

Edinburgh Research Explorer

Invalidate or Update? Revisiting Coherence for Tomorrow’s Cache
Hierarchies

Citation for published version:
Zhu, M, Shahab, A, Katsarakis, A & Grot, B 2021, Invalidate or Update? Revisiting Coherence for
Tomorrow’s Cache Hierarchies. in 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, pp. 226-241, 30th International Conference on Parallel
Architectures and Compilation Techniques, 26/09/21. https://doi.org/10.1109/PACT52795.2021.00024

Digital Object Identifier (DOI):
10.1109/PACT52795.2021.00024

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1109/PACT52795.2021.00024
https://doi.org/10.1109/PACT52795.2021.00024
https://www.research.ed.ac.uk/en/publications/10e9a961-61c9-4d2e-8fed-dfb0c33a91c2

In Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT’21)

Invalidate or Update?
Revisiting Coherence for Tomorrow’s Cache Hierarchies

Mingcan Zhu, Amna Shahab, Antonios Katsarakis, Boris Grot
University of Edinburgh

FirstName.LastName@ed.ac.uk

Abstract—Shared on-chip last-level caches (LLCs) play a
key role in capturing the large working sets of today’s data-
intensive workloads. However, they pose a fundamental scal-
ability challenge in the transistor-limited post-Moore regime.
Recent work has argued for Next-Generation LLCs (NG-LLC)
based on private caches in die-stacked DRAM, which can
provide hundreds of MBs of per-core LLC capacity at similar
access latency to today’s shared LLCs. While NG-LLCs offer
a number of advantages, their private design exposes long-
latency inter-core reads for read/write shared data, which hurt
performance in parallel workloads. One way to eliminate the
long latency of reads to read/write shared data is through the
use of updating coherence protocols that eagerly push updates
from a writer core into caches of recent readers. Alas, these
protocols are known to generate excess cache and interconnect
traffic that can be detrimental to overall performance. While
hybrid protocols that try to alleviate the problem by combining
invalidating and updating protocols have been proposed, we
find their performance benefit to be small for NG-LLCs.

This work observes that the number of writes to a read/write
shared cache block is likely to be stable over several consecutive
write/read iterations. Based on this insight, we propose the 1-
Update protocol that records the number of writes without
an intervening read by a sharer, and subsequently uses the
recorded value to send at most one update after that number
of writes has taken place. We have formally verified 1-Update
and show that it achieves high efficacy in covering remote
misses for read/write shared cache blocks while minimizing
excess cache and interconnect traffic.

Keywords-cache coherence; LLC; write invalidate/update;

I. INTRODUCTION

As Moore’s Law comes to its inevitable demise, the
main question facing CPU designers is how to increase
performance in the absence of doubling transistor budgets.
With workloads in a variety of domains – from mobile to
servers – being increasingly data driven, accommodating
large datasets for fast access has emerged as a particular
pain point. Today’s CPUs address this need through the
use of shared on-die LLCs, whose capacity tends to be
proportional to core count. Problematically, shared on-die
LLCs suffer from a number of shortcomings. First and fore-
most, their capacity is naturally constrained by the available
area on a die. Unless dies can be made substantially larger,
the end of transistor scaling spells an end to substantive
LLC capacity increases, which is problematic in light of
rapidly-growing dataset sizes. Even if die area could be

enlarged, thus enabling greater LLC capacities, the LLC
access latencies would suffer due to long on-chip wire
spans. Yet another problem of shared LLCs is that they
are prone to performance degradation due to contention
whenever multiple workloads share a die. Having more
cores on a CPU naturally facilitates greater degrees of
workload consolidation and colocation, which exacerbates
the contention problem.

While big advances in transistor density for planar dies
seem unlikely in the foreseeable future, advances in semi-
conductor technology have enabled 3D stacking of memory
dies. 3D die stacking naturally side-steps the planar density
problem by growing capacity in the vertical dimension
through layering multiple conventional dies on top of each
other. Indeed, many existing DRAM memory products al-
ready take advantage of 3D stacking to increase density
per package. For instance, JEDEC’s recent die-stacked high
bandwidth memory (HBM) specification, HBM2E, features
up to 12, 2GB-DRAM dies in the stack [1].

Can advances in die stacking technology help solve prob-
lems of on-chip LLCs? Recent work says yes. Researchers
have argued for stacking DRAM atop a CPU to provide
massive LLC capacity. Doing so naively, however, would
result in large access delays to the multi-GB stack, since
LLC requests would still need to traverse large swaths of
planar, wire-delay-dominated DRAM on their way to the
destination bank. To avoid this problem, prior work proposes
organizing stacked DRAM into vertical vaults, whereby each
vault is private to a given core [2]. The effective result is
an all-private cache hierarchy, where L1 and L2 caches are
on-die (as in today’s designs), while the LLC is also private
per core but resides in die-stacked DRAM.

Figure 1 shows the conventional shared LLC and the
die-stacked private alternative. The die-stacked private LLC
arrangement, which we refer to as as Next-Generation LLC
(NG-LLC), helps minimize planar wire delays, enabling
LLC capacities in the hundreds of MBs at access latencies
similar to today’s shared LLCs. Combined with the fact
that private caches are naturally immune to sharing-induced
contention, NG-LLCs significantly improve performance on
a wide range of workloads, making them a highly attractive
design point for CPUs in the post-Moore world.

While NG-LLCs can dramatically improve LLC hit rates

due to their vast capacities, their private nature presents
a performance obstacle in parallel workloads that have
read/write data sharing. Shared on-chip LLCs enable fast
hits if the shared data resides in the LLC; if that is not the
case, they can quickly redirect the access to the core caching
it because the directory is often co-located with the LLC
– thus, the directory lookup and LLC access can happen
concurrently. However, in an NG-LLC, there is no shared
LLC – as such, the private LLC must first be looked up,
following that the distributed directory must be accessed,
and after that the private cache hierarchy of the target core
must be searched starting from the private LLC. The bottom
line is that NG-LLC adds extra accesses in the critical path
of a lookup for shared data, and for data that is actively
read/write shared by two or more cores, the associated
latency overhead may become significant.

One well-known method to reduce the latency of remote
accesses for read/write shared data is for the writers to
eagerly push the data to the likely readers. Protocols that
do this are called updating cache coherence protocols and
have been implemented in commercial shared-memory mul-
tiprocessors, including the DEC Firefly [3]. While updating
protocols can be effective at reducing stall times for read-
ers of read/write shared data, they are known to generate
considerably more cache-to-cache traffic than invalidating
protocols because many writes are not consumed by another
core before another write happens [4]; as such, a significant
amount of cache and interconnect bandwidth is wasted on
purposeless update messages.

Several optimizations to updating protocols have been
proposed over the years aimed at limiting the traffic overhead
stemming from updates. A state-of-the-art scheme, called
the competitive update protocol, reverts to an invalidating
protocol after some number of consecutive updates for
a block have been sent without an intervening read [5].
Unfortunately, competitive update and other such schemes
are, at heart, updating protocols that default to sending
updates for shared blocks and hence trade-off the amount
of network traffic with coverage. For these schemes, higher
coverage of remote reads necessitates sending more updates.

In this paper, we observe that in many instances, a writer
core performs multiple writes to the block before it is
requested by any of the readers. We further find that the
number of writes by a writer core before a read by a
different core is likely to be stable over multiple write/read
iterations. Based on these two insights, we propose the 1-
Update protocol. For each read/write shared cache block, the
protocol records the number of writes to the block before
it is read by any other cores. The next time the block is
modified by any core in the system, the protocol counts the
number of writes to the block without an intervening read by
a different core and, once this count reaches the previously-
observed value, it sends an update to the recent readers of
the block.

Core

L1-IL1 & L2

Core

L1-IL1 & L2

LLC

Core

L1-IL1 & L2

Core

L1-IL1 & L2

(a) Conventional shared LLC

 Core

 Core

 Core

 Core

L1 I$L1 D$ L1 I$L1 & L2

L1-IL1 & L2 L1-IL1 & L2

L2 $

L2$

L2 $L2 $

L2 $

L2$

L2 $

L2$

L2 $L2 $

L2 $

L2$

L2 $L2 $

DRAM
Layers

CPU Layer

Core’s
Private
Vault

LLC LLC

LLCLLC

...

Vault
Controller

(b) Private LLC in 3D DRAM

Figure 1. Conventional shared LLC and NG-LLC in a 4-core CPUs. Figure
from [2].

The 1-Update protocol is, at its core, an invalidation-based
protocol whose invariant is that at most one eager update
is sent for each write/read iteration. This guarantees that
even if the update was premature, the amount of wasted
bandwidth is minimized. The protocol requires straight-
forward extensions to the baseline MOESI protocol and just
7 additional bits of metadata per cache block. The metadata
is independent of the number of cores in the system, making
the protocol attractive for commercial settings. We formally
specified and verified the correctness of 1-Update in TLA+.

Simulating a 16-core CMP with NG-LLCs running PAR-
SEC workloads, we show that:
• NG-LLCs can significantly improve performance over

shared LLCs but at the price of increased latency on
accesses to read/write shared data.

