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Abstract—MLIR is an emerging compiler infrastructure for
modern hardware, but existing programs cannot take advantage
of MLIR’s high-performance compilation if they are described
in lower-level general purpose languages. Consequently, to avoid
programs needing to be rewritten manually, this has led to efforts
to automatically raise lower-level to higher-level dialects in MLIR.
However, current methods rely on manually-defined raising rules,
which limit their applicability and make them challenging to
maintain as MLIR dialects evolve.

We present mlirSynth – a novel approach which translates
programs from lower-level MLIR dialects to high-level ones
without manually defined rules. Instead, it uses available dialect
definitions to construct a program space and searches it effectively
using type constraints and equivalences. We demonstrate its
effectiveness by raising C programs to two distinct high-level
MLIR dialects, which enables us to use existing high-level dialect
specific compilation flows. On Polybench, we show a greater
coverage than previous approaches, resulting in geomean speedups
of 2.5x (Intel) and 3.4x (AMD) over state-of-the-art compilation
flows. mlirSynth also enables retargetability to domain-specific
accelerators, resulting in a geomean speedup of 21.6x on a TPU.

I. INTRODUCTION

The end of Dennard scaling has led, in recent years, to
the development of a diverse range of specialized hardware.
Examples include tensor cores (TPU [34] , NVIDIA [39])
and AI specialized accelerators [47]. Such hardware holds the
promise of efficient performance, but at the cost of increased
programming complexity.

A popular approach to overcoming this challenge is the use
of domain-specific programming languages (DSLs), such as
Halide [46], TensorFlow [2] and PyTorch [45]. These languages
allow programmers to easily specify the essential structure of
a problem without concern for low-level details. Crucially, this
separation of concerns enables domain-specific compilers [54],
[16] to efficiently map programs down to a wide range of
idiosyncratic accelerators.

The need for existing code to harness the power of domain
specific compilation has been well recognized by the compiler
community with the development of MLIR [38]. MLIR is a new
extensible representation within LLVM that captures high-level
representations of programs. Once programs are expressed in
the appropriate MLIR dialect, vendors can develop and exploit
an efficient compilation path to their platform.

Need for Raising IRs.. This, however, presents a new challenge:
how to translate existing code, currently represented in a low-

level intermediate representation (IR), into a higher dialect so
as to leverage domain-specific compilation. Furthermore, given
the proliferation of MLIR dialects, any compiler technique
that attempts to translate from a low to high dialect faces an
additional challenge: how to adapt to a world of ever-changing
high-level targets.

Previous Approaches.. This lifting of abstraction from a low
to a high level is called program lifting [35] or raising [2],
[56]. There is a large body of work in this area that has
recently received increased interest [41], [9], [44], [8], [22],
[18], [33]. In [35], lifting is applied to legacy FORTRAN
code to generate high-performance Halide programs. This is
achieved by representing both source and target languages in
a common internal language and deploying an off-the-shelf
program synthesis tool [51], [53], and proving the synthesized
target code is equivalent to the original via loop invariants. This
was later applied to C++ [6] and expanded into an LLVM-based
framework [1]. While powerful, such an approach requires the
user to manually define the semantics of all operations in the
target language semantics in the common internal language.
As the number of target high-level languages diversifies, this
is not a scalable approach. There has been adjacent work in
replacing code with library calls [23], [40]. Such approaches,
however, are also fundamentally non-scalable as they focus on
a fixed API rather than the open-ended nature of DSLs and
their IRs.

Multi Level Tactics (MLT) [15] more recently, directly
addressed this issue by showing raising to a high-level MLIR
dialect enabled significant performance improvement. However,
their approach requires domain-specific raising rules to be
implemented by the compiler writer which are dialect specific.
As we show in section VI, they are restricted in the number
of programs they can tackle and rules need to be rewritten for
each source and target dialect. Ideally, we would like a generic
scheme that is robust, raising a large number of programs and
is able to target new MLIR dialects without any compiler writer
intervention.

