = ﬁ (Cpmas is the CRD profile’s maximum CRD
cation dependent, we find CRDprofiles always dominate. value). We call this prediction CRR,cq.q. Then, we predict
the CRDy profile as follows:

This section studies techniques to predict CRD profiles CRDglk] = (1 — p[k])C RDsspift[k] + CRDgspreaalk]
across core count scaling. We describe our techniques, This predicts CRRQ by averaging CRDR,;p¢ and
discuss evaluation methodology, and then present results.CRDSSmed, weighting the former more heavily at small
CRD (where intercepts happen rarely) and the latter more
heavily at large CRD (where intercepts happen often).

Ref. Count

v

Ref. Count

Ill. PROFILE PREDICTION

A. Prediction Techniques

Section 1I-B shows CRP and CRL; profiles change
differently across core count scaling, so we predict thepa se B. Prediction Methodology
arately. Based on our insights, we employ two techniqgues— We use PIN to acquire the CRD profiles for our study.
one for coherent shift and another for spread. In particular, we acquire the per-parallel region CRBnd
1) Coherent ShiftAs shown in Section 1I-B, CRP (and = CRDg profiles, as described in Section II-A, for 2- and 4-
to some extent, CRP) profiles from parallel loops exhibit core executions. During profiling, we accumulate profilas fo
coherent shift. Coincidentally, Zhonet al [1] found RD different dynamic instances of the same static parallebreg
profiles for sequential programs also exhibit similar $hift into a single pair of CRpP and CRD; profiles. Then, we
due to problem scaling, and proposederence groupgo use the techniques from Section IlI-A to predict the GRD
predict the shift. We use reference groups to predict GRD and CRD; profiles for 8-256 cores, in powers of 2, from
and CRLy profiles. Figure 5 illustrates the technique. the 2- and 4-core samples. At each core count, we sum all
Samples of profiles (either CRDor CRDs) are acquired predicted per-parallel region CRDand CRDy profiles to
at 2 and 4 cores. These sampled profiles are divided intéorm a single prediction for the whole-program CRD profile.
200,000 groups along their CRD axis, each containing As discussed in Section 1I-B, CRD profiles dominate
an equal fraction (0.0005%) of the profile’s references.CRDg profiles. This implies predicting coherent shift alone
Reference groups across sampled profilesadigned via may be sufficient in many cases. In addition to predict-
association: thé'” group in the 2-core sample is aligned ing CRDp and CRI) profiles separately, we also employ
to the i*" group in the 4-core sample. Aligned referencewhole-program CRD profile prediction. We use PIN to
groups “correspond” to each other across the shift and aracquire the whole program CRD profiles at 2 and 4 cores.
assumed to shift together.€.,, coherently), maintaining a Then, we use reference groups to predict the whole-program
fixed shift rate dependence on scaling. This dependence wofiles for 8-256 cores directly from the sampled whole-
at least constant (no shift with core count), and at mosaline program profiles. The advantage of this approach is it dbesn’
shift with core count. In addition, 3 intermediate shiftast require profiling individual parallel regions.
are allowed: cube root, square root, and cube-root squared. Our study employs 9 benchmarks, each running 4 problem
These different shift rates support variable shitg(in sizes. Table | lists the benchmarks: FFT, LU, RADIX,
CRDp profiles). Barnes, FMM, Ocean, and Water from the SPLASH2
The shift between pairs of reference groups in the sampleduite [19], KMeans from MineBench [20], and BlackScholes
profiles is measured and compared against each allowddom PARSEC [21]. The™? column of Table | specifies the
shift rate. The one with the closest match is assigned td problem sizes, S1-S4. For each benchmark and problem

Table |
PARALLEL BENCHMARKS USED IN OUR STUDY.

Benchmark Problem Sizes Insts Profiled(M) (PIN)| Insts Profiled(M) (M5)
(S1/S2/S3/S4) (S1/S2/S3/S4) (S1/S2/S3/54)
FFT 216/218/220/222 elements 29/129/560/2,420 32/139/605/2,610
LU 2562/5122/1024%/20482 elements | 43/344/2,752/22,007 72/57714,625/37,027
RADIX 21772197221 1223 keys, radix=2048 23/93/422/1,687 23/90/433/1,729
Barnes 21312157217 1219 particles 214/1,015/4,438/19,14% 614/2,909/12,798/55,233
FMM 21372157217/219 particles 235/1,006/4,109/16,570 217/931/3,793/15,305
Ocean 1302/2582/5142/1026° grid 30/107/420/1,636 36/126/494/1,925
Water 103/163/253/40% molecules 43/143/553/2,099 54/174/642/2,315
KMeans 216/218/220/922 gpjects, 18 features 186/742/2,967/11,874| 246/985/3,939/15,748
BlackScholes 216/218/220/222 options 60/242/967/3,867 94/376/1,506/6,023
Se@d 08 LBR,.888 322 Q53988 388 Q32 _ IR
S0 06853 =s 238255582855 8888 2858282898852 388
< sotl-5--B- --m-f}’i-%--@- S-5-1-3=33B-3-08 o BTN BEeaN B W BT A
g e+ -4-88050 --o-1¥
328---
<'Qmmkqwco*-qmm*-qwmqumﬂqmv,«mv,xmmhm.,,«.ma,*.
o212 g2 1212 g2 1R 2l SRR 2l R R |2l de IR LA Ee 1R | 2| ER IR |2 g2 12 E 2Rl &
clPIgPlPIPIPRIP PR ISP ICIRISPICIRISCICIR ISCICR|ISICICR|SIC|IC|R|S
O |x O |x O |x O | O | O x O |x O | O | O |x
O &) o o o o &) O o O
FFT LU RADIX Barnes FMM Ocean Water KMeans BlackS. Average