• An updating protocol has the potential to hide the read
latency for reader cores; however, the traffic increase
due to frequent unconsumed updates leads up to a 9%
performance degradation.

• For a given read/write shared cache block, the number of
writes before a read by a consumer core is stable across
write/read iterations. Based on this insight, we propose
the 1-Update protocol that tracks the number of writes to
a shared block and sends at most one update to the reader
cores after the observed number of writes.

• The 1-Update protocol improves performance by 8%, on
average, while increasing on-chip interconnect traffic by
9.5%. The 1-Update protocol is formally verified.

II. MOTIVATION

A. LLC: Shared or Private?

Modern chip-multiprocessors (CMP) employ large on-die
cache capacities in an attempt to capture the large instruction
and data working sets of today’s applications. The large
cache capacity is deployed as a multi-level hierarchy where
the first two levels (L1 and L2) are private per core,
while the third level (LLC) is logically shared by all the
cores. Physically, the shared LLC is split into slices and
distributed across the processor die, linked through the on-
chip network (NOC).

A shared LLC maximizes effective LLC capacity as only
a single copy of data blocks used by multiple cores is

2

kept. It also facilitates data sharing between threads at low
latency. Despite these benefits, shared LLC designs also
have significant drawbacks. Accessing an LLC slice requires
routing the request over slow wires and the multi-hop
NOC topology, which leads to a high average LLC access
latency. Furthermore, co-running workloads contend for the
shared LLCs capacity, potentially leading to performance
interference and degradation of quality-of-service for user-
facing applications [6], [7].

Private LLCs offer an alternative to address the shortcom-
ings of shared LLCs. Accessing a core’s private LLC does
not require multi-hop traversal over the NOC, hence keeping
the access latency low. Per-core private LLCs naturally elim-
inate cache contention between co-running workloads and
provide strong performance isolation for the applications.
However, private LLCs statically partition the total LLC
capacity between the cores at design time. This wastes
LLC capacity whenever the number of active cores is fewer
than the total number of cores or for co-running workloads
with skewed LLC capacity requirements. Moreover, private
LLCs suffer from lower effective LLC capacity due to the
replication of data blocks used by multiple cores. The two
aforementioned factors make the cost of moving from shared
to private LLCs in current processors with on-chip LLCs
prohibitive. For example, Intel’s 3rd generation Ice Lake
Xeon server processors are equipped with a shared LLC
with under 2MB of capacity per core. While the effective
shared LLC capacity – on the order of 22–32 MBs in typical
configurations – is able to capture a significant part of the
instruction and data working sets, in a private configuration,
it may be grossly insufficient.

B. Next-Generation LLCs

Die area and power constraints limit the LLC capacity that
can be afforded on a planar die – a problem that is bound
to get worse as Moore’s Law grinds to a halt. Meanwhile,
the rapidly maturing die-stacking technology offers multiple
layers of tightly-integrated memory cells to alleviate the
area constraints of planar designs [8], [9]. Indeed, JEDEC’s
recent die-stacked HBM specification, HBM2E, and the
upcoming HBM3 feature up to 12 layers in the stack, with
each layer providing up to 2GB capacity [1].

Recent work has argued for NG-LLCs that exploit the
vast capacity offered by die-stacked memory technology to
provide per-core private LLCs in DRAM stacked directly
atop a CPU die [2]. The proposed design uses a multi-
layered DRAM stack vertically integrated with the CPU
die, and vertically partitioned into slices called vaults, a-la
the Hybrid Memory Cube (HMC) [10]. NG-LLC eschew
a shared, on-chip LLC in favour of die-stacked per-core
vaults, which serve as the private LLC for that core. In
this organization, the advantages of a private LLC may be
enjoyed without severely restricting per-core LLC capacity
as would be the case with planar on-die LLCs.

 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

0.8

0.9

1.0

1.1

1.2

1.3

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

32MB Shared + DRAM$ 32MB Private + DRAM$

8GB Shared Die-stacked 8GB Private Die-stacked

Figure 2. Performance of shared vs private LLCs as a function of capacity.

We study the performance impact of shared vs private
LLC organizations in a 16-core setup (details available in
Section V). We consider two aggregate LLC capacities: (i)
a planar on-chip arrangement with 32MB, which amounts
to 2MB per core and is representative of current processors,
and (ii) die-stacked DRAM with 8GB, which amounts to
512MB per core, obtained through technology modeling
under constrained die area in [2]. For the fairest comparison,
we augment the 32MB LLC with an 8GB on-package
DRAM cache similar to Intel’s Xeon Phi Knights Land-
ing [11], shared by all processor cores. The conventional
DRAM cache is hardware-managed and uses a page-based
arrangement. While conventional DRAM caches are shown
to have access times similar to that of main memory, we
optimistically assume the access latency to be 20% faster
than main memory. We evaluate the resulting configurations
on PARSEC-3.0 [12] workloads. Refer to Section V for more
details on the evaluation methodology.

Figure 2 plots the results. The system performance is
normalized to the system with a 32MB shared LLC. We
observe that in systems with a 32MB LLC, the shared
configuration outperforms the private configuration by 7%,
on average. In fact, a shared 32MB LLC outperforms a
private design with the same aggregate capacity on all
evaluated workloads except blackscholes, which has a
very small working set.

In contrast, given an LLC with 8GB of total capacity, the
private configuration greatly outperforms the shared LLC.
Across all the workloads, the 8GB private LLC configuration
(representing NG-LLC) yields a geomean performance im-
provement of 13% over the 32MB shared LLC configuration,
with a maximum improvement of 30%. In comparison, the
8GB shared LLC configuration yields only a 2% geomean
performance improvement over the 32MB shared LLC. The
reason for the small gain from a shared 8GB LLC is that
it exposes long interconnect delays that offset the benefit of
high aggregate capacity of a shared cache.

To summarize, shared LLCs are the superior choice when
cache capacity is greatly constrained. However, when LLCs
are deployed in high-capacity memory stacks vertically
integrated on the CPU die, the large per-core LLC capacity,
together with fast access, makes private LLCs the winning
configuration.

3

C. Cache Coherence for NG-LLCs

In an all-private cache hierarchy, the caches can be kept
coherent through a conventional directory-based protocol.
For example, SILO [2] leverages a conventional directory-
based protocol to maintain coherence among the private
caches. Coherence needs to be maintained after the last
private cache level, which in the case of an all-private
hierarchy is the LLC. Therefore, the directory is logically
located between the LLC and the main memory. Physically,
the directory is address-interleaved and resides in the same
DRAM vaults as the LLC, which means that a fraction of the
die-stacked DRAM’s capacity is reserved for the directory.

As proposed by Shahab et al. [2], NG-LLC uses a MOESI
coherence protocol, which extends the MESI protocol with
the Owned (O) state [13]–[15]. In a shared LLC, a dirty-
eviction-triggered writeback from a core’s final private level
of cache requires an access to the on-chip LLC, which is the
coherence point. However, in a system equipped with an all-
private cache hierarchy, the coherence point is main memory,
with writebacks requiring expensive main memory accesses.
To circumvent the need for an expensive main memory
writeback, the O state in a MOESI protocol designates an
’Owner’ for a particular block. A block in O state is valid,
dirty and Owned; that is, the cache that has the block in this
state must respond to coherence requests for the block. In
this way, sharing of a modified data block is allowed without
necessitating a writeback of the block to main memory.

Figure 3 illustrates accessing read/write shared data from
different cores. When a read access request to a data block
misses in a core’s private LLC, an access to the cache block’s
directory slice is triggered. The directory node sits in the
stacked DRAM but in a potentially different vault than the
requesting core’s LLC slice. Once the request is routed to
the appropriate vault and the directory access is complete,
the request is directed either to a memory controller (if the
data is not cached by any of the cores) or to a cached copy
identified by the directory. Assuming the data is found in
another core’s LLC slice, an access to shared data incurs
a total of three DRAM accesses and three separate NOC
traversals (to the directory, to the destination slice, then back
to the requester) in the critical path of the read. In contrast,
in a shared LLC organization, if the requested data resides
in the LLC, no additional accesses are needed. If the data
resides in another core’s private cache, the fact that directory
is co-located with the LLC in a shared setup again results in
fewer cache accesses (no separate directory access and no
additional LLC access at the destination core since the LLC
is shared) and fewer NOC traversals than in an all-private
hierarchy.

When a core wishes to write to a data block, it sends a
request to the corresponding directory node to invalidate all
remote copies of the data block and assign the writer as the
Owner of the data block. Subsequent reads from other cores

LLC / Dir

L2 L2

L1 L1

C0 Cn

block found in LLC

1

2

1

2 block found in remote
core's private L1

(a) Shared LLC

L2 L2

L1 L1

LLC LLC

Dir

C0 Cn

1

2

1

2

block found in remote
core's private LLC

block found in remote
core's private L1

(b) Die-stacked private LLC
Figure 3. Accessing inter-core shared data with (a) shared LLC, (b) private
LLC.

must contact the directory to find the location of the latest
version of the data, which triggers an indirection in the form
of a long-latency remote read as described earlier.

