
Runtime-Guided Management of Scratchpad Memories in Multicore Architectures

Lluc Alvarez∗† Miquel Moretó∗† Marc Casas∗ Emilio Castillo∗†

Xavier Martorell∗† Jesús Labarta∗† Eduard Ayguadé∗† Mateo Valero∗†

Barcelona Supercomputing Center∗ Departament d’Arquitectura de Computadors†

Barcelona, Spain Universitat Politècnica de Catalunya

name.surname@bsc.es Barcelona, Spain

Abstract—The increasing number of cores and the antic-
ipated level of heterogeneity in upcoming multicore archi-
tectures cause important problems in traditional cache hier-
archies. A good way to alleviate these problems is to add
scratchpad memories alongside the cache hierarchy, forming a
hybrid memory hierarchy. This memory organization has the
potential to improve performance and to reduce the power
consumption and the on-chip network traffic, but exposing
such a complex memory model to the programmer has a very
negative impact on the programmability of the architecture.
Emerging task-based programming models are a promising
alternative to program heterogeneous multicore architectures.
In these models the runtime system manages the execution of
the tasks on the architecture, allowing them to apply many
optimizations in a generic way at the runtime system level.

This paper proposes giving the runtime system the responsi-
bility to manage the scratchpad memories of a hybrid memory
hierarchy in multicore processors, transparently to the pro-
grammer. In the envisioned system, the runtime system takes
advantage of the information found in the task dependences
to map the inputs and outputs of a task to the scratchpad
memory of the core that is going to execute it. In addition, the

paper exploits two mechanisms to overlap the data transfers
with computation and a locality-aware scheduler to reduce the
data motion. In a 32-core multicore architecture, the hybrid
memory hierarchy outperforms cache-only hierarchies by up
to 16%, reduces on-chip network traffic by up to 31% and
saves up to 22% of the consumed power.

I. INTRODUCTION

Cache coherent shared memory has traditionally been the

most common memory organization for multicore chips.

This memory hierarchy provides important advantages in

programmability, but presents significant inefficiencies when

the number of cores per chip reaches orders of magnitude

beyond 10’s [1]. At these levels, complex power-hungry

hardware structures and large amounts of traffic in the

interconnection network to maintain all the data in a co-

herent state are required. On the opposite side, scratchpad

memories [2] (SPMs) are a well-known alternative to caches

in power-constrained domains. SPMs consume less power

than caches and they do not generate coherence traffic, but

they degrade the programmability of the architecture because

the programmer has to explicitly manage the SPMs.

This paper is published in Proceedings of the 2015 International Con-
ference on Parallel Architecture and Compilation (PACT’15), 2015, pp.
379-391. The paper is available at http://dx.doi.org/10.1109/PACT.2015.26.

The trend towards massively parallel multicore chips

makes it impossible to keep relying in purely cache-coherent

memory hierarchies, due to their power consumption and

scalability issues, neither in pure SPMs designs, due to

their programmability issues. Instead, computer architecture

is exhibiting a trend towards more heterogeneity, clearly

shown by proposals like the Cell B. E. [3], GPGPUs [4],

or more recently Intel’s Knights Landing [5]. These designs

have different kinds of cores and hybrid memory hierar-

chies that combine caches and SPMs. Typically, program-

ming such hybrid designs implies dealing not only with

the programmability burdens that SPMs impose, but also

with different memory addresses spaces. Such programming

hardships seriously limited the Cell B. E. architecture and

are seriously hurting the wide-spread usage of GPGPU

architectures. More recent proposals are also heterogeneous

and massively parallel but provide a single address space to

the programmer. For instance, the joint Collaboration of Oak

Ridge, Argonne, and Lawrence Livermore (CORAL) lever-

ages the IBM Power Architecture, NVIDIA’s Volta GPU,

and Mellanox’s interconnection technologies to build an

extremely parallel, heterogeneous and single-spaced system

that combines caches and SPMs in its memory hierarchy.

Other proposals like the Intel’s Knights Landing also contain

hybrid and reconfigurable memory hierarchies, where a

high bandwidth 3D stacked DRAM can be configured as

a software-managed SPM.

Despite the efforts made by vendors to build systems

with single memory address spaces that are parallel and

heterogeneous enough to provide performance under an

affordable power budget, the programmability issue is still

not solved. Exposing deep and hybrid memory hierarchies

to the programmer requires adapting current scientific and

industrial codes that rely on a cache coherent memory

hierarchy and, more importantly, increases the difficulty and

the cost of developing new software.

Multicores are usually programmed with thread-based

programming models like OpenMP or Pthreads. To handle

heterogeneity, OpenMP 4.0 provides support for tasking and

dependences, which allows to expose the available paral-

lelism of an application by splitting the code in sequential

pieces of work, called tasks, and by specifying the data and

control dependences between them. With this information



the runtime system manages the parallel execution of the

workload following a data-flow scheme, scheduling tasks

to cores and taking care of synchronization between tasks.

Decoupling the application from the architecture not only

eases programmability, but also allows to exploit the avail-

able information in the runtime system to drive optimizations

in a generic and application-agnostic way [6], [7].

This paper proposes to take advantage of the performance,

scalability and power consumption benefits of a hybrid

memory hierarchy without adding any programming burden

by using well accepted parallel programming models like

OpenMP 4.0., exploiting task annotations to manage the

SPMs of the hybrid memory hierarchy transparently to the

programmer. To do so, the runtime system is in charge

of mapping the data specified in the task dependences to

the SPMs, so memory accesses to this data are served

in a power-efficient way and without generating coherence

traffic, while the rest of memory accesses are served by the

L1 cache. The proposal exploits two key characteristics of

task-based models: first, the inputs and outputs of a task are

specified in the source code and, second, the semantics of

the programming model ensure that the inputs and outputs

of a task are private to that task when it is executed. The

main contributions of this paper are:

• A runtime system for task-based programming mod-

els that transparently manages the SPMs of a hybrid

memory hierarchy that combines caches and SPMs.

This runtime exploits the benefits of a locality-aware

scheduler that assigns tasks to cores aiming to minimize

data movements in the memory hierarchy.

• Two schemes that allow the runtime system to overlap

data transfers for the SPMs with the task scheduler or

with the execution of the previous task. These schemes

hide the communication cost of the data transfers,

reaching the performance of an ideal system with zero

latency data transfers.

• A complete evaluation of the task-based runtime system

managing the hybrid memory hierarchy in a 32-core

multicore architecture, demonstrating the benefits of

this memory organization when compared to a cache

hierarchy. Results show that the hybrid memory hi-

erarchy achieves speedups of up to 16% and reduces

power consumption and network traffic by up to 22%

and 31%, respectively.

The rest of this paper is organized as follows. Section II

introduces the required background in task-based program-

ming models and their suitability for SPMs. Section III

explains how SPMs are added in the memory hierarchy to

form a hybrid memory hierarchy. Section IV describes the

proposed techniques to map task dependences to the SPMs,

and Section V evaluates the proposals. Section VI describes

the related work, and Section VII concludes this work.

II. BACKGROUND AND MOTIVATION

This section describes the main characteristics of task-

based programming models together with the opportunities

that they offer for hybrid memory hierarchies.

A. Task-Based Programming Models

Task-based data-flow programming models conceive the

execution of a parallel program as a set of tasks with depen-

dences among them. Typically, the programmer adds code

annotations to split the serial code in tasks and specify what

data is used by each task (called input dependences or in-

puts) and what data is produced (called output dependences

or outputs). The runtime system is in charge of managing

the execution of the tasks, releasing the programmer from

the burden of explicitly synchronizing tasks and scheduling

them to cores, thus easing programmability.