Figure 6. CRD accuracy of predicted CRDand CRDy profiles, and indirectly and directly predicted whole-marg CRD profiles.

size, we predict the whole-program CRD profiles at 8-256error at the first few CRD values where reference counts
cores (either indirectly by predicting CRDand CRLy are enormous but which occur well below LLC capacities.
profiles, or directly), yielding 24 predicted profiles per Because CMC error is an average metric, it equally weights
benchmark. Using PIN, we also acquire the actual wholeerror across the first half of CMC profiles which usually
program CRD profiles corresponding to these 24 predictionsextend well beyond LLC capacities.
and compare the measured and predicted profiles. Finally, our study ignores the benchmarks’ initialization
Profile comparisons use two metricGRD accuracyand phases which are sequential; we only acquire and predict
CMC error. CRD accuracy id — % where F is the sum CRD profiles in the benchmarks’ parallel phases. The third
of the normalized absolute differences between every paicolumn of Table | reports the number of instructions in
of CRD values from a predicted and measured CRD profilethe parallel phases studied. For FFT, LU, and RADIX,
(F can be at most 200%, so CRD accuracy is between Othese regions are the entire parallel phase; for the other
100%). CRD accuracy is a similarity metric used in previousbenchmarks, these regions are 1 timestep of the parallel
work [13], [22]. CMC (cache-miss count) error is computed phase.
from CMC profiles which present the number of cache
misses predicted by a CRD profile at each of its CRDC' Accuracy Results
values (e, CMCli] = Y.2' CRDJj], where N is the Figure 6 presents our CRD profile prediction results.
total number of bins). We compute CMC error by averaging!n Figure 6, the “CRD” (*CRDg") bars show results
the error between pairs of CRD values from the first half offor predicting CRD> (CRDs) profiles separately. For each

predicted and measured CMC profiles: benchmark, problem size, and core count, we sum all
~ predicted per-parallel region CRD(CRDg) profiles into a
2 G [CMChyrealk] — CMCpeas|k]] single CRD» (CRDs) profile. Then, we compare this against
CMC error = N Z CMCroas[F] the measured aggregate CRIDCRDs) profile. Each bar in

k=0 Figure 6 reports the average CRD accuracy achieved over

For CRD values,k, in which both CMC,,.q[k] and the 24 predictions per benchmark. The rightmost bars report

CMC,eas[k] are < 20,000, we assume the error is 0. the average across all benchmarks.

Enormous error can occur at such CRD values, but they As Figure 6 shows, CRP profiles are predicted with high

are inconsequential due to the small cache miss counts. (laccuracy. For all benchmarks except LU, CRRccuracy

our benchmarks, the removed CRD values account for less between 88% and 99%. For LU, CRDaccuracy is

than 0.5% of the benchmarks’ total memory references). 71%. Across all benchmarks, the average GRdzcuracy is
CMC error reflects LLC performance. Because CRD91%. CRD- profiles exhibit coherent shift across core count

accuracy is an absolute metric, it more heavily weightsscaling which reference groups can effectively predicte Th

o 1
< © 10
60 =) = s g 1-core
50 g8 3103 T A, T 16-core
(fo) . - &-256-core
9 408 E3 el PR
510 R Sy 4
e
2104 h v e
% 1MB core AM merged N
O, 2 \
10 T T T T T T T T T T T
m O O M O M M M M @M @m M
S %X % %t F 3 Z3F ;3
CRD ¢ 8 ¥ o ® ® & 1B © ©

. .) Figure 8. CMC profiles for Barnes on 1, 16, and 256 cores ruynitie
Figure 7. CMC error for predicted whole-program CRD profiles Szg problem.C pand AM , are labeled 0
~core merge .

results in Figure 6 demonstrate the pervasiveness of cmhereaverage' CRP,s and CRDy, .. achieve a 10.8% and

shift across our benchmarks, and confirm the accuracy ofo.7% error, respectively, without LU, and 15.0% and 15.1%

reference groups for this type of profile movement. error, respectively, for all benchmarks. This result ssge
LU is the only benchmark with lower CRPaccuracy. In our predicted CRD profiles can provide good LLC cache

LU, blocking is performed to improve cache locality, but for miss predictions. Later, Section V will confirm this result.

