
Appears inProc. of the 20th Int’l Conf. on Parallel Architectures and Compilation Techniques.
Galveston Island, TX. October 2011.

Coherent Profiles: Enabling Efficient Reuse Distance Analysis
of Multicore Scaling for Loop-based Parallel Programs

Meng-Ju Wu and Donald Yeung
Department of Electrical and Computer Engineering

University of Maryland at College Park
{mjwu,yeung}@umd.edu

Abstract—Reuse distance (RD) analysis is a powerful mem-
ory analysis tool that can potentially help architects study
multicore processor scaling. One key obstacle though is mul-
ticore RD analysis requires measuringconcurrent reuse dis-
tance (CRD) profilesacross thread-interleaved memory ref-
erence streams. Sensitivity to memory interleaving makes
CRD profiles architecture dependent, preventing them from
analyzing different processor configurations. For loop-based
parallel programs, CRD profiles shift coherentlyto larger CRD
values with core count scaling because interleaving threads
are symmetric. Simple techniques can predict such shifting,
making the analysis of numerous multicore configurations from
a small set of CRD profiles feasible. Given the ubiquity and
scalability of loop-level parallelism, such techniques will be
extremely valuable for studying future large multicore designs.

This paper investigates using RD analysis to efficiently
analyze multicore cache performance for loop-based parallel
programs, making several contributions. First, we provide in-
depth analysis on how CRD profiles change with core count
scaling. Second, we develop techniques to predict CRD profile
scaling, in particular employing reference groups [1] to predict
coherent shift, and evaluate prediction accuracy. Third, we
show core count scaling only degrades performance for last-
level caches (LLCs) below 16MB for our benchmarks and
problem sizes, increasing to 64–128MB if problem size scales by
64x. Finally, we apply CRD profiles to analyze multicore cache
performance. When combined with existing problem scaling
prediction, our techniques can predict LLC MPKI to within
11.1% of simulation across 1,728 configurations using only 36
measured CRD profiles.

I. I NTRODUCTION

Multicore processor performance depends in large part
on how well programs utilize on-chip cache to mitigate off-
chip accesses. Many studies have investigated this multicore
memory bottleneck [2], [3], [4], [5], [6], [7], [8], [9]. These
studies simulate processors with varyingcore count and
cache capacityto quantify how different designs impact
memory performance. A significant problem is the large
number of configurations that must be explored due to the

This research was supported in part by the Defense Advanced Research
Projects Agency (DARPA) under grant #HR0011-10-9-0009. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsement,
either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government.

multi-dimensional nature of the design space. Worse yet, this
design space is becoming more complex as processors scale.

Today, 4–8 state-of-the-art cores or 10s of smaller
cores [10], [11] along with 10s of MBs of cache can fit
on a single die. Since Moore’s law is expected to continue
at historic rates for the foreseeable future, processors with
100s of cores and 100+ MB of cache–i.e. large-scale chip
multiprocessors (LCMPs) [3], [9]–are conceivable after only
2 or 3 generations. As processors scale to the LCMP level,
evaluating memory performance via simulation alone will
become extremely challenging.

A powerful tool that can help address this problem isreuse
distance (RD) analysis. RD analysis measures a program’s
memory reuse distance histogram, orRD profile, capturing
the locality responsible for cache performance. For sequen-
tial programs, RD profiles arearchitecture independent.
They can be acquired on one machine, and then used to pre-
dict different cache sizes without additional program runs.
This saves time by reducing the number of cache designs
that need to be run or simulated. RD analysis has also been
applied to parallel programs on multicore processors [12],
[13], [14], [15]. For parallel programs, not only can RD
analysis predict performance across cache scaling, it can
potentially predict performance across core count scalingas
well [12], [13]. This can provide even greater leverage to
save time when evaluating cache designs.

Compared to uniprocessors, RD analysis for multicore
processors is more complex. This is because locality in mul-
tithreaded programs depends not only on per-thread reuse,
but also on how simultaneous threads’ memory references
interleave. So, analyzing multicore workloads requires ex-
tending RD analysis to account for memory interleaving. For
example,concurrent reuse distance (CRD) profilesquantify
reuse globally across thread-interleaved memory reference
streams [12], [13], [14], [15].

A major problem is memory interleaving–and hence tech-
niques like CRD profiles–arearchitecture dependent. In par-
ticular, scaling core count increases the number of memory
streams that interleave. So, CRD profiles are not valid for
machine sizes that differ from what was profiled. Even
scaling cache capacity can alter relative thread speed and
memory interleaving. So, strictly speaking, CRD profiles are

not even valid across different cache sizes at thesamecore
count. Such architecture dependences prevent a single CRD
profile from analyzing different multicore configurations,
defeating the predictive benefits of RD analysis.

Recently, researchers have investigated constructing CRD
profiles from per-thread RD profiles [12], [13]. By compos-
ing an increasing number of threads, CRD profiles for scaled
CPUs can be derived and used to predict cache performance.
Unfortunately, existing techniques are complex, employing
trace-based analyses (some with exponential time complex-
ity) to account for the combinatorially large number of
ways that threads can interleave and interfere. Moreover, the
techniques require at-scale profiling and traces. Hence, they
are impractical for even moderately-sized machine/problem
sizes, and completely out of the question for LCMPs.

In this paper, we show the complexity of analyzing
memory interleaving depends in large part on how programs
are parallelized. Parallel programs generally express either
task-level or loop-level parallelism. In task-level parallel
programs, threads often execute dissimilar code in an unco-
ordinated fashion, giving rise to irregular memory interleav-
ings and complex thread interference. In loop-level parallel
programs, however, simultaneous threads execute similar
code–i.e., from the same parallel loop–so they exhibit almost
identical locality characteristics. Suchsymmetric threads
produce regular memory interleavings with less complex
thread interference. This can be exploited to greatly simplify
CRD profile prediction, and enable practical RD analysis for
LCMP-scale systems.

While analysis techniques borne out of this observation
will be specific to loop-level parallel programs, such work-
loads are pervasive. For example, all data parallel codes–
e.g., scientific, media, and bioinformatics programs–derive
all of their parallelism from loops. Programs written in
OpenMP, one of the most popular parallel environments,
consist almost entirely of parallel loops. In addition, loop-
level parallel programs are also highly scalable. Most can
provide large amounts of parallelism simply by increasing
problem size, so they are a good match for LCMPs. For
these reasons, RD analysis for loop-level parallel programs
will be extremely valuable to future multicore designers.

Our work makes the following contributions. First, we
provide an in-depth analysis on how CRD profiles from
loop-level parallel programs change with core count scaling.
We find that as core count increases, CRD profilesshift
coherently–i.e., in a shape-preserving fashion–to larger CRD
values due to CRD dilation for references to private data.
Shifting slows down and eventually stops at large CRD
due to overlapping references to shared data. Inter-thread
shared references also cause intercepts that tend to spread
and distort CRD profiles, but coherent shift is by far the
dominant behavior.