Our Approach.. This paper presents mlirSynth, which automat-
ically raises MLIR dialects from low to high-level without any
hardwired compiler transformation or raising rules. Instead,
mlirSynth automatically uses the available dialect definitions
(within MLIR’s TableGen [38]) to construct a program space



for (int r = 0; r < 150; r++) {
  for (int q = 0; q < 140; q++) {
    for (int p = 0; p < 160; p++) {
      sum[p] = 0.0;
      for (int s = 0; s < 160; s++)
        sum[p] += A[r][q][s] * C4[s][p];
    }
    for (int p = 0; p < 160; p++)
      A[r][q][p] = sum[p];
  }
}

C Program Affine IR

affine.for %arg6 = 0 to 150 {
  affine.for %arg7 = 0 to 140 {
    affine.for %arg8 = 0 to 160 {
      affine.store %cst, %arg5[%arg8]
      affine.for %arg9 = 0 to 160 {
        %0 = affine.load 
            %arg3[%arg6, %arg7, %arg9]
        %1 = affine.load 
            %arg4[%arg9, %arg8]
        %2 = arith.mulf %0, %1 : f64
...

Linalg IR

%0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
  : tensor<150x140x160xf64>
  into tensor<2100x160xf64>
%1 = linalg.matmul
  ins(%0, %arg1 : tensor<21000x160xf32>,

tensor<160x160xf32>)
  outs(%1 : tensor<21000x160xf32>)
  -> tensor<21000x160xf32>
%2 = tensor.expand_shape %1 [[0, 1], [2]]
  : tensor<2100x160xf64>
  into tensor<150x140x160xf64>

HLO IR

%0 = mhlo.dot_general (%arg0, %arg1) {
  dot_dimension_numbers = #mhlo.dot<
    lhs_contracting_dimensions = [2],
    rhs_contracting_dimensions = [0]>}
  : (tensor<150x140x160xf32>,
    tensor<160x160xf32>)
  -> tensor<150x140x160xf32>

Polygeist mlirSynth

LLVM IR

...
11:  %12 = load i32, i32* %7, align 4
     %13 = icmp slt i32 %12, 250
     br i1 %13, label %14, label %94
14:  store i32 0, i32* %8, align 4
     br label %15
...
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Fig. 1. The doitgen computation in different representations and their relative performance on different devices.2 MlirSynth enables compiling the C
program with domain-specific compilers such as MLIR-Linalg and XLA, resulting in significant speedups.

and effectively searches it using candidate equivalences. It is
based on bottom-up enumerative program synthesis exploiting
type constraints and IO behavioral equivalence to quickly prune
the space. Essentially it generates programs in the target dialect,
starting from the smallest one first. Then it uses a combination
of testing and model checking to identify an equivalent program
in the target dialect. A key characteristic of our approach is
that it is not tied to one dialect. However, if there is domain
specific analysis available, we can use this as a heuristic to
speed up the search. Thus we have a domain agnostic raiser
that can exploit domain specific analysis where available.

We demonstrate this by lifting to two dialects, Linalg IR
and HLO IR, exploiting polyhedral analysis in the synthesis
phase. Furthermore, we show that our approach is able to
cover a wider set of programs and generate more efficient
implementations than MLT [15], the state-of-the-art scheme.

Of the 14 Polybench that can be expressed in these dialects,
we are able to raise 13 compared to MLT’s 6. By exploiting
a dialect specific compiler, we are able to achieve an average
20.8x (20.9x) speedup on an Intel (AMD) platform relative to
LLVM-O3. This compares to the 3.3x (4.2x) of MLT and the
6.4x (6.1x) of Polly [31]. As we can raise to HLO, we can
also use the XLA compiler to target Tensor Processing Units
(TPUs), achieving a 175.3x average speedup.

Our contributions are:
• mlirSynth, a framework for raising low-level MLIR

dialects to higher ones
• A scalable method to synthesize code in multiple MLIR

dialects, automatically generating the search space based
on the dialect’s TableGen definition

• A fast bottom-up enumerative search synthesizer exploit-
ing observational equivalence and polyhedral analysis

• Greater coverage, performance and accuracy compared to
state-of-the-art raising approaches

II. MOTIVATING EXAMPLE

To illustrate the benefits of raising, consider the program
in Figure 1 in the box labeled C Program. This loop nest
implements the doitgen computation, and was taken from
the Polybench benchmark suite.