the S1 and S2 problems, the default blocking factor does not

create enough parallelism to keep more than 32 cores busy. IV. SCALING IMPLICATIONS

This introduces error when predicting large core counts. Thus far, we have shown core count scaling causes
Compared to CRP profiles, CRDy profiles are predicted predictable coherent shift of CRD profiles. Another point
with lower accuracy. In Figure 6, CRDaccuracy is between related to core count scaling is that shifting is limited: it
33% and 79%. Across all benchmarks, the average £RDslows down and stops at large CRD. This has important
accuracy is only 66%. CRD profiles suffer poor spread cache performance implications. To illustrate, Figure @&l
prediction. While intercepts induce spreading in the rangghe whole-program CMC profiles for the Barnes benchmark
we expect (see Section II-B), the actual distribution a€ros running the S2 problem on 1, 16, and 256 cores. Because
this range is highly application dependent. Unfortunately CRD profiles eventually stop shifting, their associated CMC
our simple uniform spread model does not capture all of theyrofiles merge at some point. In this study, we measure
behaviors, leading to lower prediction accuracy. this stopping point for 256 cores, and we call &.%,.."
Although CRD; profiles are predicted with lower accu- As Figure 8 shows(.,,. delineates cache-miss impact. At
racy, the impact on overall prediction accuracy is minimal.CRD < C.,,., cache misses increase significantly with core
In Figure 6, the bars labeled “CRD s” report the average count, but at CRD> C.,,. cache misses do not increase
CRD accuracy for whole-program CRD profiles predictedmuch. In other words;ore count scaling degrades locality in
by combining CRD» and CRDy predictions. For all bench- parallel loops, but it only impacts cache sizes below,...
marks except LU, CRP, s accuracy is between 88% and Caches bigger tha€,,,.. are not affected by scaling.
99% (for LU, it is 70%). The average CRD g accuracy We quantifyC.,,. and the cache-miss increases caused by
for all benchmarks is 90%. These results confirm GRD shifting across the measured whole-program CRD profiles
dominates CRD. So, predicting CRD effectively leads to from Section IlI-B. This is done as follows. For each
accurate whole-program CRD profile prediction. benchmark and problem size, we derive the CMC profiles
Since CRD»> dominates, one would expect predicting for 1-256 cores €.g, like Figure 8). At a given CRD
whole-program CRD profiles directly to be the same as (andalue, we definfAM to be the ratio of cache-miss counts
hence, achieve similar accuracy compared to) predictingpetween the 256- and 1-core CMC profiles. We first compute
CRDp profiles. This is in fact the case. The last set of AM at CRD =%, well beyondC.,,.. where the CMC
bars in Figure 6, labeled “CRB...;,” report the average profiles have almost merged. We call tis\/, ¢, 4cq. Then,
CRD accuracy for direct whole-program CRD profile pre-we identify the CRD closest t(% where AM =1.5
diction. Figure 6 shows CRR...; is just slightly worse xAM,,c,4q, i.€. the tail-end of shifting where very large
than CRD>1s. On average, CRR,..; accuracy is 89%, AM transition t0 AM,,c,geq. This CRD value isCpope.
compared to 90% for CRpP, 5. Lastly, we computeA M at every CRD value between 1MB
Finally, Figure 7 reports the whole-program predictionand C.,.., recording the average and maximum values.
results from Figure 6 using the CMC error metric (note, These are the average and maximum cache-miss count
smaller values are better). Qualitatively, the CMC errorincreases below.,.., AM, and AM,,, respectively. The
and CRD accuracy results are the same. GRP and 1MB boundary focuses our analysis on LLC-sized caches.
CRDy;rect have similar CMC error. They are between 0.3%— Table Il reports results broken down by benchmark and
27% for 8 benchmarks, and are roughly 50% for LU. Onproblem size, with rows labeled “Average” showing averages

Table Il
Ceore, AMg, AMy,, AND Cipaz FOR OUR BENCHMARKS @ L2
slice
[Benchmark | S1] S2] S3] S4 I
CCOTE L2
FFT 1.1MB 2.3MB 5.5MB 16.0MB switcg directory
LU | 135.8KB | 211.8KB | 382.1KB | 755.9KB
RADIX 8.0MB 22.8MB

Figure 9. Tiled CMP. Each tile contains a core+L1 cache, arcéhe

Barnes | 555.3KB 1.9MB 4.2MB 7.2MB and directory “slice,” and an on-chip network switch.

FMM | 733.9KB 1.6MB 7.6MB 9.3MB
Ocean | 707.2KB 1.5MB 4.8MB 17.3MB

Water | 254.9KB | 628.7KB | 1/MB | 2.9MB To quantify the impact of continued problem scaling, the

KMeans | 496.1KB | 496.1KB | 496.1KB | 496.1KB . .