Second, we develop techniques to predict the CRD profile
movement. We employ reference groups [1], a technique

previously used to predict RD profiles across problem scal-
ing, to predict coherent shifting. We also propose uniformly
distributing the portion of CRD profiles associated with
shared references to predict spreading. To evaluate our
techniques, we use the Intel PIN tool [16] to acquire CRD
profiles across 9 benchmarks running 4 different problem
sizes on 2–256 cores. We find our techniques can predict
measured CRD profiles with 90% accuracy.

Third, we study the performance impact of core count
scaling. Because CRD profile shifting stops beyond a certain
point, core count scaling only impacts cache performance
below the stopping point, which we callCcore. We measured
Ccore across our benchmarks and problem sizes, and found
it is usually < 16MB. But if problem size scales by 64x,
Ccore increases to 64–128MB.

Finally, we demonstrate our techniques’ ability to acceler-
ate design analysis. Using the M5 simulator [17], we model
a tiled CMP, and simulate our benchmarks on processors
with 2–256 cores and 4–128MB of last-level cache (LLC).
In total, we simulate 1,728 configurations. Our core count
prediction techniques can predict the LLC MPKI (misses
per kilo-instructions) for all configurations within 11% of
simulation using 72 measured CRD profiles. When com-
bined with existing problem scaling prediction techniques,
we can predict all configurations with similar accuracy using
36 measured CRD profiles.

The rest of this paper is organized as follows. Sec-
tion II discusses CRD profiles and how they change with
core count scaling. Then, Section III develops techniques
to predict the scaling changes. Next, Section IV studies
the performance implications of scaling. Lastly, Section V
demonstrates our techniques’ ability to accelerate cache
evaluation. Sections VI and VII end with related work and
conclusions.

II. CONCURRENTREUSEDISTANCE

Reuse distance measures the number of unique memory
references performed between two references to the same
data block. RD profiles–i.e., the histogram of RD values
for all references in a sequential program–are useful for
analyzing uniprocessor cache performance. Because a cache
of capacityC can satisfy references with RD< C (assuming
LRU), the number of cache misses is the sum of all reference
counts in an RD profile above the RD value for capacityC.

This paper studies RD analysis for shared caches in
multicore processors. Figure 1 shows a typical multicore
cache hierarchy with multiple levels of cache on chip. Often,
caches near the cores are private while caches near the off-
chip interface are shared. The LLC (the focus of our work),
is usually shared byall cores when it is a shared cache.

RD analysis can be extended for shared LLCs by
computing reuse distance across the interleaved memory
streams from all cores–i.e., the concurrent reuse distance
(CRD) [13]. Figure 2 illustrates CRD for a sequence of

Figure 1. Multicore cache hierarchy.

Figure 2. Two interleaved memory reference streams, illustrating dilation,
overlap, and intercept among inter-thread memory references.

interleaved memory references from two cores. In Figure 2,
core 1 touches blocks A–C, and then re-references block
A, while core 2 touches blocks C–F. Core 1’s reuse of A
has RD = 2, but its CRD = 4. In this case, CRD> RD
because some of core 2’s interleaving references (D andE)
are distinct from core 1’s references, causingCRD dilation.

In many multithreaded programs, threads share data,
which can offset dilation in two ways. First, it can introduce
overlapping references. For example, in Figure 2, while core
2’s reference toC interleaves with core 1’s reuse of A,
this does not increaseA’s CRD because core 1 already
referencesC in the reuse interval. Second, data sharing can
also introduceintercepts. For example, if core 2 references
A instead ofD at time 5, then core 1’s reuse ofA has CRD
= 1, so CRD actually becomes less than RD.

In the rest of this section, we study how dilation, overlap,
and intercepts in loop-level parallel programs change with
core count scaling, and show their impact on CRD profiles.

A. Profiling

To facilitate our study, we acquire CRD profiles using
the Intel PIN tool. We maintain LRU stacks of memory
blocks for each thread and for all threads in a program. (We
assume 64-byte memory blocks). When a thread performs a
data reference, PIN computes the memory block’s depth in
the per-thread and global LRU stacks. The former updates
a per-thread RD profile, while the latter updates a CRD
profile. Then, the referenced blocks are moved to the MRU
stack position. Our PIN tool follows McCurdy and Fischer’s
method [18] and performs functional execution only, context
switching between threads after every memory reference.
This tends to interleave threads’ memory references uni-
formly in time at the global LRU stack.

Because dilation, overlap, and intercepts occur within
individual parallel loops, we record profiles on a per-loop
basis. In our benchmarks, parallel loops usually begin and

end at barriers. Our PIN tool records profiles in between
every pair of barrier calls–i.e., per parallel region.1 Multiple
loops can occur within a single parallel region so this does
not isolate all parallel loops, but it is sufficient for our study.

Within parallel regions, we acquire CRD profiles for
references to mostly private versus shared data separately.
The former, which we callprivate CRD profiles(CRDP),
exhibit very few intercepts, so they show the combined
effects of dilation and overlap. The latter, which we call
shared CRD profiles(CRDS), contain frequent intercepts,
so they show intercept effects. We employ a single global
LRU stack for computing CRDP and CRDS . To acquire
these profiles, we record each memory block’s CRD values
separately2 as well as the number of times the block is
referenced by each core. After a parallel region completes,
we determine each block’s sharing status: if a single core
is responsible for 90% or more of a block’s references, the
block is private; otherwise, it is shared. We then accumulate
all memory blocks’ CRD counts into either the CRDP or
CRDS profiles based on their observed sharing.

Finally, we quantify overlap in CRDP profiles. We main-
tain a second global LRU stack in which we artificially
remove all overlapping references. This is done by ap-
pending each thread’s ID to the address of their executed
memory references when calculating reuse distance (tracking
private vs shared memory blocks still uses the unmodified
addresses). Then, we compute CRDP profiles from the
second global LRU stack exactly as described above. We
call theseprivate no-overlap CRD profiles(CRDPN). In
CRDPN profiles, inter-thread references are always unique,
so CRD never contracts. Comparing CRDPN and CRDP
profiles shows the impact of overlapping references.

B. Scaling

Figures 3 and 4 show how core count scaling affects CRD
profiles using FFT from SPLASH2 [19] as an example. CRD
profiles are presented for the most important parallel region
in FFT. Each profile plots reference count (Y-axis) versus
CRD (X-axis). CRD values are multiplied by the block size,
64 bytes, so the X-axis reports distance as capacity. For
each profile, reference counts from multiple adjacent CRD
values are summed into a single CRD bin, and plotted as
a single Y value. For capacities 0–128KB, bin size grows
logarithmically; beyond 128KB, all bins are 128KB each.

1) Dilation and Overlap:Figure 3A plots FFT’s CRDPN

profile for a 4-core execution (labeled “CRDPN4”) along
with the summation of per-thread RD profiles of the 4
threads (labeled “RD4”). These two profiles show the di-
lation effect without overlap at 4 cores. From Figure 3A,
we can see CRDPN4 shifts RD4 to larger CRD values.
The dilation is by exactly a factor 4x. More importantly,

1We instrument PIN to recognize each program’s barrier function.
2Individual memory blocks tend to exhibit a small number of distinct

CRD values, so this bookkeeping does not increase storage appreciably.