The bottom line is that accesses to shared data in an
all-private cache hierarchy incur higher latency than in a
shared hierarchy. This is less of an issue for read-only
shared data, since the large capacity of NG-LLCs reduces the
likelihood of capacity misses and eliminates inter-core cache
contention. However, for read/write shared data, the high
latency of core-to-core transfers in a private cache hierarchy
may be frequently exposed.

D. Sharing Behavior Characterization

Section II-B showed how a private LLC configuration is
the superior choice in the context of large aggregate LLC
capacities. However, as noted in Section II-C, private LLCs
incur higher latency when it comes to inter-core data sharing.
We next examine the sharing behavior of PARSEC-3.0 [12]
and Splash-3 [16] workloads1 to understand how it impacts
performance of NG-LLCs. In this study, we use 512MB per-
core NG-LLCs (Section V details all system parameters).

We classify all cache blocks into three categories: (1)
Private: only one core accesses this block; (2) Shared read-
only: the cache block is accessed by at least two cores in
a read-only manner; and (3) Shared read/write: the cache
block is accessed by two or more cores, and at least one
write is performed on the block. We study the distribution
of LLC access to these three categories.

Figure 4 shows the results. We observe that majority of
LLC accesses fall into private cache blocks, which corrobo-
rates prior work [17]. On average, private data accounts for
78% of all cached blocks in PARSEC and 72% in Splash.
The average proportion of LLC accesses to shared read-only
data for PARSEC and Splash is 14% and 18%, respectively.
LLC accesses to shared read/write data blocks constitute a
non-trivial 8% for PARSEC and 10% for Splash. Shared

1For brevity, we refer to these as simply PARSEC and Splash.

4

78%

14%

8%

Private Read-only Read/write

(a) PARSEC

72%

18%

10%

Private Read-only Read/write

(b) Splash
Figure 4. Classification of data cached in the LLC for PARSEC and Splash.

read-only data blocks may be replicated in each sharing
core’s private vault and all subsequent requests may be
served locally. However, accesses to the shared read/write
data blocks trigger a remote read whenever the reader first
accesses the data after a different core performed a write.

To evaluate the performance impact of shared read-only
and shared read/write data blocks in a system with NG-LLC,
we artificially decrease the latency of accesses to these two
types of data blocks served from remote vaults to the latency
of a local vault access. The results are shown in Figure 5. We
find that after such idealized reduction in the access latency
of remote read/write shared data, the potential performance
improvement across all PARSEC workloads ranges from
9% to just under 20% (14.5% geomean). In contrast, the
potential performance improvement for reducing the access
latency of remote read-only shared data is relatively small,
ranging from 1.9% to 3.6%, with a geomean of 2.3%.
Results on Splash benchmarks (not shown in the figure)
show very similar trends.

Similarly, we measure the system performance impact of
read/write shared data in a system with a shared LLC and
the results are shown in Figure 13. We find that the potential
performance improvement across all PARSEC workloads on
a system with a shared LLC ranges from 1.5% to just under
8.0% (4.2% geomean). Compared to NG-LLC, the potential
performance improvement is considerably smaller with a
shared LLC, owing to the faster access latency as explained
in Section II-C.

We conclude that modern multi-threaded workloads ex-
hibit significant data sharing, both read-only and read/write.
Slow accesses to shared read/write data are particularly detri-
mental to the performance of NG-LLC and are a promising
optimization point from a coherence protocol’s perspective.
Meanwhile, potential performance gains of optimizing read-
only sharing in NG-LLC and read/write sharing in shared
LLC are relatively small.

III. COHERENCE FOR READ/WRITE DATA

A. Invalidating vs Updating Protocols

Today’s processors employ invalidating coherence proto-
cols that guarantee cache coherence by first invalidating all
sharers of a cache block prior to a write. This is facilitated
through the use of a directory, which tracks the state of each
block (e.g., shared or modified) and the set of cores that may

0%

5%

10%

15%

20%

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Im

p
ro

ve
m

en
t

Read/Write Read-only

Figure 5. Performance improvement in a NG-LLC after eliminating remote
access latency for read/write shared data.

have the block in their private cache hierarchy. Invalidating
protocols allow multiple cores to share a clean copy of the
block while enforcing the invariant that at most one core
may hold the block in a modified state.

As discussed in the previous section, invalidating proto-
cols trigger a performance pathology for read/write shared
data in systems with private caches, including in NG-LLCs,
due to the long access latency on reads after a write. Mean-
while, our characterization (Section II-D) and prior work
have observed that coherence misses caused by read/write
data sharing account for a significant portion of overall
cache misses [18]–[20]. Thus, reducing the access latency
for read/write shared data in systems with an NG-LLC can
improve performance of parallel workloads (Figure 5).

To eliminate the access latency for read/write shared data,
prior work has proposed the use of updating coherence
protocols, which can eliminate cache misses on reads after a
write by eagerly pushing the data to the potential readers [4],
[21]. The problem, however, is that a writer may update a
cache block multiple times before it is consumed by any of
the reader cores. As a result, an updating protocol may cause
significant cache and interconnect traffic by propagating
multiple updates for a given cache block, which, in fact,
go unconsumed [4], [5], [22].

Two additional factors exacerbate this problem. First,
updating protocols tend to track the recent sharers of a block,
and propagate updates to all the sharers. Thus, bandwidth
waste is multiplicative in the number of sharers a block has
had. Second, in strongly-consistent memory models, such as
TSO, all copies of the modified cache block that are updated
in remote caches are placed in a Shared state following
the update, while the writer’s copy is also downgraded to
the Shared state. Consequently, a subsequent write by the
same writer necessitates first invalidating all of the sharers,
which requires a round of invalidation and acknowledgement
messages whose count is proportional to the number of shar-
ers. The combination of these factors amplifies the network
traffic cost of updating protocols by many fold compared
to an invalidating protocol, potentially compromising the
latency benefit of an updating design.

B. Adaptive Protocols

Given that both invalidating and updating protocols have
their advantages and drawbacks, researchers have proposed

5

hybrid protocol designs that seek to capitalize on advantages
of both. One way of implementing the hybrid scheme is
through software support, whereby the programmer indicates
the memory pages or data structures that are read/write
shared and would benefit from updates [4]. While such
software-directed schemes are simple to support from a
system’s perspective, they rely on the programmer to tag
data structures and the corresponding memory pages with
the coherence write action to employ. To avoid the need
for burdensome software support, we focus on hardware-
directed schemes.

Hardware methods track the sharing behavior at cache
block granularity and decide (1) which blocks are actively
shared, and (2) whether updating or merely invalidating a
block is the preferred action in the face of a write. A state-of-
the-art class of scheme, as highlighted by Culler and Singh
in their seminal book [4], is the competitive update (CU)
protocol, which limits the number of updates generated for
a block without an interleaving read by a core other than
the writer. The CU protocol, derived from the competing
snooping protocol [23], and extended to a directory-based
implementation [24], associates a counter value with each
cache block. Upon every block read by the local core, the
counter value is set to the maximum threshold t. This counter
value is decremented upon every block update received from
a remote core. While the counter value is greater than 0, the
write action for the block is an update. Upon the counter
counting down to 0, the block is invalidated in all remote
caches and no further updates are triggered while the current
writer continues to modify the block.2 Alternatively, the
block may be probabilistically invalidated, as in the Sun
Sparc Center 2000 [25].

Another enhancement to the update-based protocol is
a write grouping (WG), also known as write combining,
scheme [26], [27]. WG can combine multiple writes to
the same cache block into a single update to reduce the
coherence traffic. This scheme requires an additional bit
in the write buffer to indicate if the block address of the
incoming write matches that of the previous write. If the
addresses match, then the additional bit is set to 1 indicating
that the current write can be grouped with previous write(s).
If the addresses do not match, the bit is set to 0 indicating
a new write group. Write groups are delayed in the write
buffer to utilize temporal locality, thus a delay counter is
also required. The head entry in the writer buffer is sent to
the cache line if (i) An incoming write cannot be grouped
(ii) the write buffer is full, or (iii) the delay counter has
reached its threshold. The delay counter is initialized to a
given number of cycles and resets each time a new write is

2As noted earlier, with a strongly-consistent memory model, each update
must be preceded by an invalidation. Thus, in the CU protocol, once the
write-update threshold reaches the value of 0, an update is sent to all sharers,
then the writer invalidates all sharers to modify the block yet again, and
after that no further invalidates (or updates) are sent.

grouped.

C. Comparison of Existing Protocols

As discussed in the previous section, the CU protocol tries
to balance the network traffic stemming from unnecessary
updates with the latency reduction that updates may provide
for read/write shared data. The update threshold t is the
critical parameter that determines the efficacy of the CU
approach. If t is set to a low value, then few updates are
sent and the overhead from the extra interconnect and cache
traffic is low. The downside of t being set to a low value
is that it reduces the opportunity to hide the read latency in
case the number of writes prior to a read by a different core
is greater than t.