BlackScholes| 352.1KB | 352.2KB | 352.2KB | 368.3KB middle portion of Table Il report§’,,, .., for each benchmark

Average | 540.4KB 1.IMB 3.7MB 8.5MB and problem size. As Table Il show§,, .. increases by

Crmaz roughly 4x with each problem size increment. Table | shows
FFT1 _43MB | 14.3MB | 52.3MB | 200.3MB each problem size increment increases data structures by
LU | 785.8KB | 2.3MB | 83MB | 32.4MB . : :

RADIX | 302MB | 362MB | 602MB | 156.2MB 4x as well, soC,,,, grows linearly with problem size. In
Barnes| 2.1MB 6.9MB | 26.5MB | 105.3MB contrast, Table Il show§.,,.. increases at a sub-linear rate,
FMM | 3.9MB | 12.2MB | 42.7MB | 163.0MB roughly as the square root @,,,,. Assuming the same
Ocean| 6.4MB | 18.7MB | 63.9MB | 237.2MB .

Water | 12MB | 34MB | 11.5MB | 45.5MB rate of increase for larger problems, we see that another
KMeans | 5.0MB | 19.2MB | 76.2MB | 304.2MB 64x increase in problem size would causg,,.. to grow to
BlackScholes| 1.7MB | 6.2MB | 24.2MB | 96.2MB 64—128MB for many benchmarks. For these modestly larger

Average | 6.2MB | 13.3MB | 40.6MB | 148.9MB . o

problems, core count scaling will impact large LLCs.
AM, [AM,, ; .
EET 1 337421 42750 417551 35760 Finally, the bottom portion of Table Il report& M, and
LU - /- -/- -1 - -1 - AM,,. Results are only presented for cases whgrg.. >

Ré'?r'és - ; e /éz 5;3,37//;'; 337-2//13-2 1MB. As Table Il showsAM, varies between 1.2 and 5.3
EMM /- | 25730 22/32| 23/34 while AM,, varies between 1.8 and 10.2. On averalyé/,
Ocean -/-| 34/45| 16/21| 12/18 (AM,,) is between 2.6 (4.2) and 3.4 (5.1) across different
Water -I- /- | 18/22| 19/24 problem sizes. These results show core count scaling can

KMeans - - -/ - -/ - -/ - . . L .

BlackScholes e - -/- Z/- increase cache misses significantly for LLC sizes below
Average | 33742 | 34747 | 317/49| 26/51 C.ore- Consider scaling core count by 256x creates a 2

orders of magnitude increase in off-chip bandwidth due to
arallelism (assuming linear bandwidth increase with core
ount). Table Il shows the same 256x increase in cores can
create up to another order of magnitude in cache misses (and
Whence, total memory traffic) due to locality degradation.

across all benchmarks. The top portion of Table Il reportsfcJ
C.ore.2 As these data show(.,.. varies between 135KB
and 23MB. On average(.,.. is between 540KB and
9MB for the different problem sizes. These results sho
the impact of core count scaling for our benchmarks and V. PERFORMANCEPREDICTION

problem sizes is confined to smaller LLCs, usuati6MB. We now demonstrate the ability of CRD profile prediction
Large LLCs (> 16MB) will not experience significant cache- to accelerate multicore design evaluation. We employ our
miss increases due to core count scaling. core count prediction techniques from Section Ill to assess
Ceore is particularly small for LU, KMeans, and BlackSc- cache performance—in particular, LLC MPKI. We also incor-
holes, never exceeding 756KB. The working sets for thes@orate previous techniques for predicting problem scating
benchmarks are extremely small. For programs with suclyrther increase the acceleration advantage. In the rest of
good locality, the profile shift due to core count scaling isthjs section, we describe architectural assumptionspsssc

minimal. So, core count scaling will never impact the misshow we predict performance, and then present results.
rates of reasonably sized LLCs in these programs.

Although our C.,,. values correspond to small LLCs, A Architecture Assumptions
Table Il showsC,,.. generally increases with problem size. Our performance study assunéed CMPs[23]. A tiled
This is because problem scaling also shifts CRD profiles [1]]JCMP, illustrated in Figure 9, consists of several identical
When core count and problem size scale together, theeplicated tiles, each containing a core, a private L1 cache
shifting region associated with core count scaling wileits an L2 cache “slice,” and a switch for a 2-D on-chip point-
shift to larger CRD values due to problem scaling. to-point mesh network. Tiled CMPs are scalable [23], [24],
so they permit us to study a large design space on a single
SResults for RADIX at S1/S2 are missing because of large per-data multicore platform.

structures that causg,, . to increase significantly with core count scaling. . .
This makes a commor?% across different core counts impossible to In our study, the L2 slices across all tiles are managed

define, thus preventing'cor. calculation. as a single logically shared LLC. We assume the LLC does

Table Il LLC

SIMULATOR PARAMETERS USED IN THE EXPERIMENTS 128M_]._Capacity
Number of Tiles 2, 4, 8, 16, 32, 64, 128, 256 64M——

Core Type Single issue, In-order, CPI = 1, clock speed = 2GHz 32M A Al

IL1/DL1 32KB/32KB, 64B block, 8-way, 1 cycle ;;1 e

Total L2 Cache Size 4MB, 8MB, 16MB, 32MB, 64MB, 128MB \‘o’:" 32/128
L2 Slice 64B blocks, 32-way, 10 cycles AM=T 1L e
2-D Mesh 3 cycles per-hop, bi-directional channels, S1 e
256-bit wide links S2 24816 64 256
Memory channels latency: 200-CPU cycles, bandwidth: 5433 Problem Core Count
32GB(2-16cores) and 64GB(32-256cores) Size

not replicate or migrate cache blocks between slices. Each Figure 10. 3-D architecture-problem space.