In order to manage the execution of the tasks the runtime

system constructs a task dependence graph (TDG), a di-

rected acyclic graph where the nodes are tasks and the edges

are dependences between them. Similarly to how an out-of-

order processor schedules instructions, the runtime system

schedules a task on a core when all its input dependences

are ready and, when the execution of the task finishes,

its output dependences become ready for the next tasks.

This execution model decouples the hardware from the

application, so many optimizations can be applied at the

runtime system level in a generic and application-agnostic

way. For instance, the task scheduler can not only ensure

load balancing, but also aim for a power-aware or locality-

aware schedule [8]. Another very important characteristic of

the task-based paradigm is that the runtime system knows

what data is going to be accessed by the tasks that have

to be executed, enabling multiple optimizations like data

prefetching [9] or efficient data communication between

tasks [10], [11]. In this context, this paper is the first one

that uses the information available in the runtime system of

a task-based programming model to exploit the benefits that

SPMs provide in terms of performance, power consumption

and network traffic without affecting programmability.

B. Suitability

Task-based data-flow programming models are specially

well suited for SPMs. The specification of the input and

output dependences for the tasks provide the runtime system

with the information of what data is going to be accessed,

which allows to map the tasks input and output dependences

to the SPMs. As a consequence, memory accesses to inputs

and outputs will always access the SPMs during the exe-

cution of tasks. Figure 1 shows the distribution of memory

accesses for a set of representative benchmarks 1. The figure

shows, for each benchmark, the percentage of loads and

stores that access data specified in task dependences (Dep

1The experimental setup is explained in detail in Section V.



���
��
��
��
���

���
���
���

���
���
��
�

��
��
�� ��

�
��

�

���
���
��

���
���
��

��
��
��

��
���
��
�

�

��

��

��

��

��

��

��

��

��

���

�
��
��
�
�
�
�
��
��
�
�
�
�
�
�
�

��������� ����������� ���������� ������������

Figure 1. Percentage of memory accesses to tasks dependences (Dep
loads and Dep stores) and to other memory locations (Other loads and
Other stores)

loads and stores) and the percentage of loads and stores that

access other memory locations (Other loads and stores). The

benchmarks present a wide range of percentages of memory

accesses to task dependences, from 0% in raytrace

and fluidanimate to 76% in md5. On average, close

to half of the memory accesses are to task inputs and

outputs, so a significant amount of memory accesses can

be efficiently served by the SPMs. In particular, compared

to cache accesses, memory accesses to the SPMs do not

suffer performance penalties in the form of cache misses,

they consume less power because they do not trigger lookups

in the tags of the caches nor in the TLBs, and they do not

generate coherence traffic.

The memory model of task-based data-flow programming

models is another very important factor for the suitability

of SPMs. The memory model of task-based programming

models guarantees that, during the execution of a task,

its inputs will not be modified by another task and its

outputs will not be accessed by another task. This property

effectively eliminates the data races to the input and output

dependences, so there is no need to maintain coherence for

this data during the execution of a task. This allows that the

data specified in the task dependences can be safely mapped

to the SPMs during the execution of a task without requiring

any costly synchronization mechanism in these non-coherent

memories.

Additionally, the execution model found in task-based

programming models offers the possibility to hide the

communication costs of DMA transfers. First, the runtime

system can perform scheduling decisions to exploit data

locality, aiming to reduce data motion by assigning tasks

to a core that already has the dependences mapped to its

SPM. Second, when data locality cannot be exploited, the

runtime system can trigger the DMA transfers for the task

dependences before the task is executed, so the communica-

tion is overlapped with other execution phases such as the

task scheduling phase or the execution of the previous task.

C. Suitability of Other Programming Models

Besides purely task-based models, other programming

models designed for heterogeneous architectures are good

Figure 2. Multicore architecture with the hybrid memory hierarchy. Each
core is augmented with a scratchpad memory (SPM) and a DMA controller
(DMAC).

candidates to transparently manage hybrid memory hier-

archies. Offload programming models for accelerators like

OpenACC [12] also use source code annotations and clauses

that allow to specify what data has to be copied from the

host CPU memory to the accelerator memory, they expose

similar memory models in terms of the privateness of the

data during the execution of the kernels and they also use a

runtime system to orchestrate the data transfers and kernel

executions. Thanks to these properties, the code annotations

can also be exploited in these models to map data to the

SPMs of a hybrid memory hierarchy. Moreover, opportuni-

ties to hide the cost of the data transfers are also found in

offload models, like in OpenAcc, that supports clauses to

allow asynchronous data transfers and to specify at which

point the execution should wait for all the asynchronous data

transfers to be completed.

Although this paper focuses on how to automatically

manage the hybrid memory hierarchy from the runtime

system of task-based programming models, the proposed

ideas can be easily adapted to other parallel programming

models with similar characteristics, so the contributions of

this paper are applicable to a wide range of programming

models and applications.

III. BASELINE ARCHITECTURE

This section explains the baseline architecture assumed in

this paper, a multicore architecture with a hybrid memory

hierarchy. The hybrid memory hierarchy consists of extend-

ing every core with a SPM and a DMA controller (DMAC),

as shown in Figure 2.

Every core is extended with a SPM that is added alongside

the L1 D-cache. All the cores can access any SPM by issuing

memory instructions to their address spaces. As shown in

Figure 3, a range of the virtual address space is reserved for

each SPM of the chip, that is direct-mapped to the physical

address space of each SPMs. Every core uses eight registers

to keep the address mappings for the SPMs, four to store

the starting and the final virtual addresses of the local SPM

and of the global range of the SPMs, and four to keep the



Figure 3. Address space mapping for the SPMs.

physical address space of all the SPMs and of the local SPM.

These registers are used to identify memory instructions that

access the virtual address space of the SPMs and to do the

virtual-to-physical address translation, allowing all the cores

to access any SPM by issuing loads and stores to their virtual

address ranges. When a memory instruction is executed,

before any Memory Management Unit (MMU) action takes

place, a range check is performed on the virtual address. If

the virtual address is in the range reserved for some SPM,

the MMU is bypassed and the registers are used to translate

the virtual address to a physical address that points to the

appropriate SPM.

This way of integrating the SPMs [13], [14], [15], [16]

allows to access them without using pagination, so that

memory accesses to the SPMs do not need to lookup the

TLB, minimizing the power consumption and ensuring de-

terministic latency. Additionally, the size of SPMs is usually

orders of magnitude smaller than the size of the RAM and

of the virtual address space of a 64-bit processor, so the

address ranges reserved for the SPMs occupy a very minor

portion of the virtual and physical address spaces.

The DMACs are in charge of transferring data between the

SPMs and the global memory (GM, which includes caches

and main memory). They support three operations: (1) dma-

get transfers data from the GM to a SPM, (2) dma-put

transfers data from a SPM to the GM and (3) dma-synch

waits for the completion of certain DMA transfers. Every

DMAC exposes a set of memory-mapped I/O registers to

the software so it can explicitly trigger the DMA operations.

When a DMA transfer is triggered by the software, the

DMAC forms a DMA command and stores it in a queue.