To evaluate the performance impact of different threshold
values of CU protocol in a system with private LLCs, we
vary the threshold in the range 1–4 and measure the system
performance on the PARSEC benchmark. We simulate a
16-core system with an NG-LLC as discussed in previous
sections; full details of the methodology can be found in
Section V. We find that for the CU approach, a threshold
t = 3 yields the highest performance across our workload
set, and use this value in our studies.

We next compare the following five protocols in the
studied NG-LLC setting: (1) MOESI invalidating protocol
(WI); (2) pure updating protocol that extends MOESI (WU);
(3) CU hybrid protocol with t = 3; (4) WG hybrid protocol
with the delay counter set to 5 cycles as suggested in [26];
and (5) an ideal scheme that incurs zero latency to access
read/write shared data from a writer core’s cache hierarchy
by a reader core. The WU protocol records the sharers of
each cache block at the point of an invalidation by a writer
core and sends updates only to these recent sharers. Each
write is preceded by an invalidation to guarantee consistency
(TSO, in our system), while each update places the sharers
(and the writer) into the Shared state. The updated data will
be attempted to be pushed to one core’s private LLC. If
the block has been previously evicted by the core, then no
cache insertion is performed. The CU protocol extends the
WU protocol by reverting to an invalidating protocol after
t updates have been sent without an intervening read, as
explained in the previous section.

Figure 6 summarizes the results of the study. We make
two key observations from the data. First, the pure updating
protocol hurts performance by greatly increasing cache and
interconnect contention, corroborating prior studies [5]. That
is, while lowering the access latency for the small fraction of
the blocks that are read/write shared, the protocol increases
the average access latency for other cache traffic to the
detriment of the system. Second, both the WG and the CU
adaptive protocols improve performance over WI with an
average of 3.0% and 3.8% respectively, with CU performing
slightly better then WG. The reason why CU outperforms
WG is that CU reverts to an invalidating protocol after some

6

 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

32MB Private + DRAM$

8GB Private Die-stacked

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

WI WU WG CU Ideal

Figure 6. Comparison of coherence protocols for NG-LLCs in PARSEC.

number of updates, thus reducing on-chip traffic, while WG
always sends an update, though sometimes is able to reduce
the number of messages via grouping. However, although
they are able to limit the excess traffic in the system, they fall
considerably short when compared to the ideal improvement
of 14.5%.

IV. 1-UPDATE PROTOCOL

A. Basic Idea

As explained in the previous section, an updating protocol
has the potential to eliminate the latency of a read for
shared data following a write by a different core; however,
capitalizing on this opportunity requires avoiding excess
cache and NOC traffic due to unneeded updates. To address
the latter, we introduce the 1-Update protocol, which seeks
to deliver the latency benefits of an updating design while
minimizing the potential for excess traffic. The key idea
behind 1-Update is to precisely identify when to update the
sharers, and to send the update only then and at no other
times. The key question is how to determine when to send
the update.

We make a critical insight that the number of consecutive
writes before a read by any of the sharers is likely to be
stable across write/read iterations. Such stability arises, for
instance, when the writer updates a synchronization variable
(e.g., a counter) a recurring number of times and/or updates
a shared data structure that has multiple fields in the same
cache block.

Figure 7 shows the number of consecutive write/read
iterations in which the number of writes prior to a read
from a different core is unchanged in the PARSEC suite. For
instance, in the best case, we see that over 60% of the time,
the number of consecutive writes by the writer core prior to
a read by a sharer is unchanged after five write/read itera-
tions. Overall, the figure shows that consecutive write/read
iterations are very likely to have the same number of writes
without an intervening read by a sharer. On average, the very
next write/read iteration has a likelihood of 70% to have the
same number of writes as the previous iteration and 50%
after four iterations.

The 1-Update protocol leverages write stability by updat-
ing sharers only after the previously observed number of
writes to the block. To achieve this, 1-Update records the
number of times a shared block is modified by one core prior

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

WI WU WG CU Ideal

0%

20%

40%

60%

80%

100% 2 3 4 5

Figure 7. Write stability of PARSEC: number of consecutive write-read
iterations in which the number of writes prior to a read by another core is
constant.

to a read by a different core. The next time a core (any core)
writes to the block, 1-Update tracks the number of writes
without an intervening read from another core, and once the
previously-observed number of writes has been reached, the
writer updates all of the sharers. No further updates are sent
until a read is detected and another write iteration begins.

The 1-Update protocol guarantees that at most one update
is sent per each write/read iteration. More precisely, the
protocol behaves as an invalidating protocol at all times
other than when the write count has reached the previously
observed write count for a shared block. If the read happens
exactly after the expected number of writes, and if one or
more of the previous sharers are doing the read, than the
update is effective at hiding the read latency. If a read arrives
before the expected number of writes, the protocol acts as
a normal invalidating protocol, and no bandwidth is wasted
on updates. Only if the number of writes prior to a read is
greater than in the previous write/read iteration, or if all of
the readers are different than before, is bandwidth entirely
wasted on the update.

B. Protocol Details

Starting with an updating protocol that extends an inval-
idating protocol as described in Section II and Section III,
supporting 1-Update involves only a small set of changes.
Specifically, 1-Update necessitates a small number of meta-
data bits per cache block in all of the caches and minimal
extensions to the updating coherence protocol. 1-Update re-
quires no new coherence protocol messages, and no changes
to the directory structure but only some extra bits to store
the previous sharing information in the directory. Moreover,
the amount of per-cache-block metadata necessitated by 1-
Update is independent of the number of cores and cache
levels in the system, which makes the protocol trivial to
deploy across a family of products.

The following metadata must be maintained in all cache
blocks in the processor:
Read flag (F): Indicates whether a core has read the block.
Multiple cores may set this flag. A read that encounters
the block with F set at 0 transitions it to 1. Meanwhile a
write that encounters the opposite (i.e., F set at 1) resets it
to 0. This latter transition (a write-after-read to the block)
establishes the beginning of a new write/read iteration.
Write count (W): A saturating counter that tracks the number

7

of consecutive writes performed since the last read of the
block in a non-exclusive state and (i.e., in S or O). The
counter stops when a read from a remote core is detected.
Writes until an update (U): When a read terminates a
sequence of writes, this counter is initialized with the value
of W, denoting when an update will take place. U is
decremented after each write; once it reaches 1, an update
is sent to all sharers prior to the beginning of the current
write/read iteration, at which point the coherence state is
changed from Modified to Owner. Figure 8 presents a
flowchart detailing the workings of the threshold U, when
to invalidate and when to push an update.

We find that three bits are sufficient for both W and U,
and one bit for F, for a total of 7 bits per cache block. This
information is exchanged across cores without introducing
new coherence messages as follows:

• When a cache-to-cache block transfer happens, F, W,
and U simply travel with the data on a cache-to-
cache block transfer, thus transferring any state changes
occurred in an exclusive state.

• While in non-exclusive state, only the read flag F of
a local block may change upon a read. Rather than
eagerly communicating F with the sharers or the direc-
tory, which would mandate extra protocol messages and
a latency penalty in the critical path, we communicate
this directly with the writer lazily. Remember that F is
needed only before a write to detect if a write-after-read
occurred, denoting the beginning of a new write/read
iteration. Therefore, we simply piggyback F (1 extra
bit) on the ACK response to a writer’s invalidation
request for exclusive access.

Note that with this lazy propagation of F, we risk that F
might have been set on a block which is subsequently evicted
and thus not conveyed to the writer. However, this does not
affect the correctness, it may only lead to a misprediction.
Moreover, our empirical results show that the large capacity
of NG-LLCs makes this an unlikely problem for actively
shared data.

We now detail the write-update operation, illustrated in
Figure 9. In the MOESI protocol, for each cache block, the
directory holds the state of the block, an owner field and a
sharer list. When the block is in the Modified state, the owner
field indicates the writer. Thus, when the block is being mod-
ified, the sharer list reflects previous sharers. This allows 1-
Update to track previous readers with no additional metadata
in the directory. When an update message must be sent,
the owner of the block (the writer) contacts the directory,
which provides the list of previous sharers. Subsequently,
the writer performs the update on its local block, which also
transitions from Modified state to Owner state, and uses
the obtained sharing information to update the cores that are
on the sharing list with the up-to-date data.

Our current design of 1-Update performs an in-place

Yes

No
U > 1

Block in M

No coherence message
U = U - 1

Invalidate
U = U - 1

Update
 U = U - 1

U = 1 U remains 0
No

Block in M

Yes

Yes No No
Yes

Write

Figure 8. Flowchart of decision on invalidate or update.

update of a recently invalidated block in the sharer’s LLC.
We find that, given the large capacity of NG-LLC, the
likelihood of an invalidated block being evicted before an
expected update is low. If the block update is successful,
the sharing core sends an ACK to the directory. If the block
update is not successful because the block has been evicted
before the update’s arrival, then a NACK is sent to the
directory and the update is suppressed. Finally, the directory
updates its block’s state and sharers.