;2(;22 2;%%'; Izlc?cl:vlr’?{‘shgrfgf%\/lg gzgu?g]falgﬁesgf;%kkr?gr\:]VQions per benchmark in this architecture-problem space, an
: Iy : . T,728 configurations across our 9 benchmarks. We simulate
are page-lnterlegved ("_V"h 8KB page size) across L2 sllcea” of them using our M5 simulator, obtaining their LLC
ac'(lz'grglind%tgst?grlw:<§Z¥E§aslligg?gfesrsl.c we permit re IicationMPKI and CRD profiles. (When computing LLC MPKI, we
at the private L1 caches. We employ)::\’ dire([:)tory-basgd MES(fxclude compulsory misses since reuse distance profiles do
’ r?ot predict them). Similar to our profile prediction study,

cache coherence protocol for L1 coherence. The protocoWe use a sub-set of the measured CRD profiles to predict

uses a distributed fuI_I-m_ap directory where each dlrect_oryLLC MPKI at all configurations, and compare against the
entry is collocated with its cache block on the home tile. .
simulated LLC MPKI to assess accuracy.

In addition, we assume the memory sub-system supports L . .
y Y bp Performance prediction is a two-step process: first we

multiple DRAM channels, each connected to a memory . :)
controller on a special “memory tile” We use 4 memory acquire/predict CRD profiles, and then we use the CRD

tiles evenly spaced on the north and south edges of the Chifrofiles to predict cache performance. The first step’s goal

Our study uses the M5 simulator to measure performanc S to obtain the 32 CRD profiles per benchmark for all

We modified M5 to model the tiled CMP described above.;gﬁeclgl;gtlz d/ “E\”rci)r?llizgufleziz ng ua;,egizawpl)?oflﬁle_cs;’eélri]ciion
Our simulator’s core model is very simple: each core ex- trategies for doing this: “No-Pred,” “C-Pred.” and “CP-

ecutes 1 instruction per cycle (in the absence of memor red”

stalls) in program order. However, the memory system ! .
) prog y Y No-Pred does not perform any profile prediction, and

model is very detailed, accurately modeling L1 access, hops

through the network, L2 slice access, and DRAM accessS TPy uses the complete set of measured CRD profiles in

We also model queuing at the on-chip network switches an&1e A plane 0{, Figurze 10 to prefqlict perforr;anﬁe. N02—Pred
memory controllers. Table Il lists the parameters used irfequires sampling 32 CRD profiles to make the 192 LLC

our simulations. As Table Il shows, we simulate processorévIPKI predictions per benchmark. o

with 2-256 cores and 4-128MB of total L2 cache (LLC). C-Pr_ed_ performs core count predlctlo_n. At each problem
In addition to performance, our M5 simulator also mea-SiZ€ Within the A" plane, C-Pred predicts the 8- to 256-

sures whole-program CRD profiles. We track CRD for the€0re CRD profiles from the 2- and 4-core profiless the

simulated interleaved memory reference stream from alfo dotted lines labeled “B” in Figure 10. We use our tech-
cores using the same approach as our PIN tool. Similar t§idues for directly predicting whole-program CRD profiles

the PIN tool, CRD is computed at a 64-byte granularity, theffom Sections IlI-A and 1I-B. C-Pred requires sampling 8

block size for both the L1 and L2 caches. CRD profiles to make the 192 LLC MPKI predictions per
To drive our simulations, we use the same benchmark?e”_Chmark' _ o _

and problem sizes from Table I, simulating the same parallel Finally, CP-Pred combines core count prediction with
regions described in Section I1I-B. (The last column of Ta-Problem size prediction. Just like C-Pred, CP-Pred predict
ble | reports the number of instructions in the paralleloegi ~ &Cross core count to acquire all CRD profiles in the “A”
studied for the M5 experiments). For benchmarks running plane. HO\{VEVGT, within the 2- and 4-corg configurations, CP-
timestep, we warmup caches in a separate timestep befofgf€d predicts the S3 and S4 CRD profiles from the S1 and
recording performance and CRD profiles. For benchmarks2 profileske., the four dots labeled “C” in Figure 10. To
running the entire parallel phase, we do not perform an)predlct across problem size, CP-Pred uses the same rederenc

explicit cache warmup. groups techniqu_e descr_ibed in Section Ill-A. But in;tead of
o diffing and shifting profiles across core count, it diffs and
B. Performance Prediction shifts across problem sized,, the original use of reference

Figure 10 illustrates the 3-D architecture-problem spacegroups [1]). CP-Pred requires sampling 4 CRD profiles to
formed by the combination of all core counts, LLC capaci-make the 192 LLC MPKI predictions per benchmark.
ties, and problem sizes in our study. There are 192 configura- Once all 32 CRD profiles within the “A” plane have been

O
2
[e0]

C-Pred
CP-Pred@7.83
No-Pred |l:8.82
No-Predfi 4.00
No-Pred @i 6.67

—
C

BlackS.