The DMAC splits the DMA command in bus requests of

the same size as the cache lines and issues them one by one

to the memory subsystem. The bus requests issued by the

DMACs are integrated in the cache coherence protocol of

the GM. The bus requests generated by a dma-get look for

the data in the caches and read the value from there if it

exists, otherwise they read it from the main memory. The

bus requests of a dma-put copy the data from the SPM to the

main memory and invalidate the corresponding cache line in

the whole cache hierarchy.

Figure 4. Timeline of a task-based application using cache-only and hybrid
memory hierarchies with different overlapping techniques for the DMA
transfers: no overlapping (SPM-NoOv), overlapping with runtime activity
(SPM-RT), and double buffering with other tasks (SPM-DB).

IV. TRANSPARENT MANAGEMENT OF SPMS IN

TASK-BASED RUNTIME SYSTEMS

The goal of the runtime system is to transparently manage

the SPMs of the hybrid memory hierarchy. This section

describes what data structures are added in the runtime

system and how they are operated to map task dependences

to the SPMs. In addition, it is explained how the runtime can

perform optimizations such as overlapping of DMA transfers

with computation and locality-aware scheduling.

A. Mapping Data Dependences to the SPMs

The typical behaviour of a thread in a task-based program

is an iterative process that consists of requesting a task to the

scheduler, executing the task and waking up its dependent

tasks. This behaviour with a cache-only memory hierarhcy

is shown in Figure 4 in the timeline labeled as Cache.

In the scheduling phase the thread running on a core

requests a new task to the scheduler. The scheduler selects

a task from the ready queue based on a certain policy2,

removes the task from the ready queue and passes its

associated task descriptor to the requesting thread. The task

descriptor includes information about the task such as a

pointer to the function that encapsulates the code or the

addresses of the dependences, that are passed to the function

as parameters when the task is executed. When the task

finishes, the scheduler wakes up its dependent tasks. The

scheduler locates in the TDG the node that represents the

task that has just finished and, for every out-going edge

representing an output dependence, marks as ready the in-

going edge of the neighbour node, which represents an input

dependence of a dependent task. When an input dependence

of a task is marked as ready the scheduler checks if all the

other input dependences of the task are also ready, so it can

be woken up. In the Cache behaviour the scheduler wakes

up ready tasks by inserting them in the ready queue.

2The default policy is First-In First-Out (FIFO), but Section IV-C presents
other policies aware of data locality.



Figure 5. Extensions in the runtime system (shaded in gray) to support
hybrid memory hierarchies.

For the hybrid memory hierarchy, four phases are added

to this execution model to map the task dependences to

the SPM of the core. The phases are map inputs and

synchronize inputs before the execution of a task and map

outputs and synchronize outputs after the execution of a

task. In addition, several data structures are added in the

runtime system to operate in these phases. Figure 5 shows

the extensions in the runtime system, where added data

structures are shaded in gray. Apart from the described ready

queue and TDG, the scheduler requires a Dependents List

to perform data locality-aware schedulings. Section IV-C

further describes this extension. Next, each core abstraction

in the runtime system has an associated thread that is pinned

to a physical hardware thread, and a task descriptor of the

currently executing task. A new per-core data structure, the

SPM directory, is added to the runtime system to manage

the mapping of inputs and output to the SPM. The SPM

directory keeps, for every dependence mapped to the SPM

of the core, the base address of the copy of the data in the

SPM. Finally, a Next Task Descriptor is required to perform

double buffering of DMA transfers with task execution, as

described in Section IV-B.

Figure 4 shows the behaviour of a task-based workload on

the hybrid memory hierarchy with different policies for the

DMA transfers. In the timeline SPM-NoOv DMA transfers

are not overlapped. In the map inputs phase, once a task has

been scheduled on a core, the task dependences are mapped

to the SPM of the core. First, for each entry in the SPM

directory of the core, it is checked if the mapping matches

any dependence of the task. If there is no match the SPM

directory entry is erased and the space in the SPM is freed

while, if a match is found, the task dependence is marked as

already mapped. Then, for every task dependence that is not

already mapped to the SPM, the necessary space is allocated

for it in the SPM, the new mapping is recorded in the SPM

directory and a DMA transfer is issued to copy the data to

the SPM. Note that the data for an output dependence is

also brought to the SPM because, if only some parts of the

chunk of data are modified, the write-back at the end of the

task execution will update the copy of the data in GM with

wrong values. Once all the dependences are mapped to the

SPMs the pointers that are passed to the task for the inputs

and outputs are changed, substituting the original pointers in

the task descriptor for the pointers to the data in the SPM.

In the synchronize inputs phase, just before the task starts

executing, the thread waits for the DMA transfers of the

task dependences to finish. When these DMA transfers have

finished the thread jumps to the code of the task to start its

execution. During the execution of the task the new pointers

to the SPM mappings ensure that memory operations to the

inputs and outputs access the address space of the SPM, so

that this memory serves the accesses.

At the end of the task execution the map outputs phase

takes place. In this phase the thread consults the SPM

directory and, for each output dependence of the task, a

DMA transfer is triggered to write back the results to the

GM. Note that, even in the case that the output dependence is

going to be reused as input by the following task executed

on the core, the DMA transfer to write back the data to

the GM is still done because other tasks that also reuse the

output dependence as input may be executed on other cores.

While the data of the output dependences is written

back, the scheduler wakes up the tasks that depend on

these dependences using the TDG. The main difference

with the already explained behavior is that new ready tasks

are kept apart from the ready queue until the write-back

DMA transfers finish. Finally, in the synchronize outputs

phase, the thread synchronizes with the write-back DMA

transfers for the output dependences of the task that has just

been executed. When the DMA transfers have finished, the

scheduler finally inserts the tasks that were woken up in the

previous phase in the ready queue. Then the thread repeats

the whole process to execute the next task.

B. Overlapping DMA Transfers with Computation

The DMA transfers triggered by the runtime system

to manage the SPMs may impose high overheads in the

synchronization phases if they are not overlapped with any

computation phase. This section explains two mechanisms

to reduce the impact of the communication cost of the data

transfers for the SPMs. The solutions consist of overlapping

the DMA transfers with the scheduling phase, denoted

SPM-RT, and double buffering with the execution of the

previous task, denoted SPM-DB.

For both approaches the runtime system needs to assign

two tasks per core instead of one. For this purpose a new

element is added in the core, the Next Task Descriptor, which

keeps the task that is going to be executed by the core after

the Current Task Descriptor.

The first approach consists of overlapping the DMA

transfers with the task wakeup and scheduling phases. This

behaviour is shown in Figure 4 in the timeline labeled as

SPM-RT, which shows how the phases for the execution of

two tasks T1 (the current task) and T2 (the next task) are

interleaved. Task T1 starts by copying its input dependences



to the SPM of the core in the map inputs phase. While the

data for T1 is being transferred using DMA transfers the

wakeup phase of the previous task T0 takes place, which

marks as ready the tasks that depend on T0. Then the thread

requests a task to be executed after T1 to the scheduler,

which assigns task T2 to the core. This task T2 is kept in

the next task descriptor field of the core abstraction in the

runtime system. Note that, since the map inputs phase of

T1 has already happened, the mappings for T1 are already

present in the SPM directory of the core when the next task

T2 is requested, so the locality-aware scheduler explained

in the next section takes into account the data mapped by

T1 although it has not been yet executed. Once T2 has been

scheduled as the next task on the core, the synchronization

with the inputs of T1 takes place and the task is executed

normally. Just after the task T1 finishes its execution, its

outputs are written back to GM in the map outputs phase

and the thread waits for the write-back to finish in the

synchronize outputs phase. At this point the runtime system

triggers the DMA transfers of the map inputs phase of the

next task T2, so they are overlapped with the wake-up phase

of T1 and the scheduling phase of the task that is going to

be executed after T2.