LLVM IR. As it is written in C, the loop nest is represented
within the LLVM compiler by the standard SSA IR form
shown in the box labeled LLVM IR. If we apply Polly [31],
a polyhedral optimizing compiler to this IR, it is able to
automatically generate parallel and cache efficient code. In
this case, it is able to achieve a 1.9x speedup over the default
-03 pass on an Intel i7 platform as shown in the performance
results plot.

Affine. Although Polly delivers a significant speedup, if the
LLVM IR could be rewritten in an alternative MLIR dialect,
then we can potentially achieve greater performance. This is the
motivation behind the Affine dialect in MLIR, which captures
high level polyhedral information, such as linear array access,
convex iteration space and static control-flow. Polygeist [42] is
a tool takes in C code and produces Affine IR for appropriate
loop nests. They then apply the Pluto [14] polyhedral cache
and parallelism optimizer to this Affine IR, which results in a
3.2x speedup. While the performance achieved is greater than
Polly, the Affine dialect also acts as a convenient starting point
for lifting to higher level dialects and is the source IR for the
MLT compiler [15].

Linalg. Consider the Linalg IR version of the program in the
box labeled Linalg in Figure 1. It is semantically equivalent
to the Affine version, but is in a form that the MLIR compiler
can generate more efficient code from. Rather than the Affine
IR polyhedral representation of the program, Linalg describes

2CPU: Intel I7-8700k (6 cores / 12 threads), TPU: Google TPU v3 (8 cores).
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Fig. 2. Compilation flows relevant in this paper, associating programming languages, MLIR dialects, raising methods, compilers and hardware targets. Flows
relevant to mlirSynth are highlighted.

the given code as three high level operators: a core matrix
multiplication operation, surrounded by two tensor reshaping
operations. As matrix multiplication and reshaping are often
highly tuned on different hardware targets, it allows the MLIR
compiler to exploit kernel libraries and generate a highly
efficient implementation. The performance results plot shows
that if we were able to lift code to this dialect, we were able
to achieve an even greater speedup of 8.3x.

A. Raising IR

While MLT tries to automatically raise the Affine code to the
Linalg form, it, unfortunately, fails as its hand-coded matching
rules do not consider this IR pattern. If additional patterns
were added, then it would achieve a higher speedup.

HLO. Our approach is not limited to one target dialect of MLIR.
It is able to raise to the higher level HLO dialect. Figure 1
further shows an implementation of the same computation in
HLO (box labeled HLO). Rather than the three operations of
Linalg, the computation is expressed using a single high-level
operation. This allows XLA [48], a compiler for HLO, greater
flexibility in its implementation. If we consider the i7 platform,
XLA able to achieve a speedup of over 100x relative to LLVM
-03, justifying such a dialect. One benefit of this representation
is that it can leverage platform specific compilers. If we change
the hardware target to a TPU, the XLA compiler delivers a
speedup of over 806x.

Summary. Higher-level representations in MLIR allow greater
performance than lower-level ones and LLVM IR, as they allow
compilation with high-performance domain-specific compilers.
To enable such compilers for programs written in lower-level
programming languages such as C, a raising technique is
required. With the ongoing emergence of new dialects, we
need a flexible raising technique to automatically leverage
high-performance compilation flows.

III. SYSTEM OVERVIEW

In this section, we briefly introduce the notion of dialects
within MLIR before describing the mlirSynth design which
raises low-level dialects to higher ones.

A. MLIR

MLIR is an infrastructure for developing domain-specific
compilers. To aid this, MLIR provides reusable building blocks
and shared tools that allow us to define domain-specific
languages and their compilation pipelines. The key concept
that enables this is a dialect.

Dialects define sets of operations, types, and attributes.
There are many dialects currently deployed (35 in the MLIR
repository) and, crucially for automatic synthesis, each of these
is defined by a structured TableGen description which contains
the typed operands, attributes, and regions for each operation.