Figure 11. Percent LLC MPKI prediction error.

acquired, the second step is to predict LLC MPKI. We derive 28
the corresponding CMC profile from each CRD profile, and 40
extract cache-miss counts at 4-128MB on the CMC profile. 5301 g
This predicts the number of capacity misses. We use Qaseriig |

and Kennedy’s model [25] to predict conflict misses. This 07
model takes the CRD profile as input, and uses a binomial
distribution to predict the number of conflict misses for a
given capacity and associativity. Finally, we divide thensu

of predicted conflict and capacity misses by instructiomtou
(IC) to derive MPKI. For No-Pred and C-Pred, we use the
measured IC at the same configuration that contributed the))
CRD profile for LLC MPKI predictioni-e., we assume IC S_econd, the cache (_:onﬂlct model introduces error. In
doesn't change across either LLC capacity or core counfP@rticular, processors with large core count and small LLCs
We make the same assumption for CP-Pred, except we al&gn incur pat_holog!c gonfllcts thgt the conflict model c_annot
predict IC across problem scaling by assuming IC changeEred'Ct' We find this is Fhe dominant source of error in the
linearly with problem size at the same rate observed fronf\0-Pred results. And third, our error metric does not always
S1 to S2. (This ensures we only use measured ICs frorddress numeric instability. In some cases, LLC MPKI is

configurations where we also measured the CRD profile). N€ar 0.05. These are not eliminated by our 0.05 offset, but
are small enough to make percent error very sensitive to

minute prediction errors. This is responsible for the high
errors in RADIX. On average, though, No-Pred error is
Figure 11 reports percent errdpfedicted — measured| very low, and shows CRD profiles are capable of accurately
[measured) in our LLC MPKI predictions. When measured predicting LLC MPKI for loop-based parallel programs.
LLC MPKI is near zero, the error blows up. To prevent this, Figure 11 also shows our profile prediction techniques
we add a small offset, 0.05, to the predicted and measuregire very effective. In Figure 11, C-Pred error is only
values before computing error. Each bar in Figure 11 reportslightly worse than No-Pred. Furthermore, CP-Pred does
the average error across all predictions for a particular pr not noticeably increase error over C-Pred. Figure 11 shows
diction strategy and benchmairikg(, for 192 configurations). both techniques are able to predict LLC MPKI within
The rightmost bars report averages across all benchmarks18% of simulation for 8 out of 9 benchmarks, and within
As Figure 11 shows, No-Pred is able to predict LLC 34% for RADIX. On average, prediction error is within
MPKI within 14% of simulation on average for 8 out of 11.1%. These results confirm profile prediction has high
9 benchmarks, and within 28% for RADIX. Across all accuracy, as was shown in Section IlI-C. Another reason C-
benchmarks, prediction error is 9.7%. This is the baselind’red and CP-Pred perform similarly to No-Pred is because
CRD profile error (e. without profile prediction), and errors often cancel. While the cache conflict model usually
reflects 3 error sources. First, M5 profiles include timingunder-predicts conflict misses, CRD profile prediction (for
effects (PIN profiles do not). Since LLC capacity scaling both core count and problem scaling) usually over-predicts
alters thread timing, CRD profiles may not accurately priedic capacity misses. This also explains why C-Pred and CP-Pred
LLC sizes different from the ones used to measure themsometimes achieve lower error than No-Pred in Figure 11.
We compared CRD profiles across different LLC sizes and Figure 12 reports LLC MPKI prediction error, just like
found they are in fact almost identical. This is again due toFigure 11, but only for the S4 problem and 4-16MB LLCs
symmetric threads. Although symmetric threads speedup diit still includes 2—256 cores). Most of these configuragion
slow down with LLC scaling, they do so at tleame rate have LLC size< C,,,..; hence, Figure 12 studies prediction
thus preserving memory interleaving and CRD profiles. Soerror in the region of CRD profile shift. (LU, KMeans, and
sensitivity to LLC scaling is not a major source of error. BlackScholes are omitted because th€j,,.. are always

A
3

<
«
el
b
o
o
o
=

FFT

Figure 12. LLC MPKI prediction error for S4 and 4-16MB LLCs.