The second approach is a double buffering technique that

overlaps the DMA transfers for a task with the execution

of the previous task. The timeline labeled as SPM-DB in

Figure 4 shows this behaviour for the execution of two

tasks, the current task T1 and the next task T2. The timeline

shows that the succession of phases is the same as in the

SPM-NoOV behaviour, with the only difference that the map

input phases are not for the task that is about to be executed

but for the following one. The timeline starts with the map

inputs phase of the next task T2. While the dependences

for T2 are being transferred to the SPM, the thread waits

for the inputs of the current task T1 (its map inputs phase

is not shown because it happened before the execution of

the previous task), executes the task, copies the outputs,

calls the scheduler to wake up its dependent tasks and to

schedule a new task T3 and synchronizes with the output

DMA transfers. Then, this process is repeated for T2, which

gets executed while the inputs of T3 are transferred, and for

the subsequent tasks.

C. Locality-Aware Scheduling

The task scheduler is a fundamental part of a task-based

runtime system. As explained in the previous section, when

a thread wants to execute a task it first requests a new task to

the scheduler, which selects one of the available ready tasks

according to a certain policy. The locality-aware scheduler

selects tasks for execution aiming to minimize the amount

of data that has to be moved in the memory hierarchy. This

scheduler can be used to minimize the number of DMA

transfers for the SPMs of the hybrid memory hierarchy and

also to improve data locality in traditional cache hierarchies.

The locality-aware task scheduler uses an additional data

structure, the dependents list, as shown in Figure 5. The

dependents list tracks, for a given dependence, what are the

ready tasks that depend on it. This data structure is used by

the locality-aware scheduler to quickly identify tasks in the

ready queue that depend on a given dependence, avoiding a

traversal of the ready queue.

The dependents list is updated every time a task is inserted

or erased from the ready queue. When the scheduler inserts

a task in the ready queue it checks, for all the dependences

of the task, if they are present in the dependents list. If the

dependence is found the task is inserted in the list associated

to that entry, otherwise a new entry for the dependence is

created along with an empty list, in which the task is then

inserted. When the scheduler assigns a task to a core it

removes the task from the ready queue and traverses, for

each dependence of the task, its associated dependents list

to remove the task from the list.

When a core requests a new task to the scheduler this

selects from the ready queue the task that already has more

data mapped to the SPM of the core. In order to do this

the SPM directory of the core is traversed and, for every

dependence already mapped to the SPM, its dependents list

is accessed to obtain a list of ready tasks that reuse the

dependence as an input. The scheduler selects from this list

the ready task that has more data mapped to the SPM to be

executed on the core. If the data present in the SPM is not a

dependence of any ready task the scheduler selects the task

at the head of the ready queue.

D. Discussion

The ideas proposed in this paper allow the runtime system

to map task dependences to the SPMs of the hybrid memory

hierarchy. As a first approach, in this paper it is assumed that

the size of the task dependences is always smaller than the

available space in the SPMs for them. Under this assumption

it is the programmer who has to ensure that the data for the

task dependences fits in the SPMs so, when the application is

divided in tasks, this restriction has to be taken into account.

To allow programmers to taskify their codes without this

restriction several solutions can be applied at the runtime

system level. A straightforward solution would be to discard

mapping the data for the dependences that do not fit in the

SPM, so they are served by the cache hierarchy. Since this

solution may end up underutilizing the SPMs, some other

approaches could be studied, such as performing automatic

task coarsening in the runtime system to fuse or split tasks

according to the available space in the SPM, or including a

lightweight user-level pagination mechanism for the SPMs

so parts of the input and output dependences are mapped

and unmapped on demand.

The two proposed overlapping techniques have different

trade-offs. On the one hand, the execution of a task is usually

longer than only the wake-up and scheduling phases, so the



Table I
MAIN SIMULATOR PARAMETERS.

Cores 32 cores, Out-of-order, 6 instructions wide, 2GHz

Pipeline 13 cycles. Branch predictor 4K selector, 4K G-share,
front end 4K Bimodal. 4-way BTB 4K entries. RAS 32 entries

ROB 160 entries. IQ 64 entries. LQ/SQ 64/48 entries.
Execution 3 INT ALU, 3 FP ALU, 3 Ld/St units.

256/256 INT/FP RegFile. Full bypass.

L1 I-cache 2 cycles, 32 KB, 4-way, pseudoLRU

L1 D-cache 2 cycles, 32 KB, 4-way, pseudoLRU, stride prefetcher

L2 cache
Shared unified NUCA sliced 256KB/core

15 cycles, 16-way, pseudoLRU

Cache Real MOESI with blocking states, 64B line size
coherence distributed 4-way cache directory 64K entries

NoC Mesh, link 1 cycle, router 1 cycle

SPM 2 cycles, 32 KB, 64B blocks

DMAC
DMA command queue 32 entries, in-order

Bus request queue 512 entries, in-order

double buffering with the previous task has more time to

overlap the DMA transfers. On the other hand, doing double

buffer with the previous task imposes that the available space

in the SPM has to be shared by two tasks. Due to this

restriction, and depending on how the application is split

in tasks, more tasks may be needed to perform the same

amount of work, which can incur in higher runtime system

overheads [17], [18], [19].

Finally, task-based programming models themselves have

some limitations. Data structures with pointers and indi-

rections are hard to handle by task programming models,

specially in those where dependences are statically declared

using pragmas. In addition, in shared memory multicores

it is not strictly necessary to specify all the data produced

and consumed by the tasks as dependences, so programmers

some times only specify the minimum amount of depen-

dences that ensure the execution is correct, or introduce

additional variables to synchronize tasks manually. This kind

of bad programming practices can also cause an underuti-

lization of the SPMs in some cases.

V. EVALUATION

This section evaluates the hybrid memory hierarchy with

the runtime system techniques to manage the SPMs.

A. Experimental Setup

Gem5 [20] has been used to evaluate the proposal. The

architecture is simulated in full system mode, using the

cycle-accurate detailed out-of-order core model with a x86

ISA and the detailed memory hierarchy model (Ruby). Mc-

PAT [21] has been used to evaluate the power consumption,

using a process technology of 22nm and the default clock

gating scheme. The SPMs and the DMACs for the hybrid

memory hierarchy are added in both simulators. Table I

shows the main parameters of the simulated architecture.

For fairness, the L1 data cache of the cache-only hierarchy

is augmented to 64KB without affecting access latency,

matching the 32KB L1 data cache plus the 32KB SPM of

the hybrid memory hierarchy.

The simulated system is a Gentoo Linux with a kernel

2.6.28-4. The runtime system for the task-based program-

ming model is Nanos++ [22] version 0.7a, which natively

supports the OpenMP 4.0 [23] task constructs. The runtime

system has been extended to manage the SPMs with the

policies explained in Section IV.