Overall, there are three prediction outcomes based on the
number of total consecutive writes in the current write/read
iteration and the number of writes in the previous iteration:
1) Accurate prediction: The current number of writes is

exactly the same as previous one. After the writer pushes
the data to previous sharers, the potential readers hit on
the data and F is set to 1. The next time the writer writes
to the block, it triggers a round of invalidations and F
is sent back to the writer with at least one of the ACKs.
This triggers a new write/read iteration.

2) Read before predicted update: This occurs when a core
reads the block before the predicted update (i.e., before
U has been decremented to 1). This behaves similarly
to a read miss to modified data in a pure invalidate-
based protocol. The core gets the data from the writer
but note that the writer will set the F to 1 after receiving
an ACK in a subsequent invalidation, thus terminating
this write/read iteration. The writer then prepares for a
new write/read iteration by resetting W and U.

3) No read after predicted update: This occurs if, after the
writer’s update message, no other core reads the block. In
this case, U remains at 0, while W continues increasing
until a read takes place or until the counter (W) saturates.

C. Operational Example

This section provides a detailed example to illustrate how
the 1-Update protocol works.

Assume one cache block is shared by three cores: C1,
C2 and C4. The last write count (without intervening reads)

8

���������� ���	�
��

���

������� ���������������������
����������� �

���� � ��� �
� !�"#��

������$�� �%&���#!�����#&'�#(��)�&
 ��"#�� *+,-./0-1/2+
�'3

(a) Write-invalidate

M->O
2'

I->S
3'

I->I
3'

M->O
4'

Dir

Update on Prediction
Data

Ack

Requester

Data

Nack

(could not
insert to
cache)

Provide
sharers
(locked

cacheline)

1

2

3

4

3

* prev. sharers may be stored either in cache or dir.

4

(b) Write-update

Figure 9. Coherence actions for write-invalidate and write-update.

W is 4, which was followed by reads by both C2 and C4.
Consequently, U is set to 4 (i.e., same as W). C1 performs
a number of writes on this block. The first write, which
invalidates the copies in C2 and C4, finds the read flag F
equal to 1 (indirectly through the ACKs that contain F) and
resets F back to 0. Right after that first write, W also resets
to 1 while U is decremented to 3.

Consecutive writes from C1 will trigger the increment
of W and decrement of U. Note that because the block is
already in modified state, no extra coherence messages are
sent – exactly as in a typical pure invalidating protocol.

When U is decremented to 1, an update round is triggered.
C1 first contacts the directory to obtain the stored sharing
information.

Subsequently, the directory puts the block into an internal
state indicating that an update is in progress (the same state
used when an invalidation is in progress) and responds to
C1 with the last sharer list (C2 and C4 in this example).
Once C1 receives the directory response, its local block state
transitions from Modified state to Owner and an update
(i.e., containing the local block’s data and metadata) is issued
to C2 and C4. Upon the reception of the update, C2 and C4
try to update the block in their private LLCs. If successful
(or not successful), they respond back to the directory with
an ACK (or NACK). The directory finalizes the write by
updating the sharers and state of the block.

D. Verification

We have specified the 1-Update protocol in TLA+ and
verified it through model checking for safety and the absence
of deadlocks. For safety, we verified several invariants; we
elaborate on the two most important ones. First, the single-
writer-multiple-reader invariant (SWMR) [28]: at any given
time, there can either be at most one writer that can update
a cache block or one or more readers that can safely read
the cache block. Second, the data value invariant: if a cache
block is in a state that can be read, it must reflect the most
recent value update to that cache block.

Our TLA+ model allows for the number of processors, the
predicate on switching update policy (based on the number
of writes), and the total number of writes to be configured.
We have verified up to six processors, six writes, and an
updated policy triggered at three writes. The complete list of
invariants and the TLA+ specification are available online.3

V. METHODOLOGY

A. Evaluated Systems

We model a 16-core CMP with 3-way out-of-order (OoO)
cores running at 2.0 GHz. Table I details the system param-
eters. We consider a TSO memory consistency model and
a 3-level inclusive cache hierarchy, which is representative
of state-of-the-art systems. The L1 and L2 are SRAM-based
and are private to each core. While our evaluation mainly
focuses on NG-LLCs (die-stacked private LLCs [2]), we also
consider a conventional on-die shared LLC.

We use CACTI (details in Section V-B) to obtain DRAM
and SRAM access latencies. For the DRAM cache we use a
design similar to Intel’s Xeon Phi Knights Landing [11],
which is placed on-package and shared by all processor
cores. The on-package DRAM cache is hardware-managed
and uses a page-based organization. Although conventional
DRAM caches have been shown to have access times
similar to or higher than that of main memory [29], we
optimistically assume the access latency to be 20% faster
than main memory. We use a closed-page policy for DRAM
in all three settings (die-stacked LLC, on-package cache,
and main memory), which outperforms the open-page policy
on server workloads [30]. We assume main memory access
latency of 50ns [2].

We focus on the following cache coherence protocols:

Baseline (WI): A directory-based write-invalidate MOESI
cache coherence protocol.

Competitive update (CU): Combines an updating protocol,
which extends WI as described in Section III. Recall that the
CU protocol switches from an updating to an invalidating
one after t updates have been sent. We use a threshold of
t = 3, which yields the highest performance for the evaluated
workloads.

3https://github.com/ease-lab/1Update

9

https://github.com/ease-lab/1Update

Processor 16-core, 2GHz, 3-way OoO, 128 ROB,
ISA: UltraSPARC v9

L1-I/D 64KB, 8-way, 64B line, 3-cycle, private,
stride data prefetcher

L2 512KB, 8-way, 64B line, 5-cycle, pri-
vate, stride data prefetcher

Interconnect 4x4 2D mesh, 3-cycles/hop
On-chip SRAM
shared LLC

32 MB shared NUCA, 2MB per core,
7-cycle, 16-way, 64B line, non-inclusive
MESI, LRU

On-chip SRAM
private LLC

32 MB in total, 2MB per core, 7-cycle,
16-way, 64B line, non-inclusive MESI,
LRU

Die-stacked
DRAM shared
LLC

Direct-mapped, 64B line, 512B row, in-
clusive MOESI

512MB vault/core, NUCA, 8GB in total,
50 cycles average round trip

Die-stacked
DRAM private
LLC

Direct-mapped, 64B line, 512B row, in-
clusive MOESI

512MB vault/core, 8GB in total, 32 cy-
cles

On-package
DRAM cache

8GB, page-based, direct-mapped, 40ns

Main memory Access latency 50ns

Table I
MICROARCHITECTURAL PARAMETERS OF THE SIMULATED SYSTEMS.

1-Update: The 1-Update cache coherence protocol, as de-
scribed in Section IV.

B. Latency and Energy Modeling

We model SRAM and DRAM access latencies in CACTI-
3DD [31] at 22nm. Our SRAM LLC model uses the low-
standby-power (LSTP) cell type and accounts for advanced
latency reduction techniques [32].

We measure the energy and power consumed by the die-
stacked LLC using a hybrid energy modeling framework that
employs both technology-specific parameters and statistics
obtained from cycle-accurate simulations. We use CACTI-
3DD for the technology-specific energy parameters for die-
stacked DRAM [31]. In our evaluation, we take into account
energy dissipated by the additional traffic on the on-chip
network. For the on-chip network, we use energy parameters
published in recent literature [33]. The router energy for 64-
bit flit is 2pJ and wire/link energy for 64-bit flit is 4.5pJ. For
die-stacked DRAM, the static power is 120mW per vault and
the dynamic energy is 0.4nJ per access.

C. Simulation Infrastructure

We use Flexus [34], a full-system simics-based mul-
tiprocessor simulator, which implements the SPARC v9
ISA. Flexus extends simics with out-of-order cores, memory
hierarchy, and NOC. We use the SMARTS [35] sampled exe-
cution methodology to reduce simulation time. Each sample
uses a warmed up architectural and microarchitectural state
from which cycle-accurate simulation are run to measure

performance. As the performance metric, we use the number
of application instructions executed per cycle (including time
spent executing the operating system code), which reflects
system throughput [34].

D. Workloads

For our evaluation, we primarily use contemporary paral-
lel applications from the PARSEC-3.0 benchmark suite [12].
In our 16-core setup, the number of threads equals the
number of cores. We use the native input sets and only
simulate the Region of Interest (ROI). Compilation and
runtime issues prevented us from being able to run two
workloads: streamcluster and swaptions.

We also evaluate the following workloads from Splash-
3 [16]: barnes, fft, lu_cb, lu_ncb, ocean_cp and
ocean_ncp. The rest of Splash workloads are unavailable
because of compilation, runtime and measurement issues.

Similar to PARSEC, we use the native input sets and only
simulate the ROI.

We generate samples over 80 billion instruction (5 billion
per core) for each workload. We run cycle-accurate sim-
ulation for each sample using checkpoints comprising full
architectural and partial microarchitectural state, including
caches and branch prediction structures. For each sample, we
simulate 100K cycles to warm-up and achieve steady state,
we then use the following 700K cycles for measurement.