Figure 3. FFT’s CRDPN and per-thread RD profiles for 4 (A) and 16
(C) cores; CRDP profiles for 4 and 16 cores (B).

the CRDPN4 profile maintains the shape of the RD4 profile
across the shift.

Per-thread RD dilation is shape preserving because all
interleaving threads are from the same parallel loop with
very similar locality. For a particular intra-thread reuseat
distance RD, the other 3 threads tend to interleave RD
unique memory blocks each (due to thread symmetry), so
CRD≈ 4×RD. Consequently, all memory references at all
per-thread RD values shift together such that CRDPN4 is a
coherent–i.e., distortion-free–scaling of RD4.

Overlap offsets dilation, reducing its shift. To illustrate,
Figure 3B plots FFT’s CRDP profile (labeled “CRDP4”).
This shows the combined impact of dilation and overlap at
4 cores. CRDP4 and CRDPN4 are almost identical at small
CRD, but CRDP4 exhibits less shift at large CRD due to the
overlapping references. In our benchmarks, overlap affects
mostly larger CRD because data sharing tends to occur
across distant loop iterations. So, overlapping references
appear in large reuse windows, but rarely in small reuse
windows. More importantly, when it does occur, overlap
introduces some distortion but the impact is minimal. So,
CRDP4 is still a coherent scaling of RD4.

Because dilation and overlap induce coherent per-thread
RD shift, across different core counts, CRD profiles tend
to shift coherently as well. To illustrate, Figure 3B plots
the CRDP profile for a 16-core FFT (labeled “CRDP16”),
and Figure 3C plots the corresponding RD16 and CRDPN16

profiles. As in the 4-core case, CRDP16 coherently scales

Figure 4. FFT’s CRDS profiles for 4 and 16 cores.

RD16, especially at small CRD where overlap rarely occurs.
Notice, RD16 and RD4 exhibit the same shape. This is
because threads on 16 and 4 cores execute the same loop
iterations, so they have similar locality. Hence, CRDP16 is
not only a coherent shift of RD16, it is also a coherent shift
of RD4 and CRDP4. This time, however, scaling is by a
factor 16x. As a result, the net effect is CRDP16 coherently
scales CRDP4 by a factor 4x across the smaller CRD values.

At larger CRD values, shifting slows down and eventually
stops. Although RD16 and RD4 exhibit the same shape,
RD16 ends earlier because individual threads execute fewer
loop iterations, eliminating distant reuses. This truncation,
along with the overlapping references at large CRD, almost
perfectly cancel the additional 4x dilation. So in Figure 3B,
CRDP16 and CRDP4 eventually merge, and end at about
the same CRD value. This makes sense: because core count
scaling does not change the amount of global data, the
maximum CRD is roughly the same.

In summary, core count scaling causes the CRDP profile
of loop-based parallel programs to shift coherently by the
scaling factor at small CRD values. Shifting slows down,
and eventually stops at large CRD values. While our detailed
analysis is only for FFT, we find this behavior is pervasive
across all the benchmarks and loops we studied (see Table I).

2) Intercepts: Figure 4 plots FFT’s CRDS profiles at 4
and 16 cores (labeled “CRDS4” and “CRDS16”). These show
how intercepts change with core count scaling. Figure 4
highlights two behaviors. First, at small CRD (< 128KB),
core count scaling induces a coherent shift of CRDS4

by a factor 4x, similar to CRDP . As mentioned earlier,
sharing tends to occur across distant loop iterations. So, like
overlap, intercepts rarely appear within small reuse windows.
Without intercepts, CRDS scales like CRDP .

And second, at larger CRD (> 128KB), core count scaling
induces spreading. The spreading stretches CRDS4 towards
both smaller and larger CRD values. In this portion of the
CRDS profile, intercepts occur frequently and change CRD.
By how much depends onwhere intercepts appear within
intra-thread reuse windows. For example, Figure 2 shows an
intercept bisecting thread 1’s reuse, making CRD = 1. But if
the intercept occurs at time 6, CRD = 0, and if the intercept
occurs at time 2, CRD = 4. In general, intercepts spread
references with per-thread reuse at distance RD between 0

Figure 5. Detecting alignment and shifting using reference groups.

andP × RD, whereP is the core count. Although not so
for Figure 4, intercepts often introduce significant distortion.

Notice the CRDS profile contains fewer memory refer-
ences than the CRDP profile. In Figure 4, the CRDS profile
only accounts for 1% of the parallel region’s references
(compared to Figure 3). While the exact percentage is appli-
cation dependent, we find CRDP profiles always dominate.

III. PROFILE PREDICTION

This section studies techniques to predict CRD profiles
across core count scaling. We describe our techniques,
discuss evaluation methodology, and then present results.

A. Prediction Techniques

Section II-B shows CRDP and CRDS profiles change
differently across core count scaling, so we predict them sep-
arately. Based on our insights, we employ two techniques–
one for coherent shift and another for spread.

1) Coherent Shift:As shown in Section II-B, CRDP (and
to some extent, CRDS) profiles from parallel loops exhibit
coherent shift. Coincidentally, Zhonget al [1] found RD
profiles for sequential programs also exhibit similar shifting
due to problem scaling, and proposedreference groupsto
predict the shift. We use reference groups to predict CRDP

and CRDS profiles. Figure 5 illustrates the technique.
Samples of profiles (either CRDP or CRDS) are acquired

at 2 and 4 cores. These sampled profiles are divided into
200,000 groups along their CRD axis, each containing
an equal fraction (0.0005%) of the profile’s references.
Reference groups across sampled profiles arealigned via
association: theith group in the 2-core sample is aligned
to the ith group in the 4-core sample. Aligned reference
groups “correspond” to each other across the shift and are
assumed to shift together (i.e., coherently), maintaining a
fixed shift rate dependence on scaling. This dependence is
at least constant (no shift with core count), and at most linear
shift with core count. In addition, 3 intermediate shift rates
are allowed: cube root, square root, and cube-root squared.
These different shift rates support variable shift (e.g., in
CRDP profiles).

The shift between pairs of reference groups in the sampled
profiles is measured and compared against each allowed
shift rate. The one with the closest match is assigned to

the reference group. A prediction is made by shifting each
reference group by its shift rate and desired core count
scaling factor. The prediction from the CRDP samples is
the predicted CRDP profile. The prediction from the CRDS
samples, which we call CRDSshift, is combined with spread
prediction below to derive predicted CRDS profiles.

2) Spread: Section II-B shows intercepts spread CRDS

profiles, with individual reuses moving to CRD values
between 0 andP × RD. As we will see later, the actual
distribution within this range is application dependent. We
make the simplifying assumption that references are spread
uniformly across the range. To predict spread, we sample
the CRDS profile at 4 cores (the same sample used in
shift prediction), and uniformly distribute the reference
counts (CRDS 4core[k] × p[k]) at each CRD between 0
and k × core count

4
, where k is a particular CRD value,

andp = k
Cmax

(Cmax is the CRD profile’s maximum CRD
value). We call this prediction CRDSspread. Then, we predict
the CRDS profile as follows:

CRDS [k] = (1− p[k])CRDSshift[k] + CRDSspread[k]

This predicts CRDS by averaging CRDSshift and
CRDSspread, weighting the former more heavily at small
CRD (where intercepts happen rarely) and the latter more
heavily at large CRD (where intercepts happen often).