C. Performance Results

< . . .
60 < small-scale machines from which CRD profiles of scaled

[e2]
,328 - ~ @ configurations are derived to enable scaling analysis.
X S © T . . .
5301~ &8-2 o 569 Schuff et al [15] use sampling and parallelization tech-
E2070-G- g o888 ey niques to accelerate CRD profiling. Our work is orthogonal
104G~ -0 -orr ; .
oilm m 5= o= to these techniques. We reduce the number of needed profiles
sls|s slsgls whereas Schufet al reduce the time per profile run. It is
OOl SRR important to note that while Schuff’s approach is fast, ilt st
CP-Pred incurs significant overhead: 80X slowdown on average and

up to 496X slowdown compared to native execution [15].
Figure 13. Prediction error for S4 and 4-16MB LLCs by corertou And this is for profiling only 4 threads; overheads will
certainly be higher for profiling 100s of threads. Hence,
below our smallest LLC). As Figure 12 shows, predictioneven with profiling acceleration, it is still very difficulbt
error in the shifting region is comparable to the entire spac exhaustively explore LCMP design spaces that can reach
Error gets worse for FFT and Barnes. But it improves1000s of configurations.
in RADIX, especially for No-Pred and C-Pred because Another work by Schuff [14] investigates the accuracy
Figure 12 does not include RADIX'’s poorly predicted cases.of RD analysis for multicore processors. In addition to pre-
Overall, C-Pred has the same accuracy as No-Pred, 9% erraticting shared cache performance, they also predict grivat
showing our core count prediction techniques are effectiveaches which we do not address. Betgal [26] present
in the shifting region. CP-Pred is worse—20.1% error—due t@ statistical model for computing miss rate from a CRD
more significant over-prediction of shifting. profile, and evaluate its accuracy. Both Schuff and Berg
Finally, Figure 13 reports results for the same problem angredict performance at different cache sizes, but theyaann
LLC sizes in Figure 12 broken down by strategy and corepredict configurations with more cores or larger problems
count. Like Figure 12, Figure 13 shows C-Pred is similarbeyond what was profiled, which is the focus of our work.
to No-Pred, while CP-Pred is worse. More importantly, Chandraet al [27] and Suhet al [28] have also de-
Figure 13 also shows prediction error increases with coreeloped locality models for multicore processors, but they
count, reaching 19% for No-Pred, 20% for C-Pred, and 47%ocus on multiprogrammed workloads whereas we focus on
for CP-Pred. This illustrates the cache conflict model srror multithreaded programs. RD analysis has also been used to
mentioned earlier which get worse with core count. Evenanalyze uniprocessor caches [1], [22], [29]. As discussed
so, Figure 13 shows C-Pred’s error is still reasonable wheearlier, our work borrows reference groups from Zhatg
predicting large core counts. al [1] to predict profile shift across core count scaling.
Overall, we find our prediction techniques for core count Finally, profile prediction is related to machine learning
scaling can accelerate cache analysis without sacrificingpr design exploration [30], [31]. The latter tries to model
accuracy. When combined with problem scaling predictionhow general features impact performance, whereas we model
analysis effort is further reduced, though error increasegow memory features impact CRD profiles. Our approach
when predicting large core counts. learns more per sample (a CRD profile), reducing the num-
ber of needed samples, but we can only optimize memory.

ML learns very little per sample (an IPC value), but is very

Several researchers have investigated multicore RD analeneral and can optimize any architecture feature.
ysis. Ding and Chilimbi [12] and Jiangt al [13] present

techniques to construct CRD profiles from per-thread RD

profiles by analyzing memory traces. These techniques are
general in that they can handle non-symmetric threads. But This paper shows CRD profiles for loop-based parallel

they are very complex because they consider all possiblprograms change predictably with core count scaling due to
memory interleavings, limiting their use to small machinethread symmetry. As core count scales, CRD profiles shift
and problem sizes. Our work shows combinatorial anal-coherently to larger CRD values. Using simple techniques,
ysis is unnecessary for loop-based parallel programs. Fadhe CRD movement can be predicted with high accuracy, en-
these programs, only memory references within parallehbling practical RD-based scaling analysis for LCMP-sized

regions interleave, reducing the number of cases to analyzenachines. We also show that because shifting is confined to
Furthermore, within parallel regions, dilation, overlgmd smaller CRD values, core count scaling only impacts LLCs

intercepts exhibit simple behavior, allowing simple predi below theC,,,.. parameter. Lastly, to demonstrate benefits,

tion techniques to achieve good accuracy. We exploit theswe use CRD profiles to predict LLC performance across an
properties to develop practical techniques that can handleCMP design space. Our techniques can predict LLC MPKI

real machines and problem sizes. Another difference is [12}to within 11.1% of simulation across 1,728 configurations

[13] require at-scale profiling. In contrast, we only profile using only 36 measured CRD profiles.

V1. RELATED WORK

VIl. CONCLUSION

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewerg16]
for their helpful comments, Collin McCurdy for his PIN tool,
and Abdel-Hameed Badawy for insightful discussion.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Y. Zhong, S. G. Dropsho, and C. Ding, “Miss Rate Pre-
diction across All Program Inputs,” ifProceedings of the
12th International Conference on Parallel Architectures and
Compilation Technique003.

J. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP
Throughput with Mediocre Cores,” ifProceedings of the [
14th International Conference on Parallel Architectures and
Compilation Technique005.