VI. EVALUATION

We evaluate 1-Update protocol against competing proto-
cols based on NG-LLC on PARSEC and Splash workloads.
Additionally, we evaluate all baseline protocols and 1-
Update in the context of a conventional shared LLC.

A. Performance on PARSEC

Figure 10 plots the performance of the system with
the evaluated protocols. All results are normalized to the
baseline: NG-LLCs with directory-based WI protocol (see
Section V for detailed description). We observe that the CU
protocol delivers a geomean performance improvement of
only 3.8%, which is much lower than the ideal possible
improvement of 14.5%. In comparison, 1-Update delivers a
performance improvement of 6.1%–10.2%, with a geomean
performance improvement of 8.0% and closer to the ideal
improvement of 14.5%. This is expected because 1-Update is
based on a write-invalidate protocol, which is more friendly
to network traffic; whereas CU protocol is based on a write-
update protocol, which tends to generate more traffic and
hence affecting the system’s performance.

B. Coherence Miss Comparison

The 1-Update protocol is designed to reduce coherence
miss traffic caused by typical write-invalidate protocols.
We evaluate the coherence misses of the baseline, the CU
protocol, and the 1-Update protocol. Figure 11 presents

10

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

WI CU 1-Update Ideal

Figure 10. Performance with NG-LLCs.

0.9

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

0%

20%

40%

60%

80%

P
er

ce
n

ta
ge

 o
f

co
h

er
en

ce
 m

is
se

s
el

im
in

at
ed

CU 1-Update

Figure 11. Coherence misses.

the results, normalized to the baseline. We observe that
both CU and 1-Update protocols reduce the coherence
misses compared to the baseline write-invalidate protocol
by 45% and 55% respectively. Workloads that observe large
coherence miss reduction (e.g., canneal, facesim) also
observe higher performance improvement. Overall, 1-Update
covers a larger fraction of coherence misses than CU while
creating considerably less excess traffic than CU (as detailed
in Section VI-C), hence delivering higher performance.

C. Traffic and Power

We evaluate the network traffic of the baseline, the CU,
and the 1-Update protocols. The system parameters are
covered in Section V. Figure 12 shows the results. The traffic
is measured in number of flits sent through the network
and is normalized to the baseline. We observe that the CU
protocol tends to generate 30% more traffic than the baseline
since it is a variant of a pure write-update protocol, thus
generating considerable excess traffic. In contrast, 1-Update
generates only 9.5% more traffic compared to the baseline.

We also study the impact of the extra NOC traffic and
LLC accesses (including directory accesses) on power. We
find that total dynamic power of LLC and NOC combined in
the target 16-core system increases by 3% due to 1-Update.

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 T
ra

ff
ic

WI CU 1-Update

Figure 12. NOC traffic.

0.95

1.00

1.05

1.10

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

WI VIPS CU 1-Update Ideal

Figure 13. Performance with a shared LLC.

D. Performance in a Shared LLC

In addition to our evaluation of 1-Update on NG-LLC
with an all-private cache organization, we also evaluate
the performance of the 1-Update in a shared LLC setting,
which is typical of current processors. The system employs
an on-chip SRAM 32MB shared LLC. We evaluate four
directory-based coherence protocol variants: (1) WI which
is representative of current systems, (2) CU (with t = 3), (3)
VIPS [36] which is the state-of-the-art optimized coherence
protocol for shared LLCs, and (4) 1-Update. The system
parameters are detailed in Section VI.

Figure 13 plots the performance of PARSEC workloads
with results normalized to the system with write-invalidate.
Compared to write-invalidate, all three alternatives (CU,
VIPS, and 1-Update) provide a marginal performance im-
provement, with the geomean improvement of 1.7%, 1.3%,
and 2.6%, respectively. The marginal performance improve-
ment can be explained by the fact that shared LLCs naturally
benefit read/write data sharing since a core can normally
obtain the up-to-date modified data from the shared LLC,
without requiring a long-latency remote access.

Of the three alternatives to the baseline invalidating pro-
tocol, VIPS yields the lowest performance improvement.
The modest speed-up for VIPS is consistent with the results
presented in the original paper [36]. VIPS targets reducing
coherence state to simplify implementation in hardware, and
therefore does not yield performance benefits. While the
performance gains are marginal in the private setting, 1-
Update still outperforms the CU protocol in all workloads.
Thus, we can conclude that 1-Update is superior to CU
regardless of the LLC configuration (private or shared).

E. Effect of History Length

Up until now, we have considered 1-Update with a history
of 1, i.e, update prediction is based on the number of
writes in just the last write-read iteration. This policy works
well when the write count without interleaving reads does
not fluctuate often. From Figure 7 we observe that while
PARSEC workloads demonstrate a fair degree of write count
stability, there is clearly some degree of variance as well.
Thus, we study whether a confidence mechanism can help
mitigate the impact of transient fluctuations in write count.

We assume a simple implementation of a confidence
mechanism that maintains a count of writes observed during

11

0.99

1.00

1.01

1.02

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

1 3 5

Figure 14. Sensitivity to history length.

0.95

1.00

1.05

1.10

1.15

barnes fft lu_cb lu_ncb ocean_cp ocean_ncp geomean

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

WI CU 1-Update Ideal

Figure 15. Performance on Splash.

the previous N iterations (N=1 for baseline 1-Update proto-
col). If the write-count in the N iterations differs, a majority
vote is used to decide the write count to be used as the
update trigger in the current iteration. If a majority does not
exist, the write count from the most recent iteration is used.

Figure 14 shows the performance results of 1-Update with
a history length of 1 (baseline 1-Update), 3, and 5 across
PARSEC workloads, normalized to the 1-Update. We ob-
serve that history length of 3 and history length of 5 improve
performance slightly compared to 1-Update, with a geomean
improvement of 0.7% and 1%, respectively. We observe that
history lengths of 3 and 5 performs better when write count
stability is low, such as on dedup and fluidanimate.
However, a longer history exacerbates storage requirements
and adds complexity to the prediction mechanism in terms
of both history maintenance and decision-making, resulting
in a tradeoff for system designers.

F. Performance on Splash

We study the performance of the coherence protocols on
the Splash workloads. Figure 15 plots the performance, with
results normalized to the baseline: NG-LLCs with directory-
based write-invalidate protocol. The results show that 1-
Update delivers a performance improvement ranging from
3% to 8% with a geomean improvement of 5%, which is
better than the CU protocol with a geomean improvement of
3.5%. Similar to PARSEC workloads, the 1-Update protocol
always outperforms CU on Splash workloads.

VII. RELATED WORK

As previously discussed, implementations focusing solely
on write-invalidate protocols [37] or write-update proto-
cols [3] have their drawbacks. To mitigate these shortcom-
ings, hybrid protocols, such as competitive snooping [23]
and competitive update [5] have been proposed. These have
been further optimized using additional write buffers and

schemes that group writes to the same cache block [38], [39]
bearing similarities with the implementation of Alpha 21064
[40]. These techniques amortize the cost of an update over a
group of writes to same block by triggering just one update;
thus further reducing the messages of competitive update
protocols. However, all these works assume a baseline of
write-update protocols. Thus, cannot be easily adopted by to-
day’s invalidating-based world of coherence and come with
their own consistency challenges. For instance, mandating a
two-phase implementation [41] to guarantee correctness in
strongly-consistent memory models.

Several works target to reduce the overhead of coher-
ence building on a baseline of write-invalidate protocols.
Most of them focus on detecting sharing patterns, including
producer-consumer [42], [43], migratory sharing [44], [45]
and pairwise sharing [46]. Each scheme targets a specific
sharing pattern, which may not yield benefits when applied
to applications with different sharing behavior. Besides, they
are all orthogonal and complementary to 1-Update.

Finally, coherence overhead can be reduced through
coherence prediction. Cosmos coherence message predic-
tor [47] is derived from the two-level branch prediction of
Yeh and Patt [48]. Acacio et al. [49] propose a mechanism
about sharers prediction which reduces 3-hop misses to 2-
hop misses. A series of works by Lai and Falsafi focus on
increasing the prediction accuracy as well as reducing the
overheads of sharing predictors [50], [51]. Instruction-based
predictors [52], [53] are proposed as an alternative to normal
address-based predictors. There are also some coherence
predictors based on perceptron [54]. All of these optimiza-
tions are costly and may require some major changes to
a processor design. In contrast, the 1-Update protocol is
effective yet it requires minimal hardware overheads and
keeps the design simple.

VIII. CONCLUSION

Recent work has introduced NG-LLCs based on die-
stacked DRAM organized as per-core private caches. While
NG-LLCs offer a number of advantages over today’s shared
LLC designs, they are prone to slow inter-core reads for
read/write shared data. This work has introduced the 1-
Update protocol that anticipates when a read would occur,
and updates the caches of likely readers ahead of time, thus
eliminating the long-latency cache-to-cache transfers. The
prediction mechanism for triggering an update is powered
by a new observation regarding the stability of writes across
write-read iterations. The 1-Update protocol achieves high
prediction accuracy and low excess traffic, which sets it apart
from prior updating and hybrid coherence protocols.