B. Prediction Methodology

We use PIN to acquire the CRD profiles for our study.
In particular, we acquire the per-parallel region CRDP and
CRDS profiles, as described in Section II-A, for 2- and 4-
core executions. During profiling, we accumulate profiles for
different dynamic instances of the same static parallel region
into a single pair of CRDP and CRDS profiles. Then, we
use the techniques from Section III-A to predict the CRDP

and CRDS profiles for 8–256 cores, in powers of 2, from
the 2- and 4-core samples. At each core count, we sum all
predicted per-parallel region CRDP and CRDS profiles to
form a single prediction for the whole-program CRD profile.

As discussed in Section II-B, CRDP profiles dominate
CRDS profiles. This implies predicting coherent shift alone
may be sufficient in many cases. In addition to predict-
ing CRDP and CRDS profiles separately, we also employ
whole-program CRD profile prediction. We use PIN to
acquire the whole program CRD profiles at 2 and 4 cores.
Then, we use reference groups to predict the whole-program
profiles for 8–256 cores directly from the sampled whole-
program profiles. The advantage of this approach is it doesn’t
require profiling individual parallel regions.

Our study employs 9 benchmarks, each running 4 problem
sizes. Table I lists the benchmarks: FFT, LU, RADIX,
Barnes, FMM, Ocean, and Water from the SPLASH2
suite [19], KMeans from MineBench [20], and BlackScholes
from PARSEC [21]. The2nd column of Table I specifies the
4 problem sizes, S1–S4. For each benchmark and problem

Table I
PARALLEL BENCHMARKS USED IN OUR STUDY.

Benchmark Problem Sizes Insts Profiled(M) (PIN) Insts Profiled(M) (M5)
(S1/S2/S3/S4) (S1/S2/S3/S4) (S1/S2/S3/S4)

FFT 216/218/220/222 elements 29/129/560/2,420 32/139/605/2,610
LU 2562/5122/10242/20482 elements 43/344/2,752/22,007 72/577/4,625/37,027
RADIX 217/219/221/223 keys, radix=2048 23/93/422/1,687 23/90/433/1,729
Barnes 213/215/217/219 particles 214/1,015/4,438/19,145 614/2,909/12,798/55,233
FMM 213/215/217/219 particles 235/1,006/4,109/16,570 217/931/3,793/15,305
Ocean 1302/2582/5142/10262 grid 30/107/420/1,636 36/126/494/1,925
Water 103/163/253/403 molecules 43/143/553/2,099 54/174/642/2,315
KMeans 216/218/220/222 objects, 18 features 186/742/2,967/11,874 246/985/3,939/15,748
BlackScholes 216/218/220/222 options 60/242/967/3,867 94/376/1,506/6,023

Figure 6. CRD accuracy of predicted CRDP and CRDS profiles, and indirectly and directly predicted whole-program CRD profiles.

size, we predict the whole-program CRD profiles at 8–256
cores (either indirectly by predicting CRDP and CRDS
profiles, or directly), yielding 24 predicted profiles per
benchmark. Using PIN, we also acquire the actual whole-
program CRD profiles corresponding to these 24 predictions,
and compare the measured and predicted profiles.

Profile comparisons use two metrics,CRD accuracyand
CMC error. CRD accuracy is1 − E

2
, whereE is the sum

of the normalized absolute differences between every pair
of CRD values from a predicted and measured CRD profile.
(E can be at most 200%, so CRD accuracy is between 0–
100%). CRD accuracy is a similarity metric used in previous
work [13], [22]. CMC (cache-miss count) error is computed
from CMC profiles which present the number of cache
misses predicted by a CRD profile at each of its CRD
values (i.e., CMC[i] =

∑N−1

j=i CRD[j], whereN is the
total number of bins). We compute CMC error by averaging
the error between pairs of CRD values from the first half of
predicted and measured CMC profiles:

CMC error =
2

N

N

2∑

k=0

|CMCpred[k]− CMCmeas[k]|

CMCmeas[k]

For CRD values,k, in which both CMCpred[k] and
CMCmeas[k] are < 20,000, we assume the error is 0.
Enormous error can occur at such CRD values, but they
are inconsequential due to the small cache miss counts. (In
our benchmarks, the removed CRD values account for less
than 0.5% of the benchmarks’ total memory references).

CMC error reflects LLC performance. Because CRD
accuracy is an absolute metric, it more heavily weights

error at the first few CRD values where reference counts
are enormous but which occur well below LLC capacities.
Because CMC error is an average metric, it equally weights
error across the first half of CMC profiles which usually
extend well beyond LLC capacities.

Finally, our study ignores the benchmarks’ initialization
phases which are sequential; we only acquire and predict
CRD profiles in the benchmarks’ parallel phases. The third
column of Table I reports the number of instructions in
the parallel phases studied. For FFT, LU, and RADIX,
these regions are the entire parallel phase; for the other
benchmarks, these regions are 1 timestep of the parallel
phase.

C. Accuracy Results

Figure 6 presents our CRD profile prediction results.
In Figure 6, the “CRDP ” (“CRDS”) bars show results
for predicting CRDP (CRDS) profiles separately. For each
benchmark, problem size, and core count, we sum all
predicted per-parallel region CRDP (CRDS) profiles into a
single CRDP (CRDS) profile. Then, we compare this against
the measured aggregate CRDP (CRDS) profile. Each bar in
Figure 6 reports the average CRD accuracy achieved over
the 24 predictions per benchmark. The rightmost bars report
the average across all benchmarks.

As Figure 6 shows, CRDP profiles are predicted with high
accuracy. For all benchmarks except LU, CRDP accuracy
is between 88% and 99%. For LU, CRDP accuracy is
71%. Across all benchmarks, the average CRDP accuracy is
91%. CRDP profiles exhibit coherent shift across core count
scaling which reference groups can effectively predict. The

Figure 7. CMC error for predicted whole-program CRD profiles.

results in Figure 6 demonstrate the pervasiveness of coherent
shift across our benchmarks, and confirm the accuracy of
reference groups for this type of profile movement.

LU is the only benchmark with lower CRDP accuracy. In
LU, blocking is performed to improve cache locality, but for
the S1 and S2 problems, the default blocking factor does not
create enough parallelism to keep more than 32 cores busy.
This introduces error when predicting large core counts.

Compared to CRDP profiles, CRDS profiles are predicted
with lower accuracy. In Figure 6, CRDS accuracy is between
33% and 79%. Across all benchmarks, the average CRDS

accuracy is only 66%. CRDS profiles suffer poor spread
prediction. While intercepts induce spreading in the range
we expect (see Section II-B), the actual distribution across
this range is highly application dependent. Unfortunately,
our simple uniform spread model does not capture all of the
behaviors, leading to lower prediction accuracy.

Although CRDS profiles are predicted with lower accu-
racy, the impact on overall prediction accuracy is minimal.
In Figure 6, the bars labeled “CRDP+S” report the average
CRD accuracy for whole-program CRD profiles predicted
by combining CRDP and CRDS predictions. For all bench-
marks except LU, CRDP+S accuracy is between 88% and
99% (for LU, it is 70%). The average CRDP+S accuracy
for all benchmarks is 90%. These results confirm CRDP

dominates CRDS . So, predicting CRDP effectively leads to
accurate whole-program CRD profile prediction.