Several representative HPC kernels together with parallel

benchmarks from the PARSEC suite [24] have been used in

the evaluation. As shown in Figure 1, the evaluated bench-

marks have a wide range of percentages of memory accesses

to inputs and outputs, from 0% to 76%. The benchmarks are

a Jacobi method (jacobi), a k-means clustering algorithm

(kmeans), a k-nearest neighbors algorithm (knn), an MD5

hashing algorithm (md5), an image raytracing and rotat-

ing application (raytrace), a decoding of JPEG images

with fixed encoding of 2x2 MCU size and YUV color

(tinyjpeg), and a one-dimensional vector addition and

reduction (vecadd and vecreduc, respectively). From the

PARSEC benchmark suite [24], blackscholes calculates

the prices for a portfolio of European options analytically

with the Black-Scholes partial differential equation (PDE)

and fluidanimate uses the Smoothed Particle Hydrody-

namics (SPH) method to simulate an incompressible fluid

for interactive animation purposes. Simlarge input sets are

used for the PARSEC benchmarks.

B. Performance Evaluation

Figure 6 shows the normalized execution time of the

hybrid memory hierarchy with respect to a cache-only mem-

ory hierarchy on a 32-core multicore. The execution time

of the three proposed data transfer strategies (SPM-NoOv,

SPM-RT and SPM-DB) are evaluated and, moreover, an

ideal configuration (SPM-Ideal) where DMA transfers occur

instantaneously is also shown for comparison purposes.

All results are normalized against the cache configuration,

so values below 1 represent reduction in execution time.

This figure further distinguishes how the execution time is

distributed between phases: execution of tasks (Task), syn-

chronization with DMA transfers (Sync), which includes

the synchronize inputs and outputs phases, and runtime

(Runtime), that includes the wake-up, scheduling and map

inputs and outputs phases.

It can be observed that the task execution phases are

accelerated in all benchmarks except fluidanimate,

raytrace and tinyjpeg, achieving an speedup of up

to 22% (md5). This happens because task dependences are

served by the SPMs in the hybrid memory hierarchy, so

performance penalties due to cache misses are minimized.

When the cache hierarchy presents close to 100% hit ratio in

the L1 D-cache (tinyjpeg) no performance improvements

are observed in the execution of tasks. In benchmarks

that do not map data to the SPMs (fluidanimate and



������������ ������������ ������ ������ ��� ��� �������� �������� ������ �������� ���
���

���

���

���

���

���

���

���

���

�
�
��

�
��
�
�
�
��
�
�
��
�

����� �������� ������ ������ ���������

�������

����

����

Figure 6. Reduction of execution time with respect to a cache-only memory hierarchy for different data transfer strategies: no overlapping (SPM-NoOv),
overlapping with runtime activity (SPM-RT), double buffering with other tasks (SPM-DB) and ideal (SPM-Ideal)

raytrace) the performance in the task execution phases

decreases because of the augmented L1 D-cache in the

cache-only baseline. These performance improvements in

the task execution phases allow the hybrid memory hierarchy

to achieve up to 5% speedup if DMA transfers are not

overlapped. In this SPM-NoOv approach, when big amounts

of data are mapped to the SPMs, the synchronization time

adds overheads of up to 11% (tinyjpeg), limiting the

performance of the hybrid memory hierarchy. On average,

the cache-only and the hybrid memory hierarchy offer the

same perfomance if DMA transfers are not overlapped.

SPM-RT shows that, by overlapping DMA transfers with

runtime activity, speedups of up to 16% (md5) are obtained,

resulting in an average speedup of 6% in all benchmarks. In

the SMP-RT approach the time spent in the synchronization

phases becomes negligible in all cases, so the performance

is very close to the one of the ideal configuration. For

SPM-DB, that uses double buffering to overlap the DMA

transfers with the execution of the previous task, the syn-

chronization time also becomes negligible but the number

of executed tasks increases together with the runtime over-

head in some cases. As a consequence, the time spent in

runtime phases increases significantly in some benchmarks

(jacobi, kmeans, vecadd and vecreduc) and negates

the performance benefits of using the SPMs. In other bench-

marks (knn and md5) the double buffering does not cause a

big increase of the runtime overhead, resulting in speedups

of 11% and 6%, respectively.

C. Power Consumption Evaluation

Figure 7 shows the reduction in power consumption of

the hybrid memory hierarchy with respect to the cache-

only memory hierarchy. All results are normalized to the

power consumption of the cache-only hierarchy, so values

below 1 represent a reduction in power consumption. All the

data mapping techniques (SPM-NoOv, SPM-RT and SPM-

DB) present similar results, so only one bar is shown for

the hybrid memory hierarchy. The figure also shows how

the power consumption is distributed among different com-

ponents: cores (CPU), L1 caches, L2 caches, prefetchers,

MSHRs and cache directories (Cache), the SPMs and DMA

controllers (SPMs + DMACs), and the network-on-chip and

���

���

���

���

���

���

���

�
�
�
�
�
��
�
�
�
��
�
�
�
�

����

���
��
���

���
�

����

���
���
���

���
����

���
��
�

����

��
��
��

����

��
�

����

��
�

����

���
���
��

����

���
���
��

����

��
��
��

����

��
���
��
�

����

��
�

��� ������ ������������ ��������

Figure 7. Reduction of power consumption of the hybrid memory hierarchy
(H) with respect to a cache-only memory hierarchy (C)

the memory controller (NoC + MC). Results show that

the power consumed by the CPUs is nearly the same in

both systems. It can be observed a reduction of the power

consumed in the caches, with savings of up to 47% in

benchmarks that map a significant portion of accesses to the

SPMs (jacobi, kmeans, knn and md5). The big power

savings in these components happen because, in the hybrid

memory hierarchy, many memory accesses are served by

the SPMs instead of the cache hierarchy. SPMs are able to

serve these memory accesses in a much more power-efficient

way, contributing with less than 10% of the total power

consumed for all benchmarks. In all cases, the overall power

consumption in the components of the memory hierarchy

(Caches and SPM+DMACs) is lower on the hybrid memory

hierarchy than in the cache-based hierarchy, resulting in an

average reduction in power consumption of 13%.

The speedup in Energy Delay Product (EDP) of the hybrid

memory hierarchy with respect to the cache-only hierarchy is

shown in Figure 8. Speedups in EDP are achieved in almost

all configurations, with average improvements of 14%, 29%

and 5% for SPM-NoOv, SPM-RT and SPM-DB, respec-

tively. These improvements are particularly significant in

the benchmarks that map more data to the SPMs, achieving

up to 65% improvement in EDP in knn with the SPM-RT

configuration. Some benchmarks present slowdowns in EDP

caused by the performance overheads in the runtime system

in the SPM-DB configuration and by the synchronization

time spent in SPM-NoOV configurations.