ACKNOWLEDGMENTS

This work was supported by Arm PhD Scholarship Pro-
gram and the EPSRC Centre for Doctoral Training in
Pervasive Parallelism at the University of Edinburgh.

12

REFERENCES

[1] Why Is the Evolving HBM3 Such a Revolutionary
Technology and How Can You Be Ready for It?,
https://community.cadence.com/cadence blogs 8/b/fv/
posts/why-is-the-evolving-hbm3-such-a-revolutionary-
technology-and-how-can-you-be-ready-for-it.

[2] A. Shahab, M. Zhu, A. Margaritov, and B. Grot, “Farewell
my shared llc! a case for private die-stacked dram caches
for servers,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[3] C. Thacker, L. Stewart, and E. Satterthwaite, “Firefly: a mul-
tiprocessor workstation,” IEEE Transactions on Computers,
vol. 37, 1988.

[4] D. Culler, J. P. Singh, and A. Gupta, Parallel computer ar-
chitecture: a hardware/software approach. Gulf Professional
Publishing, 1999.

[5] H. Grahn, P. Stenström, and M. Dubois, “Implementation
and evaluation of update-based cache protocols under relaxed
memory consistency models,” Future Generation Computer
Systems, vol. 11, 1995.

[6] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing
with strict qos for latency-critical workloads,” in Proceedings
of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014. [Online].
Available: http://doi.acm.org/10.1145/2541940.2541944

[7] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
Precise online qos management for increased utilization in
warehouse scale computers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485974

[8] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski,
T. Mudge, S. Reinhardt, and K. Flautner, “Picoserver:
Using 3d stacking technology to enable a compact
energy efficient chip multiprocessor,” in Proceedings of
the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS XII. New York, NY, USA: ACM, 2006. [Online].
Available: http://doi.acm.org/10.1145/1168857.1168873

[9] D. H. Woo, N. H. Seong, D. L. Lewis, and H. H. S. Lee,
“An optimized 3d-stacked memory architecture by exploiting
excessive, high-density tsv bandwidth,” in HPCA - 16 2010
The Sixteenth International Symposium on High-Performance
Computer Architecture, Jan 2010.

[10] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE
Hot Chips 23 Symposium (HCS), Aug 2011.

[11] A. Sodani, “Knights landing (knl): 2nd generation intel; xeon
phi processor,” in 2015 IEEE Hot Chips 27 Symposium
(HCS), Aug 2015.

[12] X. Zhan, Y. Bao, C. Bienia, and K. Li, “Parsec3.0: A
multicore benchmark suite with network stacks and splash-
2x,” ACM SIGARCH Computer Architecture News, vol. 44,
2017.

[13] P. Sweazey and A. J. Smith, “A class of compatible cache
consistency protocols and their support by the ieee futurebus,”
in Proceedings of the 13th Annual International Symposium
on Computer Architecture, ser. ISCA ’86. Washington, DC,
USA: IEEE Computer Society Press, 1986.

[14] “Arm cortex-a57 mpcore processor technical reference man-
ual,” Tech. Rep., https://developer.arm.com/documentation/
ddi0488/d/level-2-memory-system/cache-coherency.

[15] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway,
“The amd opteron processor for multiprocessor servers,”
IEEE Micro, vol. 23, 2003.

[16] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-
3: A properly synchronized benchmark suite for contem-
porary research,” in Performance Analysis of Systems and
Software (ISPASS), 2016 IEEE International Symposium on.
IEEE, 2016.

[17] N. Barrow-Williams, C. Fensch, and S. Moore, “A commu-
nication characterisation of splash-2 and parsec,” in 2009
IEEE International Symposium on Workload Characterization
(IISWC), 2009.

[18] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, “A
novel approach to reduce l2 miss latency in shared-memory
multiprocessors,” in Proceedings 16th International Parallel
and Distributed Processing Symposium, 2002.

[19] Liqun Cheng, N. Muralimanohar, K. Ramani, R. Balasub-
ramonian, and J. B. Carter, “Interconnect-aware coherence
protocols for chip multiprocessors,” in 33rd International
Symposium on Computer Architecture (ISCA’06), 2006.

[20] N. Eisley, L. Peh, and L. Shang, “In-network cache coher-
ence,” in 2006 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’06), 2006.

[21] E. McCreight, “The dragon computer system: An early
overview. xerox corp.” Tech. Rep., 1984.

[22] L. Cheng and J. B. Carter, “Extending cc-numa systems to
support write update optimizations,” in Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, ser. SC ’08.
IEEE Press, 2008.

[23] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator,
“Competitive snoopy caching,” Algorithmica, vol. 3, 1988.

[24] H. Grahn, P. Stenström, and M. Dubois, “Implementation
and evaluation of update-based cache protocols under relaxed
memory consistency models,” Future Generation Computer
Systems, vol. 11, 1995. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0167739X9400067O

[25] B. Catazaro, “Multiprocessor system architectures: A tech-
nical survey of multiprocessor/multithreaded systems using
sparc, multilevel bus architectures and solaris (sunos),” 1994.

[26] D. Glasco, B. Delagi, and M. Flynn, “Update-based cache
coherence protocols for scalable shared-memory multipro-
cessors,” in 1994 Proceedings of the Twenty-Seventh Hawaii
International Conference on System Sciences, vol. 1, 1994.

13

https://community.cadence.com/cadence_blogs_8/b/fv/posts/why-is-the-evolving-hbm3-such-a-revolutionary-technology-and-how-can-you-be-ready-for-it
https://community.cadence.com/cadence_blogs_8/b/fv/posts/why-is-the-evolving-hbm3-such-a-revolutionary-technology-and-how-can-you-be-ready-for-it
https://community.cadence.com/cadence_blogs_8/b/fv/posts/why-is-the-evolving-hbm3-such-a-revolutionary-technology-and-how-can-you-be-ready-for-it
http://doi.acm.org/10.1145/2541940.2541944
http://doi.acm.org/10.1145/2485922.2485974
http://doi.acm.org/10.1145/1168857.1168873
https://developer.arm.com/documentation/ddi0488/d/level-2-memory-system/cache-coherency
https://developer.arm.com/documentation/ddi0488/d/level-2-memory-system/cache-coherency
https://www.sciencedirect.com/science/article/pii/0167739X9400067O
https://www.sciencedirect.com/science/article/pii/0167739X9400067O

[27] R. Bianchini and L. Kontothanassis, “Algorithms for cate-
gorizing multiprocessor communication under invalidate and
update-based coherence protocols,” in Proceedings of Simu-
lation Symposium, 1995.

[28] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A.
Wood, “A primer on memory consistency and cache
coherence, second edition,” Synthesis Lectures on Computer
Architecture, vol. 15, 2020. [Online]. Available: https:
//doi.org/10.2200/S00962ED2V01Y201910CAC049

[29] C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan,
“C3d: Mitigating the NUMA bottleneck via coherent
DRAM caches,” in 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2016, Taipei,
Taiwan, October 15-19, 2016, 2016. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783739

[30] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “Bump: Bulk
memory access prediction and streaming,” in 47th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 2014, Cambridge, United Kingdom, December 13-
17, 2014, 2014. [Online]. Available: https://doi.org/10.1109/
MICRO.2014.44

[31] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B.
Brockman, and N. P. Jouppi, “Cacti-3dd: Architecture-
level modeling for 3d die-stacked dram main memory,”
in Proceedings of the Conference on Design, Automation
and Test in Europe, ser. DATE ’12. San Jose, CA,
USA: EDA Consortium, 2012. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2492708.2492719

[32] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing nuca organizations and wiring alternatives
for large caches with cacti 6.0,” in Proceedings of
the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 40. Washington, DC,
USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2007.30

[33] S. Werner, J. Navaridas, and M. Luján, “Designing low-
power, low-latency networks-on-chip by optimally combining
electrical and optical links,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA).
IEEE, 2017.

[34] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe, “Simflex: Statistical sampling of
computer system simulation,” IEEE Micro, vol. 26, 2006.
[Online]. Available: https://doi.org/10.1109/MM.2006.79

[35] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe, “Smarts: Accelerating microarchitecture simulation via
rigorous statistical sampling,” in Proceedings of the 30th
Annual International Symposium on Computer Architecture,
ser. ISCA ’03. New York, NY, USA: Association
for Computing Machinery, 2003. [Online]. Available:
https://doi.org/10.1145/859618.859629

[36] A. Ros and S. Kaxiras, “Complexity-effective multicore co-
herence,” in Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, 2012.

