
Computing Three-dimensional Constrained Delaunay
Refinement Using the GPU

Zhenghai Chen
School of Computing

National University of Singapore
chenzh@comp.nus.edu.sg

Tiow-Seng Tan
School of Computing

National University of Singapore
tants@comp.nus.edu.sg

ABSTRACT
We propose the first GPU algorithm for the 3D triangulation refine-
ment problem. For an input of a piecewise linear complex G and
a constant B, it produces, by adding Steiner points, a constrained
Delaunay triangulation conforming to G and containing tetrahedra
mostly of radius-edge ratios smaller than B. Our implementation of
the algorithm shows that it can be an order of magnitude faster than
the best CPU algorithm while using a similar amount of Steiner
points to produce triangulations of comparable quality.

CCS CONCEPTS
•Theory of computation→Computational geometry; •Com-
puting methodologies→ Graphics processors;

KEYWORDS
GPGPU, Computational Geometry, Mesh Refinement, Finite Ele-
ment Analysis

1 INTRODUCTION
Constrained Delaunay triangulations (CDTs) are used in various
engineering and scientific applications, such as finite element meth-
ods, interpolation etc. Such a CDT, in general, is obtained from a
so-called piecewise linear complex (PLC) G containing a point set P ,
an edge set E (where each edge with endpoints in P), and a polygon
set F (where each polygon with boundary edges in E). All vertices,
edges and polygons of G also appear in T as vertices, union of
edges, and union of triangles, respectively; we also say T conforms
to G in this case. For our discussion, we call an edge in E a segment,
an edge in T which is also a part (or whole) of some segment a
subsegment, and a triangle in T which is also a part (or whole) of
some polygon of F a subface.

For a given constant B and a CDT T of G as input, the con-
strained Delaunay refinement problem is to add vertices, called
Steiner points, into T to eliminate or split most, if not all, bad tetra-
hedra to generate a new CDT of G. (A tetrahedron t is bad if the
ratio of the radius of its circumsphere to its shortest edge is larger
than B.) A solution to the problem should also aims to add few
Steiner points. The TetGen software by Si [3] is the best CPU so-
lution known to the problem. It, however, can take a significant
amount of time of minutes to hours to compute CDTs for some
typical inputs from applications. We thus explore the use of GPU
to address this problem.

2 OUR PROPOSED ALGORITHM
Our proposed algorithm gQM3D follows the general Delaunay refine-
ment paradigm where subsegments, subfaces and bad tetrahedra,

collectively called elements, are split in this order in many rounds
until there are no more bad tetrahedra. Each round, the splitting
is done to many elements in parallel with many GPU threads. The
algorithm first calculates the so-called splitting points that can split
elements into smaller ones, then decides on a subset of them to
be Steiner points for actual insertions into the triangulation T .
Note first that a splitting point is calculated by a GPU thread as
the midpoint of a subsegment, the circumcenter of the circumcircle
of the subface, and the circumcenter of the circumsphere of the
tetrahedron. Note second that not all splitting points calculated
can be inserted as Steiner points in a same round as they together
can potentially create undesirable short edges in T to cause non-
termination of the algorithm. So, the algorithm must filter away
some splitting points.

For a splitting point p, its Delaunay region is the set of elements
(subfaces or tetrahedra) who will become non-Delaunay (with their
circumcircles or circumspheres, respectively, enclosing p) if p is
inserted as a Steiner point into T . We know for two splitting points
with disjoint Delaunay regions, their insertions into T will not
result in them forming an edge in T (while T is maintained as a
constrained Delaunay triangulation at the end of each round). As
such, and to achieve good speed up with using the GPU, our algo-
rithm seeks to identify a large set of splitting points with mutually
disjoint Delaunay regions in each round. So, the problem becomes
how to identify disjoint Delaunay regions efficiently.

The trivial way of one thread taking care of one splitting point to
calculate its Delaunay region is inefficient as different threads can
need vastly different amounts of computation to process Delaunay
regions of different sizes. Instead, a good approach should deploy a
number of threads in proportion to the size of a Delaunay region
so each thread does more or less similar amount of work. Such a
desirable regularized work approach is developed in our grow-and-
blast scheme as outline in the next paragraph.

Initially, a thread is assigned to an element where the splitting
point is located. This element is also a part of the Delaunay region
of the splitting point. The thread then checks the neighbors (sub-
faces and tetrahedra) of this element to decide whether they are
also a part of the Delaunay region of the splitting point. For such
a neighbor, it is marked (grown) as a part of the Delaunay region,
and a thread will be assigned to it to perform the similar kind of
checking and marking subsequently. Having said this, when an
element appears as a neighbor to many and is to be marked into
more than one Delaunay regions, only one is allowed while oth-
ers with predetermined lower priorities must be stop (blasted) and
their corresponding splitting points filtered away. Those Delau-
nay regions remain are mutually disjoint, and their corresponding
splitting points are inserted concurrently into T as Steiner points.

ar
X

iv
:1

90
3.