Since CRDP dominates, one would expect predicting
whole-program CRD profiles directly to be the same as (and
hence, achieve similar accuracy compared to) predicting
CRDP profiles. This is in fact the case. The last set of
bars in Figure 6, labeled “CRDdirect,” report the average
CRD accuracy for direct whole-program CRD profile pre-
diction. Figure 6 shows CRDdirect is just slightly worse
than CRDP+S . On average, CRDdirect accuracy is 89%,
compared to 90% for CRDP+S .

Finally, Figure 7 reports the whole-program prediction
results from Figure 6 using the CMC error metric (note,
smaller values are better). Qualitatively, the CMC error
and CRD accuracy results are the same. CRDP+S and
CRDdirect have similar CMC error. They are between 0.3%–
27% for 8 benchmarks, and are roughly 50% for LU. On

Figure 8. CMC profiles for Barnes on 1, 16, and 256 cores running the
S2 problem.Ccore and∆Mmerged are labeled.

average, CRDP+S and CRDdirect achieve a 10.8% and
10.7% error, respectively, without LU, and 15.0% and 15.1%
error, respectively, for all benchmarks. This result suggests
our predicted CRD profiles can provide good LLC cache
miss predictions. Later, Section V will confirm this result.

IV. SCALING IMPLICATIONS

Thus far, we have shown core count scaling causes
predictable coherent shift of CRD profiles. Another point
related to core count scaling is that shifting is limited: it
slows down and stops at large CRD. This has important
cache performance implications. To illustrate, Figure 8 plots
the whole-program CMC profiles for the Barnes benchmark
running the S2 problem on 1, 16, and 256 cores. Because
CRD profiles eventually stop shifting, their associated CMC
profiles merge at some point. In this study, we measure
this stopping point for 256 cores, and we call it “Ccore.”
As Figure 8 shows,Ccore delineates cache-miss impact. At
CRD< Ccore, cache misses increase significantly with core
count, but at CRD> Ccore cache misses do not increase
much. In other words,core count scaling degrades locality in
parallel loops, but it only impacts cache sizes belowCcore.
Caches bigger thanCcore are not affected by scaling.

We quantifyCcore and the cache-miss increases caused by
shifting across the measured whole-program CRD profiles
from Section III-B. This is done as follows. For each
benchmark and problem size, we derive the CMC profiles
for 1–256 cores (e.g., like Figure 8). At a given CRD
value, we define∆M to be the ratio of cache-miss counts
between the 256- and 1-core CMC profiles. We first compute
∆M at CRD = Cmax

2
, well beyondCcore where the CMC

profiles have almost merged. We call this∆Mmerged. Then,
we identify the CRD closest toCmax

2
where ∆M =1.5

×∆Mmerged, i.e. the tail-end of shifting where very large
∆M transition to∆Mmerged. This CRD value isCcore.
Lastly, we compute∆M at every CRD value between 1MB
and Ccore, recording the average and maximum values.
These are the average and maximum cache-miss count
increases belowCcore, ∆Ma and∆Mm, respectively. The
1MB boundary focuses our analysis on LLC-sized caches.

Table II reports results broken down by benchmark and
problem size, with rows labeled “Average” showing averages

Table II
Ccore , ∆Ma , ∆Mm , AND Cmax FOR OUR BENCHMARKS.

Benchmark S1 S2 S3 S4

Ccore

FFT 1.1MB 2.3MB 5.5MB 16.0MB
LU 135.8KB 211.8KB 382.1KB 755.9KB

RADIX - - 8.0MB 22.8MB
Barnes 555.3KB 1.9MB 4.2MB 7.2MB
FMM 733.9KB 1.6MB 7.6MB 9.3MB
Ocean 707.2KB 1.5MB 4.8MB 17.3MB
Water 254.9KB 628.7KB 1.7MB 2.9MB

KMeans 496.1KB 496.1KB 496.1KB 496.1KB
BlackScholes 352.1KB 352.2KB 352.2KB 368.3KB

Average 540.4KB 1.1MB 3.7MB 8.5MB

Cmax

FFT 4.3MB 14.3MB 52.3MB 200.3MB
LU 785.8KB 2.3MB 8.3MB 32.4MB

RADIX 30.2MB 36.2MB 60.2MB 156.2MB
Barnes 2.1MB 6.9MB 26.5MB 105.3MB
FMM 3.9MB 12.2MB 42.7MB 163.0MB
Ocean 6.4MB 18.7MB 63.9MB 237.2MB
Water 1.2MB 3.4MB 11.5MB 45.5MB

KMeans 5.0MB 19.2MB 76.2MB 304.2MB
BlackScholes 1.7MB 6.2MB 24.2MB 96.2MB

Average 6.2MB 13.3MB 40.6MB 148.9MB

∆Ma / ∆Mm

FFT 3.3 / 4.2 4.2 / 5.0 4.1 / 5.5 3.5 / 6.0
LU - / - - / - - / - - / -

RADIX - / - - / - 5.3 / 7.7 3.2 / 6.6
Barnes - / - 3.7 / 6.2 3.7 /8.6 3.7 / 10.2
FMM - / - 2.5 / 3.0 2.2 / 3.2 2.3 / 3.4
Ocean - / - 3.4 / 4.5 1.6 / 2.1 1.2 / 1.8
Water - / - - / - 1.8 / 2.2 1.9 / 2.4

KMeans - / - - / - - / - - / -
BlackScholes - / - - / - - / - - / -

Average 3.3 / 4.2 3.4 / 4.7 3.1 / 4.9 2.6 / 5.1

across all benchmarks. The top portion of Table II reports
Ccore.3 As these data show,Ccore varies between 135KB
and 23MB. On average,Ccore is between 540KB and
9MB for the different problem sizes. These results show
the impact of core count scaling for our benchmarks and
problem sizes is confined to smaller LLCs, usually< 16MB.
Large LLCs (> 16MB) will not experience significant cache-
miss increases due to core count scaling.
Ccore is particularly small for LU, KMeans, and BlackSc-

holes, never exceeding 756KB. The working sets for these
benchmarks are extremely small. For programs with such
good locality, the profile shift due to core count scaling is
minimal. So, core count scaling will never impact the miss
rates of reasonably sized LLCs in these programs.

Although our Ccore values correspond to small LLCs,
Table II showsCcore generally increases with problem size.
This is because problem scaling also shifts CRD profiles [1].
When core count and problem size scale together, the
shifting region associated with core count scaling will itself
shift to larger CRD values due to problem scaling.

3Results for RADIX at S1/S2 are missing because of large per-core data
structures that causeCmax to increase significantly with core count scaling.
This makes a commonCmax

2
across different core counts impossible to

define, thus preventingCcore calculation.

Figure 9. Tiled CMP. Each tile contains a core+L1 cache, an L2cache
and directory “slice,” and an on-chip network switch.