L. Hsu, R. lyer, S. Makineni, S. Reinhardt, and D. Newell,

[1

7]

(18]

19]

“Exploring the Cache Design Space for Large Scale CMPs,”[ZO]

ACM SIGARCH Computer Architecture Newsl. 33, 2005.

J. Huh, S. W. Keckler, and D. Burger, “Exploring the Design
Space of Future CMPs,” iRroceedings of the 2001 Interna-
tional Conference on Parallel Architectures and Compilation
Techniques2001.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,

Area, and Timing Modeling Framework for Multicore and 2

Manycore Architectures,” ifProceedings of the International
Symposium on Microarchitectyr@009.
Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP

(21]

2]

Design Space Exploration Subject to Physical Constraints,”[zs]

in Proceedings of the 12th International Symposium on High
Performance Computer Architectyur2006.
J. Li and J. F. Martinez, “Power-Performance Implications

of Thread-level Parallelism on Chip Multiprocessors,” in 42

Proceedings of the International Symposium on Performanc
Analysis of Systems and Softwa2€05.
B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and Y. Soli-

hin, “Scaling the Bandwidth Wall: Challenges in and Avenues 2

for CMP Scaling,” inProceedings of the 36th International
Symposium on Computer Architectug909.

L. Zhao, R. lyer, S. Makineni, J. Moses, R. lllikkal, and 2

D. Newell, “Performance, Area and Bandwidth Implications
on Large-Scale CMP Cache Design,” roceedings of
the Workshop on Chip Multiprocessor Memory Systems and
Interconnect 2007. [
A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina,
C.-C. Miao, C. Ramey, and D. Wentzlaff, “Tile Processor:
Embedded Multicore for Networking and Multimedia,” in

4]

5]

6]

27]

Proceedings of the Symposium on High Performance Chips[28]

2007.

Y. Hoskote, S. Vangal, N. Borkar, and S. Borkar, “Teraflop
Prototype Processor with 80 Cores,” Rroceedings of the
Symposium on High Performance Chig907.

C. Ding and T. Chilimbi, “A Composable Model for Analyz-
ing Locality of Multi-threaded Programs,” Technical Report
MSR-TR-2009-107, Microsoft Research, 2009.

Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is Reuse
Distance Applicable to Data Locality Analysis on Chip Multi-
processors?,” ifProceeding of Compiler Constructip@010.

(29]

(30]

D. L. Schuff, B. S. Parsons, and J. S. Pai, “Multicore-Aware [31]

Reuse Distance Analysis,” Technical Report TR-ECE-09-08,
Purdue University, 2009.

D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating Multi-
core Reuse Distance Analysis with Sampling and Paralleliza-

tion,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniqu&910.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” inProceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation 2005.

N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt, “The M5 Simulator: Modeling Networked Sys-
tems,” IEEE Micro, vol. 26, no. 4, 2006.

C. McCurdy and C. Fischer, “Using pin as a memory
reference generator for multiprocessor simulatioACM
SIGARCH Computer Architecture Newsl. 33, 2005.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 Programs: Characterization and Method-
ological Considerations,” ifProceedings of the 22nd Inter-
national Symposium on Computer Architectut895.

R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary, “MineBench: A Benchmark Suite for
Data Mining Workloads,” inProceedings of the International
Symposium on Workload Characterizati@®06.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniqu@808.

C. Ding and Y. Zhong, “Predicting whole-program locality
through reuse distance analysis,”"®Pmoceedings of the ACM
SIGPLAN 2003 Conference on Programming Language De-
sign and Implementatior2003.

M. Zhang and K. Asanovic, “Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multipro-
cessors,” irProceedings of the 32nd International Symposium
on Computer Architecture2005.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive NUCA: Near-Optimal Block Placement and Repli-
cation in Distributed Caches,” ifProceedings of the 36th
International Symposium on Computer Architecti2809.

A. Qasem and K. Kennedy, “Evaluating a model for cache
conflict miss prediction,” Technical Report CS-TR05-457,
Rice University, 2005.

E. Berg, H. Zeffer, and E. Hagersten, “A Statistical Multi-
processor Cache Model,” iRroceedings of the International
Symposium on Performance Analysis of Systems and Soft-
ware, 2006.

D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting
Inter-Thread Cache Contention on a Chip Multi-Processor
Architecture,” inProceedings of the International Symposium
on High-Performance Computer Architectu2005.

G. E. Suh, S. Devadas, and L. Rudolph, “Analytical Cache
Models with Applications to Cache Partitioning,” Rroceed-
ings of International Conference on Supercomputi2g0l.

Y. Zhong, X. Shen, and C. Ding, “Program locality analysis
using reuse distanceACM Transactions on Programming
Languages and Systemsl. 31, no. 6, 2009.

E. Ipek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz, “Efficiently exploring architectural design spaces
via predictive modeling,” inProceedings of Architectural
Support for Programming Languages and Operating Systems
2006.

B. C. Lee and D. M. Brooks, “Accurate and efficient re-
gression modeling for microarchitectural performance and
power prediction,” inProceedings of Architectural Support
for Programming Languages and Operating Syste?@96.