Figure 2 shows a small subset of MLIR’s dialects, relevant
to this paper and the associated compilation flows. The lowest
level IR we consider is LLVM IR, the default format for
languages such as C/C++/FORTRAN. From this, the LLVM
compiler generates code for all supported platforms. Many
higher dialect compilers can progressively lower their dialect
to LLVM IR.

Different compilation flows exploit high level dialect in-
formation to generate efficient implementations. For instance,
Polygeist leverages the polyhedral representation available in
Affine IR [42]. While some programming languages / DSLs
such as TensorFlow can benefit from the XLA compiler due
to its representation as HLO, this is not available to languages
such as C. If we can raise code using MLT or mlirSynth to
higher MLIR levels, then we can leverage the pre-existing
compilation flows for performance. While a lowering path is
always provided, raising is considerably more challenging.

B. mlirSynth design

mlirSynth operates in a three stage process that takes in a
user program in the Affine IR dialect plus a description of the
target dialect and outputs a raised program in the new dialect,
as shown in Figure 3. The central idea is that we apply classic
program synthesis techniques to lift a dialect to a higher one
and then lower both the original and raised program down
to the same representation and check they are equivalent. We
use smallest-program first enumeration, discarding candidate
programs based on type information and guided by heuristics
where available. The approach is comprised of 3 stages:
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Pre-processing. Initially, we apply pre-processing steps to
simplify the program before enumerative synthesis is applied.
Specifically, we use polyhedral analysis to distribute the original
loop structure into smaller ones that can be synthesized
independently and reduce the size of any array/matrix-like
data structures in the code.
Enumerative synthesis. The key lifting is done by a classic
enumerative synthesis technique. We generate a grammar
(box Grammar Generator) for the synthesis process from
the TableGen for the target dialect (Target Dialects),
automatically generate an input-output specification (IO Spec
Generator) for the target program, and then use a bottom-up
synthesis process (Enumerator) to search the space of possi-
ble programs. This space is large, so we guide the enumerative
search with a number of heuristics, based on polyhedral analysis
and observational equivalence. Lifted candidates that satisfy
the input-output specification (Checker) can be proved to be
equivalent to the original code using bounded model checking
(Validator).
Post-processing. Once we have a successful candidate, it is
inlined back into the program and all data structure sizes are
restored. It is now in the appropriate high level dialect and can
be mapped to hardware by an appropriate compiler toolchain.

The following section gives details of the enumerative
synthesis stage.

IV. SYNTHESIS

We base our synthesis procedure on classic enumerative
synthesis algorithms from the literature [12]. The core synthesis
loop, shown in Algorithm 1, is two phases: enumerating
candidate programs and then checking the candidate against
a specification. We thus need two inputs: a grammar that
defines the space of possible programs to enumerate and a
specification for the synthesized program. In the following
section, we describe how we automatically generate grammars
and specifications for our synthesis algorithm, the exact details
of the enumeration process and the heuristics we use.

A. Grammar generation

In MLIR, dialects are defined in the declarative TableGen
language. This language provides a structured way to define new
dialects, including specifying the number and types of operands,

attributes and regions that are required per operation. Given
a target MLIR dialect, we use a custom TableGen extraction
tool to generate a simple recursive context-free grammar for
our enumerative synthesis process. Specifically, we generate
an initial grammar G that contains a single non-terminal for
each type in the MLIR dialect, and a production rule for each
operator.

This grammar does not precisely capture the syntactic
restrictions of the MLIR dialect (since MLIR dialects are
in general not context-free languages), but we are able to
use inbuilt MLIR syntactic checks to discard any invalid
programs later on in the enumerative loop. The grammar is,
however, specific enough to rule out the majority of poorly
typed programs. This automatic grammar generation simplifies
retargeting our technique to new dialects.

B. Specification generation

Given a grammar G and a reference function f that we wish
to lift, which takes input x, our goal is to synthesize a function
f ′, such that ∀x.f(x) = f ′(x) and f ′ and f ′ is in L(G), the
language defined by the grammar.