To quantify the impact of continued problem scaling, the
middle portion of Table II reportsCmax for each benchmark
and problem size. As Table II shows,Cmax increases by
roughly 4x with each problem size increment. Table I shows
each problem size increment increases data structures by
4x as well, soCmax grows linearly with problem size. In
contrast, Table II showsCcore increases at a sub-linear rate,
roughly as the square root ofCmax. Assuming the same
rate of increase for larger problems, we see that another
64x increase in problem size would causeCcore to grow to
64–128MB for many benchmarks. For these modestly larger
problems, core count scaling will impact large LLCs.

Finally, the bottom portion of Table II reports∆Ma and
∆Mm. Results are only presented for cases whereCcore >

1MB. As Table II shows,∆Ma varies between 1.2 and 5.3
while ∆Mm varies between 1.8 and 10.2. On average,∆Ma

(∆Mm) is between 2.6 (4.2) and 3.4 (5.1) across different
problem sizes. These results show core count scaling can
increase cache misses significantly for LLC sizes below
Ccore. Consider scaling core count by 256x creates a 2
orders of magnitude increase in off-chip bandwidth due to
parallelism (assuming linear bandwidth increase with core
count). Table II shows the same 256x increase in cores can
create up to another order of magnitude in cache misses (and
hence, total memory traffic) due to locality degradation.

V. PERFORMANCEPREDICTION

We now demonstrate the ability of CRD profile prediction
to accelerate multicore design evaluation. We employ our
core count prediction techniques from Section III to assess
cache performance–in particular, LLC MPKI. We also incor-
porate previous techniques for predicting problem scalingto
further increase the acceleration advantage. In the rest of
this section, we describe architectural assumptions, discuss
how we predict performance, and then present results.

A. Architecture Assumptions

Our performance study assumestiled CMPs[23]. A tiled
CMP, illustrated in Figure 9, consists of several identical
replicated tiles, each containing a core, a private L1 cache,
an L2 cache “slice,” and a switch for a 2-D on-chip point-
to-point mesh network. Tiled CMPs are scalable [23], [24],
so they permit us to study a large design space on a single
multicore platform.

In our study, the L2 slices across all tiles are managed
as a single logically shared LLC. We assume the LLC does

Table III
SIMULATOR PARAMETERS USED IN THE EXPERIMENTS.

Number of Tiles 2, 4, 8, 16, 32, 64, 128, 256
Core Type Single issue, In-order, CPI = 1, clock speed = 2GHz
IL1/DL1 32KB/32KB, 64B block, 8-way, 1 cycle

Total L2 Cache Size 4MB, 8MB, 16MB, 32MB, 64MB, 128MB
L2 Slice 64B blocks, 32-way, 10 cycles

2-D Mesh 3 cycles per-hop, bi-directional channels,
256-bit wide links

Memory channels latency: 200-CPU cycles, bandwidth:
32GB(2-16cores) and 64GB(32-256cores)

not replicate or migrate cache blocks between slices. Each
cache block is always placed in the same L2 slice, known
as the cache block’s “home.” We assume cache block homes
are page-interleaved (with 8KB page size) across L2 slices
according to their physical address.

To address remote-L2 slice latency, we permit replication
at the private L1 caches. We employ a directory-based MESI
cache coherence protocol for L1 coherence. The protocol
uses a distributed full-map directory where each directory
entry is collocated with its cache block on the home tile.
In addition, we assume the memory sub-system supports
multiple DRAM channels, each connected to a memory
controller on a special “memory tile.” We use 4 memory
tiles evenly spaced on the north and south edges of the chip.

Our study uses the M5 simulator to measure performance.
We modified M5 to model the tiled CMP described above.
Our simulator’s core model is very simple: each core ex-
ecutes 1 instruction per cycle (in the absence of memory
stalls) in program order. However, the memory system
model is very detailed, accurately modeling L1 access, hops
through the network, L2 slice access, and DRAM access.
We also model queuing at the on-chip network switches and
memory controllers. Table III lists the parameters used in
our simulations. As Table III shows, we simulate processors
with 2–256 cores and 4–128MB of total L2 cache (LLC).

In addition to performance, our M5 simulator also mea-
sures whole-program CRD profiles. We track CRD for the
simulated interleaved memory reference stream from all
cores using the same approach as our PIN tool. Similar to
the PIN tool, CRD is computed at a 64-byte granularity, the
block size for both the L1 and L2 caches.

To drive our simulations, we use the same benchmarks
and problem sizes from Table I, simulating the same parallel
regions described in Section III-B. (The last column of Ta-
ble I reports the number of instructions in the parallel regions
studied for the M5 experiments). For benchmarks running 1
timestep, we warmup caches in a separate timestep before
recording performance and CRD profiles. For benchmarks
running the entire parallel phase, we do not perform any
explicit cache warmup.

B. Performance Prediction

Figure 10 illustrates the 3-D architecture-problem space
formed by the combination of all core counts, LLC capaci-
ties, and problem sizes in our study. There are 192 configura-

Core Count

LLC
Capacity

Problem
Size

S1
S2

S3
S4

4M

32M
64M

128M

2 8 64 2564 16

16M

32 128

C

B A

Figure 10. 3-D architecture-problem space.

tions per benchmark in this architecture-problem space, and
1,728 configurations across our 9 benchmarks. We simulate
all of them using our M5 simulator, obtaining their LLC
MPKI and CRD profiles. (When computing LLC MPKI, we
exclude compulsory misses since reuse distance profiles do
not predict them). Similar to our profile prediction study,
we use a sub-set of the measured CRD profiles to predict
LLC MPKI at all configurations, and compare against the
simulated LLC MPKI to assess accuracy.

Performance prediction is a two-step process: first we
acquire/predict CRD profiles, and then we use the CRD
profiles to predict cache performance. The first step’s goal
is to obtain the 32 CRD profiles per benchmark for all
core counts / problem sizes with a 32MB LLC–i.e., the
plane labeled “A” in Figure 10. We use 3 profile prediction
strategies for doing this: “No-Pred,” “C-Pred,” and “CP-
Pred.”

No-Pred does not perform any profile prediction, and
simply uses the complete set of measured CRD profiles in
the “A” plane of Figure 10 to predict performance. No-Pred
requires sampling 32 CRD profiles to make the 192 LLC
MPKI predictions per benchmark.

C-Pred performs core count prediction. At each problem
size within the “A” plane, C-Pred predicts the 8- to 256-
core CRD profiles from the 2- and 4-core profiles–i.e., the
two dotted lines labeled “B” in Figure 10. We use our tech-
niques for directly predicting whole-program CRD profiles
from Sections III-A and III-B. C-Pred requires sampling 8
CRD profiles to make the 192 LLC MPKI predictions per
benchmark.

Finally, CP-Pred combines core count prediction with
problem size prediction. Just like C-Pred, CP-Pred predicts
across core count to acquire all CRD profiles in the “A”
plane. However, within the 2- and 4-core configurations, CP-
Pred predicts the S3 and S4 CRD profiles from the S1 and
S2 profiles–i.e., the four dots labeled “C” in Figure 10. To
predict across problem size, CP-Pred uses the same reference
groups technique described in Section III-A. But instead of
diffing and shifting profiles across core count, it diffs and
shifts across problem size (i.e., the original use of reference
groups [1]). CP-Pred requires sampling 4 CRD profiles to
make the 192 LLC MPKI predictions per benchmark.