������������ ������������ ������ ������ ��� ��� �������� �������� ������ �������� ���
���

���

���

���

���

���

���

���

���

���

�
�
�
�
�
��
�
�
�
��
�
�

����� �������� ������ ������ ���������

Figure 8. Speedup in EDP with respect to a cache-only memory hierarchy for different data transfer strategies: no overlapping (SPM-NoOv), overlapping
with runtime activity (SPM-RT), double buffering with other tasks (SPM-DB) and ideal (SPM-Ideal)

������������ ������������ ������ ������ ��� ��� �������� �������� ������ �������� ���
���

���

���

���

���

���

���

���

���

���

���

���

�
�
�
�
�
��
�
�
�
��
�
�
�
�
��

����� �������� ������ ������ ���������

�����

�������

�����

����

Figure 9. Reduction of NoC traffic with respect to a cache-only memory hierarchy for different data transfer strategies: no overlapping (SPM-NoOv),
overlapping with runtime activity (SPM-RT), double buffering with other tasks (SPM-DB) and ideal (SPM-Ideal)

D. NoC Traffic Evaluation

Another important benefit of hybrid memory hierarchies is

the reduction of the interconnection Network on-Chip (NoC)

traffic. Figure 9 presents the reduction in NoC traffic with

respect to the cache-only hierarchy. Each bar shows the

percentage of traffic originated by different actions: cache

reads and writes (which include packets for data requests,

prefetch requests, data and acknowledgements), write-back

and replacement of cache lines (Wb-Repl, which includes

packets for write-back requests, replacements, invalidations,

data and acknowledgements), and DMA transfers (which

include packets for DMA requests, data and acknowledge-

ments). Results show that the hybrid memory hierarchy, for

all configurations, reduces the Noc traffic related to cache

reads, writes and WB-Repl significantly. This reduction is

directly proportional to the percentage of mapped accesses

to the SPMs, reaching a maximum of 62% reduction of read

traffic in md5 as most of the loads access task dependences

(as shown in Figure 1). Similarly, NoC traffic originated by

cache writes is reduced if output dependences are mapped

to the SPMs, achieving savings of up to 39% in jacobi

in this category, although the average reduction is 18% as

the portion of writes mapped to the SPMs is smaller than

in the case of loads. The reduced activity in the caches

also reduces cache misses, replacements and invalidations,

so the traffic in the WB-Repl group is reduced between

17% (blackschoes) and 59% (md5). In the hybrid mem-

ory hierarchy all this NoC traffic is saved thanks to the

introduction of SPMs, that needs DMA transfers to move

the data. The NoC traffic generated by DMA transfers to

move the task dependences contributes with less than 30%

of the original traffic in all cases, and never overweights

the traffic saved in the other categories. Consequently, an

average reduction in NoC traffic of 15% is obtained with

the hybrid memory hierarchy.

E. Mitigating the Effects of Fine-Grained Tasks

It has been shown that the runtime system overheads can

degrade performance when fine-grained tasks are required.

This is an important factor for the hybrid memory hierarchy,

as the size of the SPMs determines the task granularity.

One way to alleviate the runtime system overheads is

to increase the size of the SPMs. Figure 10 shows the

average reduction in execution time of all the benchmarks

with different SPMs sizes for the proposed data transfer

strategies, and each bar also shows the time distribution

among program phases. Four SPM sizes are studied: 32, 64,

128 and 256 KB with access times of 2, 3, 4 and 6 cycles,

respectively. The ROB is augmented to 192 entries in the

experiments with 256 KB SPMs to tolerate the latency.

Results show that, for all the data transfer strategies, the

average execution time of all the benchmarks decreases as

the size of the SPMs increase. It can be observed that the

size of the SPMs has a big impact in the runtime phases,

that represent more than 15% of the total execution time

with 32 KB SPMs and is reduced to less than 10% with

256 KB SPMs. This happens because bigger SPMs allow

to use coarser grain tasks in 6 of the 10 benchmarks, so

less tasks are needed to perform the computation and the

runtime overhead is lower. In the rest of benchmarks the task



�� �� ��� ���

�������������

����

����

����

����

����

����

����

����

����

�
�
��

�
��
�
�
�
��
�
�
��
�

����� ��������

�������

������

����

������

����

���������

Figure 10. Average reduction of execution time with respect to a cache-
only memory hierarchy for different SPM sizes and data transfer strategies:
no overlapping (SPM-NoOv), double buffering with other tasks (SPM-DB)
and ideal (SPM-Ideal)

granularity is fixed by the way the benchmark is decomposed

in tasks, so having bigger SPM sizes does not decrease the

runtime overhead. Another effect of augmenting the size of

the SPMs is that the synchronization time increases in the

SPM-RT approach for some benchmarks due to the reduced

length of the runtime phases and the bigger DMA transfers.

This causes that, for SPM-RT, the percentage of time spent

in synchronization phases goes from less than 1% in all

benchmarks with SPMs of 32 KB to an average 3% with

SPMs of 256 KB, reaching up to 8% in md5. It can also be

observed that the size of the SPMs has a negligible effect

on the execution time of the tasks, as the additional latency

of bigger SPMs can be hidden with the execution of other

instructions. All together, increasing the size of the SPMs

from 32 KB to 256 KB provides average execution time

reductions of more than 7% in all cases.

Another solution to mitigate the runtime system overheads

is to add hardware support for the runtime system [17], [18],

[19]. These solutions report speedups of 2 to 3 orders of

magnitude for the runtime system phases, eliminating the

overheads caused by fine-grained tasks.

Figure 11 shows an estimation of the performance of the

hybrid memory hierarchy when combined with this hardware

support. To estimate the performance the execution time of

the runtime system phases is accelerated by a factor of 100x.

The SPM-RT configuration is not considered in the study

because the runtime phases are too short to hide the cost of

the DMA transfers. It can be observed that the results for

SPM-NoOv are very similar to the ones presented in Fig-

ure 6, as the impact in performance of the hardware runtime

system is equal for both the baseline cache-only memory

hierarchy and the SPM-NoOv configuration. In contrast, the

hardware runtime system completely eliminates the runtime

overhead introduced by the bigger amount of tasks in the

SPM-DB approach, and provides close to ideal performance

because DMA transfers are completely overlapped with the

execution of the tasks. On average, an speedup of 8% is

achieved against a cache-only memory hierarchy, reaching

up to 22% for md5. These estimated results indicate that

SPM-DB is the appropriate solution for future multicores

with hardware support for the runtime system.

VI. RELATED WORK

A. Data-Flow and Task-Based Models

Task scheduling was first studied in the context of tiled

architectures like Raw [25] and stream architectures like

Imagine [26] or Merrimac [27]. These architectures used

compiler techniques [28], [29] to schedule tasks to cores,

transfer data and overlap communication with computation.

The drawback of these systems was that their programming

languages were either too complex for programmers or either

relatively simple but required of complex compiler heuristics

to ensure load balancing and real-time requirements.

Several task-based programming models have emerged in

the last years. OpenMP 3.0 [30] supports basic tasking con-

structs, that are extended with data dependences in OpenMP

4.0 [23]. Cilk [31] is a fork-join model enhanced with work-

stealing primitives to improve load balancing. OmpSs [22]

is a data-flow programming model that extends OpenMP

4.0 with additional features like task priorities or special

tasking constructs. The Codelets programming model [32]

breaks applications into tasks with dependences but, unlike

in OpenMP 4.0, the programmer needs to explicitly specify

the particular codelet each dependence is associated with.

Intel TBB [33] is a C++ template library that implements a

task-based execution model where the programmer splits the

serial code into tasks with data dependences. In Legion [34]

programs are decomposed in tasks that access data partitions

manually specified by the programmer, while in Sequoia [35]

tasks have their private address space and it is the program-

mer who organizes them hierarchically. Charm++ [36] is

a C++ based asynchronous message driven programming

model, while the Habanero [37] project proposes a pro-

gramming model, a compiler and a runtime system for

asynchronous task-based parallelism.

The ideas proposed in this paper apply to runtime-

managed task-based programming models that specify data

dependences between tasks, either using the real addresses of

the data or some abstraction from which the runtime system

can extract the addresses, like in OpenMP 4.0, OmpSs,

Codelets, Charm++ and Habanero. In task-based program-

ming models that do not specify data dependences, like Cilk

or Intel TBB, the runtime does not have the information of

what data is going to be accessed, so transparently managing

SPMs with the proposed ideas is unfeasible.