[37] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
and J. Hennessy, “The directory-based cache coherence
protocol for the dash multiprocessor,” in Proceedings of
the 17th Annual International Symposium on Computer
Architecture, ser. ISCA ’90. New York, NY, USA:
Association for Computing Machinery, 1990. [Online].
Available: https://doi.org/10.1145/325164.325132

[38] F. Dahlgren, J. Skeppstedt, and P. Stenström, “An evaluation
of hardware-based and compiler-controlled optimizations of
snooping cache protocols,” Future Generation Computer
Systems, vol. 13, 1998. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167739X98000028

[39] F. Dahlgren, “Techniques for improving performance of
hybrid snooping cache protocols,” Journal of Parallel and
Distributed Computing, vol. 59, 1999.

[40] D. DECChip, “21064 risc microprocessor preliminary data
sheet,” Technical report, Tech. Rep., 1992.

[41] A. W. W. Jr. and R. P. L. Jr., “Hiding shared memory
reference latency on the galactica net distributed shared
memory architecture,” J. Parallel Distributed Comput.,
vol. 15, 1992. [Online]. Available: https://doi.org/10.1016/
0743-7315(92)90049-S

[42] L. Cheng, J. B. Carter, and D. Dai, “An adaptive cache
coherence protocol optimized for producer-consumer shar-
ing,” in 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, 2007.

[43] L. Cheng and J. B. Carter, “Extending cc-numa systems to
support write update optimizations,” in Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, ser. SC ’08.
IEEE Press, 2008.

[44] A. Cox and R. Fowler, “Adaptive cache coherency for detect-
ing migratory shared data,” in Proceedings of the 20th Annual
International Symposium on Computer Architecture, 1993.

[45] P. Stenstrom, M. Brorsson, and L. Sandberg, “An adaptive
cache coherence protocol optimized for migratory sharing,”
in Proceedings of the 20th Annual International Symposium
on Computer Architecture, 1993.

[46] D. B. Gustavson, “The scalable coherent interface and related
standards projects,” IEEE Micro, vol. 12, 1992.

[47] S. S. Mukherjee and M. D. Hill, “Using prediction to
accelerate coherence protocols,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture,
ser. ISCA ’98. USA: IEEE Computer Society, 1998.
[Online]. Available: https://doi.org/10.1145/279358.279386

[48] T.-Y. Yeh and Y. N. Patt, “Alternative implementations
of two-level adaptive branch prediction,” in Proceedings
of the 19th Annual International Symposium on Computer
Architecture, ser. ISCA ’92. New York, NY, USA:
Association for Computing Machinery, 1992. [Online].
Available: https://doi.org/10.1145/139669.139709

[49] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, “The
use of prediction for accelerating upgrade misses in cc-numa
multiprocessors,” in Proceedings International Conference on
Parallel Architectures and Compilation Techniques, 2002.

14

https://doi.org/10.2200/S00962ED2V01Y201910CAC049
https://doi.org/10.2200/S00962ED2V01Y201910CAC049
https://doi.org/10.1109/MICRO.2016.7783739
https://doi.org/10.1109/MICRO.2014.44
https://doi.org/10.1109/MICRO.2014.44
http://dl.acm.org/citation.cfm?id=2492708.2492719
http://dl.acm.org/citation.cfm?id=2492708.2492719
http://dx.doi.org/10.1109/MICRO.2007.30
https://doi.org/10.1109/MM.2006.79
https://doi.org/10.1145/859618.859629
https://doi.org/10.1145/325164.325132
https://www.sciencedirect.com/science/article/pii/S0167739X98000028
https://www.sciencedirect.com/science/article/pii/S0167739X98000028
https://doi.org/10.1016/0743-7315(92)90049-S
https://doi.org/10.1016/0743-7315(92)90049-S
https://doi.org/10.1145/279358.279386
https://doi.org/10.1145/139669.139709

[50] A.-C. Lai and B. Falsafi, “Memory sharing predictor: the key
to a speculative coherent dsm,” in Proceedings of the 26th
International Symposium on Computer Architecture (Cat.
No.99CB36367), 1999.

[51] An-Chow Lai and B. Falsafi, “Selective, accurate, and timely
self-invalidation using last-touch prediction,” in Proceedings
of 27th International Symposium on Computer Architecture
(IEEE Cat. No.RS00201), 2000.

[52] S. Kaxiras and J. R. Goodman, “Improving cc-numa per-
formance using instruction-based prediction,” in Proceedings

Fifth International Symposium on High-Performance Com-
puter Architecture, 1999.

[53] S. Kaxiras and C. Young, “Coherence communication predic-
tion in shared-memory multiprocessors,” in Proceedings Sixth
International Symposium on High-Performance Computer Ar-
chitecture. HPCA-6 (Cat. No.PR00550), 2000.

[54] S. Leventhal and M. Franklin, “Perceptron based consumer
prediction in shared-memory multiprocessors,” in 2006 Inter-
national Conference on Computer Design, 2006.

15

A. Artifact Appendix
A.1 Abstract
1-Update is a new cache coherence protocol that is based on tra-
ditional invalidate protocols and also adopts the advantages of up-
dating protocols. It tracks the number of writes to a shared block,
and sends at most one update to the reader cores after the observed
number of writes. A brief description follows and more details can
be found in the paper.

This is the publicly available artifact repository supporting 1-
Update, which contains the formal protocol specification. The spec-
ification is written in TLA+ and can be used to verify 1-Update’s
correctness via model-checking.

A.2 Artifact check-list (meta-information)
• Program: Java, TLA+ Toolbox and formal protocol specification

• How much disk space required (approximately)?: 400MB

• How much time is needed to prepare workflow (approximately)?:
30 minutes

• How much time is needed to complete experiments (approxi-
mately)?: 10 minutes

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache 2.0

• Archived (provide DOI)?: https://doi.org/10.6084/m9.figshare.
15112932.v1

A.3 Description
A.3.1 How to access
The formal specification of 1-Update protocol is available on:

• Github: https://github.com/ease-lab/1Update

• FigShare: https://doi.org/10.6084/m9.figshare.15112932.
v1

A.3.2 Hardware dependencies
No specific requirements.

A.3.3 Software dependencies
Any OS with Java 1.8 or later, to accommodate the TLA+ Toolbox.

A.4 Installation
A.4.1 Install Java
Choose the Operating System for instructions from https://java.com/
en/download/help/download_options.html to install Java.

A.4.2 Install TLA+ toolbox
Follow the instructions in https://lamport.azurewebsites.net/
tla/toolbox.html to install TLA+ toolbox.

A.4.3 Obtain source code
Clone or download the git repository from https://github.com/ease-
lab/1Update.

A.5 Experiment workflow
1. Launch the TLA+ Toolbox
2. Create a spec: File → Open Spec → Add New Spec...; Browse and use

1Update/OneUpdate.tla as root module to finish.

3. Create a new Model: Navigate to TLC Model Checker → New
model...; and create a model with the name “one-update-model”.

4. Setup Constants: Then specify the values of declared constants (un-
der “What is the model?” section). You may use low values for con-
stants to check correctness without exploding the state space. An ex-
ample configuration would be four cores, maximum writes of seven
and an update prediction of five. To accomplish that, you would need
to click on each constant and select the “ordinary assignment” op-
tion. Then fill the box for write related constants (i.e., MAX WRITES
and WRITE TO UPDATE) with the desired number (e.g., with “7” and
“5”) and the core related constant (i.e., CORES) with a set of cores
(e.g., “1,2,3,4” – for four cores). Then set the ENABLE DIR ACKS to
FALSE if writer collects the acknowledgments. Finally, to model check
the variant of the paper where the acknowledgments are gathered by the
directory instead of the writer, set the ENABLE DIR ACKS to TRUE.

A.6 Evaluation and expected results
After following the steps in A.5, simply click “Run TLC Model Checker”
and then the model checking results are available in TLA+ Toolbox.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

https://doi.org/10.6084/m9.figshare.15112932.v1
https://doi.org/10.6084/m9.figshare.15112932.v1
https://github.com/ease-lab/1Update
https://doi.org/10.6084/m9.figshare.15112932.v1
https://doi.org/10.6084/m9.figshare.15112932.v1
https://java.com/en/download/help/download_options.html
https://java.com/en/download/help/download_options.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://github.com/ease-lab/1Update
https://github.com/ease-lab/1Update
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	1Update_Camera_Ready_Internal
	Introduction
	Motivation
	LLC: Shared or Private?
	Next-Generation LLCs
	Cache Coherence for NG-LLCs
	Sharing Behavior Characterization

	Coherence for Read/Write Data
	Invalidating vs Updating Protocols
	Adaptive Protocols
	Comparison of Existing Protocols

	1-Update Protocol
	Basic Idea
	Protocol Details
	Operational Example
	Verification

	Methodology
	Evaluated Systems
	Latency and Energy Modeling
	Simulation Infrastructure
	Workloads

	Evaluation
	Performance on PARSEC
	Coherence Miss Comparison
	Traffic and Power
	Performance in a Shared LLC
	Effect of History Length
	Performance on Splash

	Related work
	Conclusion
	References

	pact_ae
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Install Java
	Install TLA+ toolbox
	Obtain source code

	Experiment workflow
	Evaluation and expected results
	Methodology