Once all 32 CRD profiles within the “A” plane have been

Figure 11. Percent LLC MPKI prediction error.

acquired, the second step is to predict LLC MPKI. We derive
the corresponding CMC profile from each CRD profile, and
extract cache-miss counts at 4–128MB on the CMC profile.
This predicts the number of capacity misses. We use Qasem
and Kennedy’s model [25] to predict conflict misses. This
model takes the CRD profile as input, and uses a binomial
distribution to predict the number of conflict misses for a
given capacity and associativity. Finally, we divide the sum
of predicted conflict and capacity misses by instruction count
(IC) to derive MPKI. For No-Pred and C-Pred, we use the
measured IC at the same configuration that contributed the
CRD profile for LLC MPKI prediction–i.e., we assume IC
doesn’t change across either LLC capacity or core count.
We make the same assumption for CP-Pred, except we also
predict IC across problem scaling by assuming IC changes
linearly with problem size at the same rate observed from
S1 to S2. (This ensures we only use measured ICs from
configurations where we also measured the CRD profile).

C. Performance Results

Figure 11 reports percent error (|predicted−measured|
/ measured) in our LLC MPKI predictions. When measured
LLC MPKI is near zero, the error blows up. To prevent this,
we add a small offset, 0.05, to the predicted and measured
values before computing error. Each bar in Figure 11 reports
the average error across all predictions for a particular pre-
diction strategy and benchmark (i.e., for 192 configurations).
The rightmost bars report averages across all benchmarks.

As Figure 11 shows, No-Pred is able to predict LLC
MPKI within 14% of simulation on average for 8 out of
9 benchmarks, and within 28% for RADIX. Across all
benchmarks, prediction error is 9.7%. This is the baseline
CRD profile error (i.e., without profile prediction), and
reflects 3 error sources. First, M5 profiles include timing
effects (PIN profiles do not). Since LLC capacity scaling
alters thread timing, CRD profiles may not accurately predict
LLC sizes different from the ones used to measure them.
We compared CRD profiles across different LLC sizes and
found they are in fact almost identical. This is again due to
symmetric threads. Although symmetric threads speedup or
slow down with LLC scaling, they do so at thesame rate,
thus preserving memory interleaving and CRD profiles. So,
sensitivity to LLC scaling is not a major source of error.

Figure 12. LLC MPKI prediction error for S4 and 4–16MB LLCs.

Second, the cache conflict model introduces error. In
particular, processors with large core count and small LLCs
can incur pathologic conflicts that the conflict model cannot
predict. We find this is the dominant source of error in the
No-Pred results. And third, our error metric does not always
address numeric instability. In some cases, LLC MPKI is
near 0.05. These are not eliminated by our 0.05 offset, but
are small enough to make percent error very sensitive to
minute prediction errors. This is responsible for the high
errors in RADIX. On average, though, No-Pred error is
very low, and shows CRD profiles are capable of accurately
predicting LLC MPKI for loop-based parallel programs.

Figure 11 also shows our profile prediction techniques
are very effective. In Figure 11, C-Pred error is only
slightly worse than No-Pred. Furthermore, CP-Pred does
not noticeably increase error over C-Pred. Figure 11 shows
both techniques are able to predict LLC MPKI within
18% of simulation for 8 out of 9 benchmarks, and within
34% for RADIX. On average, prediction error is within
11.1%. These results confirm profile prediction has high
accuracy, as was shown in Section III-C. Another reason C-
Pred and CP-Pred perform similarly to No-Pred is because
errors often cancel. While the cache conflict model usually
under-predicts conflict misses, CRD profile prediction (for
both core count and problem scaling) usually over-predicts
capacity misses. This also explains why C-Pred and CP-Pred
sometimes achieve lower error than No-Pred in Figure 11.

Figure 12 reports LLC MPKI prediction error, just like
Figure 11, but only for the S4 problem and 4–16MB LLCs
(it still includes 2–256 cores). Most of these configurations
have LLC size< Ccore; hence, Figure 12 studies prediction
error in the region of CRD profile shift. (LU, KMeans, and
BlackScholes are omitted because theirCcore are always

Figure 13. Prediction error for S4 and 4–16MB LLCs by core count.

below our smallest LLC). As Figure 12 shows, prediction
error in the shifting region is comparable to the entire space.
Error gets worse for FFT and Barnes. But it improves
in RADIX, especially for No-Pred and C-Pred because
Figure 12 does not include RADIX’s poorly predicted cases.
Overall, C-Pred has the same accuracy as No-Pred, 9% error,
showing our core count prediction techniques are effective
in the shifting region. CP-Pred is worse–20.1% error–due to
more significant over-prediction of shifting.

Finally, Figure 13 reports results for the same problem and
LLC sizes in Figure 12 broken down by strategy and core
count. Like Figure 12, Figure 13 shows C-Pred is similar
to No-Pred, while CP-Pred is worse. More importantly,
Figure 13 also shows prediction error increases with core
count, reaching 19% for No-Pred, 20% for C-Pred, and 47%
for CP-Pred. This illustrates the cache conflict model errors
mentioned earlier which get worse with core count. Even
so, Figure 13 shows C-Pred’s error is still reasonable when
predicting large core counts.

Overall, we find our prediction techniques for core count
scaling can accelerate cache analysis without sacrificing
accuracy. When combined with problem scaling prediction,
analysis effort is further reduced, though error increases
when predicting large core counts.

VI. RELATED WORK

Several researchers have investigated multicore RD anal-
ysis. Ding and Chilimbi [12] and Jianget al [13] present
techniques to construct CRD profiles from per-thread RD
profiles by analyzing memory traces. These techniques are
general in that they can handle non-symmetric threads. But
they are very complex because they consider all possible
memory interleavings, limiting their use to small machine
and problem sizes. Our work shows combinatorial anal-
ysis is unnecessary for loop-based parallel programs. For
these programs, only memory references within parallel
regions interleave, reducing the number of cases to analyze.
Furthermore, within parallel regions, dilation, overlap,and
intercepts exhibit simple behavior, allowing simple predic-
tion techniques to achieve good accuracy. We exploit these
properties to develop practical techniques that can handle
real machines and problem sizes. Another difference is [12],
[13] require at-scale profiling. In contrast, we only profile

small-scale machines from which CRD profiles of scaled
configurations are derived to enable scaling analysis.

Schuff et al [15] use sampling and parallelization tech-
niques to accelerate CRD profiling. Our work is orthogonal
to these techniques. We reduce the number of needed profiles
whereas Schuffet al reduce the time per profile run. It is
important to note that while Schuff’s approach is fast, it still
incurs significant overhead: 80X slowdown on average and
up to 496X slowdown compared to native execution [15].
And this is for profiling only 4 threads; overheads will
certainly be higher for profiling 100s of threads. Hence,
even with profiling acceleration, it is still very difficult to
exhaustively explore LCMP design spaces that can reach
1000s of configurations.