B. SPM Management in Hybrid Memory Hierarchies

Several forms of hybrid memory hierarchies have been

proposed in the past. Although the architecture details are

similar, the solutions manage the SPMs in different ways.

Static mapping schemes allocate data in the SPMs at the

beginning of the execution and the contents of the SPMs

do not change during the computation. This model is used

in the embedded domain, where the compiler identifies data

for the SPMs [38], and in NVIDIA GPUs [4], where the



������������ ������������ ������ ������ ��� ��� �������� �������� ������ �������� ���
����

����

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�

����� �������� ������ ���������

Figure 11. Speedup of the hybrid memory hierarchy with a hardware runtime system with respect to a cache-only memory hierarchy for different data
transfer strategies: no overlapping (SPM-NoOv), double buffering with other tasks (SPM-DB) and ideal (SPM-Ideal)

programmer uses keywords provided by CUDA to declare

what data is allocated in the SPMs.

Some works propose hybrid memory hierarchies where

the data is dynamically mapped to the SPMs. In these ap-

proaches the data accessed in a loop is moved to the SPMs in

a blocking fashion.Virtual Local Stores [16] partition parts of

the cache as SPMs and the programmer writes code to map

data to the SPMs. Bertran et al. [15] add a SPM alongside

the L1 cache of a single core processor and give the compiler

the responsibility to generate code to manage the SPM,

and Alvarez et al. [13], [14] propose a hardware/software

coherence protocol that allows the compiler to generate code

to manage the SPMs even in the presence of unknown

memory aliases. In [39] the programmer maps data to the

SPMs statically or dynamically and a memory manager

decides what SPMs addresses are used for the mappings.

Compared to these works, this paper uses the information

found in task-based programming models to manage the

SPMs transparently to the programmer and without any

hardware support. In addition, this paper shows that opti-

mizations to overlap DMA transfers with computation and to

improve data locality can be performed at the runtime system

level without imposing further programmability difficulties.

Task-based programming models have also been proposed

for architectures that combine caches and SPMs with dif-

ferent approaches to the one used in this paper. Architec-

tures such as SARC [40] or Runnemede [41] are designed

to be programmed with these programming models, and

OmpSs [42] is supported on the Cell processor [3].

C. Runtime-Aware Architectures

A new trend in computer architecture is to rethink the

design of multicores being aware of the runtime system that

manages the available architectural resources [6], [7].

For task-based programming models, some works propose

to add hardware support to accelerate functionalities of the

runtime system such as the construction of the TDG [17] or

the scheduling decisions [18], [19], minimizing the runtime

system overhead for fine-grained tasks. Some proposals use

the information of the task dependences to optimize the

memory hierarchy. The runtime system can do software-

guided prefetching [9] to the desired level of the cache

hierarchy, and also lock and flush cache lines to improve

the efficiency of the technique. Data communication in

producer-consumer relationships can also be efficiently done

by the runtime system with the adequate hardware sup-

port [10], and simplified coherence protocols guided by the

runtime system can be used to reduce coherence traffic [11].

Other programming models also offer the possibility to

optimize parts of the architecture. DeNovo [43] exploits

the data-race-freedom of disciplined programming models

to eliminate the transient states of the cache coherence

protocols, but requires additional hardware support for syn-

chronization primitives [44]. Totoni et al. [45] propose a

runtime-guided mechanism to switch off cache banks using

formal language theory to detect application phases.

VII. CONCLUSIONS

This paper proposes to manage the SPMs of multicore

processors with hybrid memory hierarchies in the runtime

system of task-based programming models, transparently to

the programmer. Task-based data-flow programming models

are very well suited for SPMs, since the task dependences

specify what data is going to be accessed during the ex-

ecution of the tasks, the programming model ensures that

no data races will happen on the data dependences during

the execution of the tasks, and the DMA transfers can be

overlapped with different phases of the execution model.

These properties allow the runtime system to exploit the

information of what data is going to be accessed by the

tasks, mapping the task dependences to the SPM of the

core where each task is going to be executed and applying

optimizations like locality-aware scheduling and overlapping

of DMA transfers with computation.

Results show that the hybrid memory hierarchy outper-

forms cache-only hierarchies by up to 16% when DMA

transfers are overlapped with the task scheduler, it consumes

up to 22% less power, and reduces NoC traffic by up

to 31%. When DMA transfers are not overlapped with

useful work the performance benefits reach up to 5%, and

double buffering with the previous task increases the runtime

system overheads so it is better suited for architectures with

hardware runtime systems or SPMs of hundreds of kilobytes.



ACKNOWLEDGMENT

This work has been supported by the Spanish Government

(grant SEV-2011-00067 of the Severo Ochoa Program), by

the Spanish Ministry of Science and Innovation (contract

TIN2012-34557), by Generalitat de Catalunya (contracts

2014-SGR-1051 and 2014-SGR-1272), and by the RoMoL

ERC Advanced Grant (GA 321253). Miquel Moretó has

been partially supported by the Ministry of Economy and

Competitiveness under Juan de la Cierva postdoctoral fel-

lowship number JCI-2012-15047, Marc Casas is supported

by the Secretary for Universities and Research of the Min-

istry of Economy and Knowledge of the Government of

Catalonia and the Cofund programme of the Marie Curie

Actions of the 7th R&D Framework Programme of the

European Union (Contract 2013 BP B 00243), and Emilio

Castillo is partially supported by the Spanish Ministry of

Education, Culture and Sports under grant FPU2012/2254.

REFERENCES

[1] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparing Memory Sys-
tems for Chip Multiprocessors,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture,
ser. ISCA ’07. ACM, 2007, pp. 358–368.

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel, “Scratchpad Memory: Design Alternative for
Cache On-chip Memory in Embedded Systems,” in Pro-
ceedings of the 10th International Symposium on Hard-
ware/Software Codesign, ser. CODES ’02. ACM, 2002, pp.
73–78.

[3] J. Kahle, “The Cell Processor Architecture,” in Proceedings
of the 38th Annual International Symposium on Microarchi-
tecture, ser. MICRO 38. IEEE Computer Society, 2005, p. 3.

[4] P. N. Glaskowsky, “NVIDIA’s Fermi: The First Complete
GPU Computing Architecture,” 2009.

[5] R. Hazra, “Accelerating Insights in the Technical Computing
Transformation,” in ISC keynote, 2014.

[6] M. Valero, M. Moretó, M. Casas, E. Ayguadé, and J. Labarta,
“Runtime-Aware Architectures: A First Approach,” Interna-
tional Journal on Supercomputing Frontiers and Innovations,
vol. 1, no. 1, pp. 29–44, Jun. 2014.

[7] M. Casas, M. Moretó, L. Alvarez, E. Castillo, D. Chasapis,
T. Hayes et al., “Runtime-Aware Architectures,” in Euro-Par
2015: Parallel Processing. Springer Berlin Heidelberg, 2015,
pp. 16–27.

[8] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and
J. Labarta, “Implementing OmpSs Support for Regions of
Data in Architectures with Multiple Address Spaces,” in
Proceedings of the 27th International Conference on Super-
computing, ser. ICS ’13. ACM, 2013, pp. 359–368.

[9] V. Papaefstathiou, M. G. Katevenis, D. S. Nikolopoulos, and
D. Pnevmatikatos, “Prefetching and Cache Management Us-
ing Task Lifetimes,” in Proceedings of the 27th International
Conference on Supercomputing, ser. ICS ’13. ACM, 2013,
pp. 325–334.