03
40

6v
1

 [
cs

.G
R

]
 7

 M
ar

 2
01

9

I3D ’19, 21-23 May 2019, Montreal, Quebec, Canada Zhenghai Chen and Tiow-Seng Tan

γ 0.05 0.10 0.15 0.20 0.25
algorithm

TetGen gQM3D gQM3D+ TetGen gQM3D gQM3D+ TetGen gQM3D gQM3D+ TetGen gQM3D gQM3D+ TetGen gQM3D gQM3D+
B

1.4
Time (min) 2.5 1.3 0.9 6.6 2.2 1.5 20.4 3.1 2.3 28.6 3.9 2.9 53.4 4.5 4.0
Points (M) 0.95 0.93 0.93 1.52 1.49 1.50 2.63 2.59 2.61 3.11 3.06 3.08 4.24 4.18 4.21
Tets (M) 5.98 5.85 5.88 9.58 9.40 9.44 16.68 16.37 16.45 19.67 19.35 19.46 26.89 26.44 26.64
Bad Tets 401 308 376 1461 1416 1564 2160 2059 2156 2885 2939 2894 3677 3395 3765

1.6
Time (min) 1.6 1.3 0.7 4.1 2.2 1.3 12.8 3.1 2.2 18.3 3.9 2.6 34.3 4.5 3.3
Points (M) 0.68 0.69 0.69 1.12 1.13 1.14 2.03 2.06 2.07 2.39 2.44 2.45 3.33 3.39 3.41
Tets (M) 4.27 4.33 4.34 7.00 7.10 7.11 12.73 12.91 12.97 15.06 15.29 15.36 20.94 21.28 21.40
Bad Tets 303 252 285 1279 1152 1245 1877 1725 1848 2520 2355 2480 3235 2924 3264

1.8
Time (min) 1.11 1.08 0.70 2.90 1.67 1.19 9.02 2.48 1.91 12.76 3.29 2.71 24.13 4.63 3.04
Points (M) 0.56 0.57 0.58 0.92 0.95 0.95 1.73 1.79 1.79 2.05 2.12 2.12 2.88 2.97 2.99
Tets (M) 3.46 3.57 3.58 5.74 5.93 5.93 10.76 11.10 11.14 12.75 13.16 13.22 17.94 18.51 18.60
Bad Tets 251 229 252 1083 1467 1107 1599 1473 1582 1998 2004 2025 2696 2484 2768

2.0
Time (min) 0.84 1.00 0.58 2.21 1.81 1.04 6.86 2.62 1.77 9.72 3.10 2.06 18.52 3.59 3.02
Points (M) 0.49 0.51 0.51 0.82 0.85 0.85 1.57 1.62 1.63 1.86 1.92 1.93 2.63 2.73 2.74
Tets (M) 3.02 3.14 3.14 5.06 5.26 5.27 9.66 10.03 10.06 11.48 11.89 11.94 16.25 16.85 16.91
Bad Tets 232 201 235 967 935 996 1381 1294 1397 1746 1670 1759 2330 2149 2332

Table 1: Comparison among algorithms with 25K input points of the ball distribution. "Tets" denotes tetrahedra.

3 EXPERIMENTAL RESULTS
All experiments are conducted on a PC with an Intel i7-7700k
4.2GHz CPU, 32GB of DDR4 RAM and a GTX1080 Ti graphics
card with 11GB of video memory. TetGen is the main CPU software
we use to compare with our gQM3D implemented with CUDA pro-
gramming model. During our experimentation, we notice gQM3D
does not have particular advantage over CPU approach for the
initial part of the computation. We thus replace this part of gQM3D
by using TetGen in CPU to obtain a variant called gQM3D+. We note
that CGAL [1] and TetWild [2] are not part of the comparison for
now as they address a slightly different problem that allows output
not conforming to the input PLCs.

0.05 0.10 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

Uniform (B=1.4) Gaussian (B=1.4) Ball (B=1.4)

Sphere (B=1.4) Sphere (B=2.0)

Rectangles to points ratio

S
p

e
e

d
u

p

S
p

e
e

d
u

p

Rectangles to points ratio

0.05 0.10 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

Figure 1: Speedup of gQM3D (left) and gQM3D+ (right).

Table 1 and Figure 1 report the running time and triangulation
quality obtained with synthetic PLCs with points of different distri-
butions. γ is the ratio of the number of polygons (which are mainly
rectangles) to the number of points in the input PLC. Both gQM3D
and gQM3D+ can achieve speedup of an order of magnitude while
generate outputs with similar sizes compared to that of TetGen.
Figure 2 shows (cut-off views) the comparison of output triangu-
lations of a real-world object for TetGen and gQM3D. The outputs
have similar sizes with the latter having slightly more Steiner points

20465 points, 83768 tetrahedra, 7783 bad tetrahedra 20991 points, 86380 tetrahedra, 7518 bad tetrahedra

Figure 2: The output triangulations of a triceratops gener-
ated by TetGen (left) and gQM3D (right).

but fewer bad tetrahedra. Both triangulations have similar distribu-
tion of dihedral angles (ranging from 0◦ to 180◦) as shown in the
inserted line graphs and thus of equally good triangulations.

4 CONCLUDING REMARKS
We propose the first GPU algorithm for the constrained Delaunay
refinement problem. It is designed with regularized work in mind
to suit GPU computation. With this work and our continuing effort
to optimize our implementations of gQM3D and gQM3D+, the compu-
tation of a quality triangulation can possibly be an integral part of
interactive engineering or scientific applications. In addition, the
approach and strategy used in this work are of independent interest
to studying other variants of 3D and surface triangulation problems
such as that by CGAL and TetWild to realize them in GPU.

REFERENCES
[1] Pierre Alliez, Clément Jamin, Laurent Rineau, Stéphane Tayeb, Jane Tournois, and

Mariette Yvinec. 2018. 3D Mesh Generation. In CGAL User and Reference Manual
(4.13 ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#
PkgMesh_3Summary

[2] Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele
Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article
60 (July 2018), 14 pages. https://doi.org/10.1145/3197517.3201353

[3] Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator.
ACM Trans. Math. Softw. 41, 2, Article 11 (Feb. 2015), 36 pages. https://doi.org/10.
1145/2629697

https://doc.cgal.org/4.13/Manual/packages.html#PkgMesh_3Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgMesh_3Summary
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697

	Abstract
	1 Introduction
	2 Our Proposed Algorithm
	3 Experimental Results
	4 Concluding Remarks
	References