Another work by Schuff [14] investigates the accuracy
of RD analysis for multicore processors. In addition to pre-
dicting shared cache performance, they also predict private
caches which we do not address. Berget al [26] present
a statistical model for computing miss rate from a CRD
profile, and evaluate its accuracy. Both Schuff and Berg
predict performance at different cache sizes, but they cannot
predict configurations with more cores or larger problems
beyond what was profiled, which is the focus of our work.

Chandraet al [27] and Suhet al [28] have also de-
veloped locality models for multicore processors, but they
focus on multiprogrammed workloads whereas we focus on
multithreaded programs. RD analysis has also been used to
analyze uniprocessor caches [1], [22], [29]. As discussed
earlier, our work borrows reference groups from Zhonget
al [1] to predict profile shift across core count scaling.

Finally, profile prediction is related to machine learning
for design exploration [30], [31]. The latter tries to model
how general features impact performance, whereas we model
how memory features impact CRD profiles. Our approach
learns more per sample (a CRD profile), reducing the num-
ber of needed samples, but we can only optimize memory.
ML learns very little per sample (an IPC value), but is very
general and can optimize any architecture feature.

VII. C ONCLUSION

This paper shows CRD profiles for loop-based parallel
programs change predictably with core count scaling due to
thread symmetry. As core count scales, CRD profiles shift
coherently to larger CRD values. Using simple techniques,
the CRD movement can be predicted with high accuracy, en-
abling practical RD-based scaling analysis for LCMP-sized
machines. We also show that because shifting is confined to
smaller CRD values, core count scaling only impacts LLCs
below theCcore parameter. Lastly, to demonstrate benefits,
we use CRD profiles to predict LLC performance across an
LCMP design space. Our techniques can predict LLC MPKI
to within 11.1% of simulation across 1,728 configurations
using only 36 measured CRD profiles.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments, Collin McCurdy for his PIN tool,
and Abdel-Hameed Badawy for insightful discussion.

REFERENCES

[1] Y. Zhong, S. G. Dropsho, and C. Ding, “Miss Rate Pre-
diction across All Program Inputs,” inProceedings of the
12th International Conference on Parallel Architectures and
Compilation Techniques, 2003.

[2] J. Davis, J. Laudon, and K. Olukotun, “Maximizing CMP
Throughput with Mediocre Cores,” inProceedings of the
14th International Conference on Parallel Architectures and
Compilation Techniques, 2005.

[3] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell,
“Exploring the Cache Design Space for Large Scale CMPs,”
ACM SIGARCH Computer Architecture News, vol. 33, 2005.

[4] J. Huh, S. W. Keckler, and D. Burger, “Exploring the Design
Space of Future CMPs,” inProceedings of the 2001 Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, 2001.

[5] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and
Manycore Architectures,” inProceedings of the International
Symposium on Microarchitecture, 2009.

[6] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP
Design Space Exploration Subject to Physical Constraints,”
in Proceedings of the 12th International Symposium on High
Performance Computer Architecture, 2006.

[7] J. Li and J. F. Martinez, “Power-Performance Implications
of Thread-level Parallelism on Chip Multiprocessors,” in
Proceedings of the International Symposium on Performance
Analysis of Systems and Software, 2005.

[8] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and Y. Soli-
hin, “Scaling the Bandwidth Wall: Challenges in and Avenues
for CMP Scaling,” inProceedings of the 36th International
Symposium on Computer Architecture, 2009.

[9] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and
D. Newell, “Performance, Area and Bandwidth Implications
on Large-Scale CMP Cache Design,” inProceedings of
the Workshop on Chip Multiprocessor Memory Systems and
Interconnect, 2007.

[10] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina,
C.-C. Miao, C. Ramey, and D. Wentzlaff, “Tile Processor:
Embedded Multicore for Networking and Multimedia,” in
Proceedings of the Symposium on High Performance Chips,
2007.

[11] Y. Hoskote, S. Vangal, N. Borkar, and S. Borkar, “Teraflop
Prototype Processor with 80 Cores,” inProceedings of the
Symposium on High Performance Chips, 2007.

[12] C. Ding and T. Chilimbi, “A Composable Model for Analyz-
ing Locality of Multi-threaded Programs,” Technical Report
MSR-TR-2009-107, Microsoft Research, 2009.

[13] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is Reuse
Distance Applicable to Data Locality Analysis on Chip Multi-
processors?,” inProceeding of Compiler Construction, 2010.

[14] D. L. Schuff, B. S. Parsons, and J. S. Pai, “Multicore-Aware
Reuse Distance Analysis,” Technical Report TR-ECE-09-08,
Purdue University, 2009.

[15] D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating Multi-
core Reuse Distance Analysis with Sampling and Paralleliza-

tion,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, 2010.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
building customized program analysis tools with dynamic
instrumentation,” inProceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 2005.

[17] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt, “The M5 Simulator: Modeling Networked Sys-
tems,” IEEE Micro, vol. 26, no. 4, 2006.

[18] C. McCurdy and C. Fischer, “Using pin as a memory
reference generator for multiprocessor simulation,”ACM
SIGARCH Computer Architecture News, vol. 33, 2005.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 Programs: Characterization and Method-
ological Considerations,” inProceedings of the 22nd Inter-
national Symposium on Computer Architecture, 1995.

[20] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary, “MineBench: A Benchmark Suite for
Data Mining Workloads,” inProceedings of the International
Symposium on Workload Characterization, 2006.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2008.

[22] C. Ding and Y. Zhong, “Predicting whole-program locality
through reuse distance analysis,” inProceedings of the ACM
SIGPLAN 2003 Conference on Programming Language De-
sign and Implementation, 2003.

[23] M. Zhang and K. Asanovic, “Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multipro-
cessors,” inProceedings of the 32nd International Symposium
on Computer Architecture, 2005.

[24] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive NUCA: Near-Optimal Block Placement and Repli-
cation in Distributed Caches,” inProceedings of the 36th
International Symposium on Computer Architecture, 2009.

[25] A. Qasem and K. Kennedy, “Evaluating a model for cache
conflict miss prediction,” Technical Report CS-TR05-457,
Rice University, 2005.

[26] E. Berg, H. Zeffer, and E. Hagersten, “A Statistical Multi-
processor Cache Model,” inProceedings of the International
Symposium on Performance Analysis of Systems and Soft-
ware, 2006.

[27] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting
Inter-Thread Cache Contention on a Chip Multi-Processor
Architecture,” inProceedings of the International Symposium
on High-Performance Computer Architecture, 2005.

[28] G. E. Suh, S. Devadas, and L. Rudolph, “Analytical Cache
Models with Applications to Cache Partitioning,” inProceed-
ings of International Conference on Supercomputing, 2001.

[29] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis
using reuse distance,”ACM Transactions on Programming
Languages and Systems, vol. 31, no. 6, 2009.

[30] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz, “Efficiently exploring architectural design spaces
via predictive modeling,” inProceedings of Architectural
Support for Programming Languages and Operating Systems,
2006.

[31] B. C. Lee and D. M. Brooks, “Accurate and efficient re-
gression modeling for microarchitectural performance and
power prediction,” inProceedings of Architectural Support
for Programming Languages and Operating Systems, 2006.