[10] M. Manivannan, A. Negi, and P. Stenström, “Efficient For-
warding of Producer-Consumer Data in Task-Based Pro-
grams,” in Proceedings of the 42nd International Conference
on Parallel Processing, ser. ICPP ’13. IEEE Computer
Society, 2013, pp. 517–522.

[11] M. Manivannan and P. Stenstrom, “Runtime-Guided Cache
Coherence Optimizations in Multi-core Architectures,” in
Proceedings of the 28th International Parallel and Distributed
Processing Symposium, ser. IPDPS ’14. IEEE Computer
Society, 2014, pp. 625–636.

[12] “The OpenACC Application Program Interface. Version 1.0,”
2011.

[13] L. Alvarez, L. Vilanova, M. Gonzàlez, X. Martorell,
N. Navarro, and E. Ayguadé, “Hardware-software Coherence
Protocol for the Coexistence of Caches and Local Memories,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’12. IEEE Computer Society, 2012, pp. 89:1–89:11.

[14] L. Alvarez, L. Vilanova, M. Moretó, M. Casas, M. Gonzàlez,
X. Martorell et al., “Coherence Protocol for Transparent
Management of Scratchpad Memories in Shared Memory
Manycore Architectures,” in Proceedings of the 42nd An-
nual International Symposium on Computer Architecture, ser.
ISCA ’15. ACM, 2015, pp. 720–732.

[15] R. Bertran, M. Gonzàlez, X. Martorell, N. Navarro, and
E. Ayguadé, “Local Memory Design Space Exploration
for High-Performance Computing,” IEEE Computer Journal,
vol. 54, no. 5, pp. 786–799, May 2011.

[16] H. Cook, K. Asanovic, and D. A. Patterson, “Virtual Local
Stores: Enabling Software-Managed Memory Hierarchies in
Mainstream Computing Environments,” University of Califor-
nia at Berkeley, Tech. Rep. UCB/EECS-2009-131, 2009.

[17] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia,
E. Ayguadé et al., “Task Superscalar: An Out-of-Order Task
Pipeline,” in Proceedings of the 43rd Annual International
Symposium on Microarchitecture, ser. MICRO ’43. IEEE
Computer Society, 2010, pp. 89–100.

[18] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Archi-
tectural Support for Fine-grained Parallelism on Chip Multi-
processors,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture, ser. ISCA ’07. ACM,
2007, pp. 162–173.

[19] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible Architec-
tural Support for Fine-grain Scheduling,” in Proceedings of
the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS ’10. ACM, 2010, pp. 311–322.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu et al., “The Gem5 Simulator,” SIGARCH Computer
Architure News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and
Manycore Architectures,” in Proceedings of the 42nd Annual
International Symposium on Microarchitecture, ser. MICRO
42. ACM, 2009, pp. 469–480.



[22] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell et al., “OmpSs: A Proposal for Programming
Heterogeneous Multi-core Architectures,” Parallel Processing
Letters, vol. 21, no. 02, pp. 173–193, 2011.

[23] “OpenMP Application Program Interface. Version 4.0,” 2013.

[24] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations,” in Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, ser.
PACT ’08. ACM, 2008, pp. 72–81.

[25] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee et al., “Baring It All to Software: Raw Machines,”
IEEE Computer Journal, vol. 30, no. 9, pp. 86–93, Sep. 1997.

[26] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson,
J. Namkoong, J. D. Owens et al., “Imagine: Media Processing
with Streams,” IEEE Micro, vol. 21, no. 2, pp. 35–46, Mar.
2001.

[27] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn,
J. Gummaraju et al., “Merrimac: Supercomputing with
Streams,” in Proceedings of the 2003 Conference on Super-
computing, ser. SC ’03. ACM, 2003, pp. 35–42.

[28] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Maps:
A Compiler-managed Memory System for Raw Machines,”
in Proceedings of the 26th Annual International Symposium
on Computer Architecture, ser. ISCA ’99. IEEE Computer
Society, 1999, pp. 4–15.

[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt:
A Language for Streaming Applications,” in Proceedings of
the 11th International Conference on Compiler Construction,
ser. CC ’02. Springer Berlin Heidelberg, 2002, pp. 179–196.

[30] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli et al., “The Design of OpenMP Tasks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, Mar. 2009.

[31] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded
Runtime System,” in Proceedings of the 5th Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP
’95. ACM, 1995, pp. 207–216.

[32] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao,
“Using a ”Codelet” Program Execution Model for Exascale
Machines: Position Paper,” in Proceedings of the 1st Interna-
tional Workshop on Adaptive Self-Tuning Computing Systems
for the Exaflop Era, ser. EXADAPT ’11. ACM, 2011, pp.
64–69.

[33] J. Reinders, Intel Threading Building Blocks. O’Reilly
Media, 2007.

[34] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing Locality and Independence with Logical Regions,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’12. IEEE Computer Society, 2012, pp. 66:1–66:11.

[35] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Hous-
ton, J. Y. Park et al., “Sequoia: Programming the Memory
Hierarchy,” in Proceedings of the 2006 Conference on Super-
computing, ser. SC ’06. ACM, 2006, pp. 83:1–83:11.

[36] L. V. Kale and S. Krishnan, “CHARM++: A Portable Concur-
rent Object Oriented System Based on C++,” in Proceedings
of the 8th Annual Conference on Object-oriented Program-
ming Systems, Languages, and Applications, ser. OOPSLA
’93. ACM, 1993, pp. 91–108.

[37] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar,
“Chunking Parallel Loops in the Presence of Synchroniza-
tion,” in Proceedings of the 23rd International Conference
on Supercomputing, ser. ICS ’09. ACM, 2009, pp. 181–192.

[38] O. Zendra, E. Jul, and M. Cebulla, “Survey of Scratch-
Pad Memory Management Techniques for low-power and -
energy,” in Proceedings of the 2nd ECOOP Workshop on Im-
plementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems, ser. ICOOOLPS ’07.
Springer Berlin Heidelberg, 2007, pp. 31–38.

[39] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor,
and J. M. Mendias, “An Integrated Hardware/Software Ap-
proach for Run-time Scratchpad Management,” in Proceed-
ings of the 41st Annual Design Automation Conference, ser.
DAC ’04. ACM, 2004, pp. 238–243.

[40] A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa,
F. Sanchez, A. Azevedo et al., “The SARC Architecture,”
IEEE Micro, vol. 30, no. 5, pp. 16–29, Sep. 2010.

[41] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David,
D. Dunning et al., “Runnemede: An Architecture for Ubiq-
uitous High-Performance Computing,” in Proceedings of the
19th International Symposium on High Performance Com-
puter Architecture, ser. HPCA ’13. IEEE Computer Society,
2013, pp. 198–209.

[42] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs:
A Programming Model for the Cell BE Architecture,” in
Proceedings of the 2006 Conference on Supercomputing, ser.
SC ’06. ACM, 2006.

[43] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve et al., “DeNovo: Rethinking the Memory
Hierarchy for Disciplined Parallelism,” in Proceedings of the
20th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’11. IEEE Computer
Society, 2011, pp. 155–166.

[44] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Effi-
cient Hardware Support for Disciplined Non-determinism,” in
Proceedings of the 18th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13. ACM, 2013, pp. 13–26.

[45] E. Totoni, J. Torrellas, and L. V. Kale, “Using an Adaptive
HPC Runtime System to Reconfigure the Cache Hierarchy,”
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. IEEE Computer Society, 2014, pp. 1047–1058.