Checking a function satisfies the full equivalence specifi-
cation above, for arbitrarily large input data structures, is in
general undecidable and a significant challenge to state-of-the-
art verification tools. Consequently, we apply a multi-staged
synthesis process using two approximations of the specification.
In the first specification, ϕδ−eq, we minify the input data
structures, reducing x, a potentially very large data structure,
to xmin, a small, bounded size data structure. We then assert
that the relative error between the outputs of the functions
is smaller than a small δ. This δ accounts for the deviations
introduced by compiler optimizations due to non-associativity
of floating-point arithmetic. The second specification checks
the observational equivalence of the functions, i.e., it checks for
equivalent behavior on a finite set of n inputs. We denote this
ϕobsn when it checks behavior on n inputs and n is small (i.e.,
less than 10) and ϕobsN when it checks behavior on N inputs,
where N is large (i.e., ≥ 10). Formally, the specifications hold



Algorithm 1 Core synthesis algorithm
function SYNTHESIZE(f ,G)

C ← initCandidates(f)
In ← genRandomInputs(f, n)
operations← pickOperations(f,G)
while true do

f ′ ← enumerate(C, In, operations, f)
IN ← genRandomInputs(f,N)
if specCheck(IN , f, f ′) then

return f ′

else
In ← genRandomInputs(f, n)

for a given candidate f ′ under the following conditions:

ϕδ−eq ⇔ ∀xmin.abs(f(xmin)− f ′(xmin))/f(xmin) < δ

ϕobsn ⇔ ∀i ∈ In.f(i) = f ′(i)

where In is a small finite set of n inputs
ϕobsN ⇔ ∀i ∈ IN .f(i) = f ′(i)

where IN is a large finite set of N inputs

We automatically generate ϕobsn and ϕobsN by randomly
generating sets of inputs. We then check for observational
equivalence by compiling and executing both f and f ′ on the
inputs, shown in Algorithm 3. The data for ϕobsn is initially
sampled from the range [−10, 10] to work around the effect
of numerical instabilities and to avoid cases where it is likely
that the synthesized code will crash.

For speed, the core enumerative algorithm, Algorithm 2
checks candidates against ϕobsn . Initially, In contains only a
single input example, although this input is a high-dimensional
tensor or matrix. The outer loop checks candidates against
ϕobsN . We use CBMC [36], a bounded model checker, to
check ϕδ−eq post-synthesis.

Algorithm 2 Enumeration
function ENUMERATE(C, In, operations, f )

while true do
for op in operations do

ops← filterTypes(C, op)
attr ← genAttrs(op)
regs← genRegions(op)
for f ′in cartesianProduct(ops, attr, regs) do

if not staticCheck(f ′) then
continue

if observationallyUnique(C, f ′) then
C ← C ∪ f ′

if specCheck(In, f, f ′) then
return f ′

C. Bottom-Up Enumeration

The core enumeration is a bottom-up synthesis algorithm
inspired by [7]. The enumeration combines previous candidates

Algorithm 3 Specification checking
function SPECCHECK(I , f ,f ′ )

for i in I do
if f(i) ̸= f ′(i) then

return false

return true

with each other to generate more complex ones until a candidate
matching the specification is found. An example of this is
shown in Fig. 4.
Initialisation. We start by creating a candidate set C of valid
(i.e., well-formed) candidates that each produce a computation-
ally distinct value from the other candidates. We initialize this
set with candidates that return the arguments of the reference
function f , as shown in the left-most Candidate Set box
in Figure 4, as well as simple constants in the shape and data
type of the arguments and results of the function. We will use
this active candidate set as the base of our enumeration.
Enumeration. The synthesis loop enumerates through the set of
operations in the grammar. For each operation, we first identify
sets of possible operands, attributes and regions. We do this
according to the operation signature in the grammar.

We populate the set of possible operands with all expressions
in the candidate set of the correct type, highlighted yellow
in each iteration in Fig 4. For operators with y operands of
type τ , we add each active candidate of type τ to the set of
possible operands y-times to allow operators to have two or
more identical operands.

For the attributes, which need to be known statically, we
generate a large number of them, depending on their type,
once the operator is selected. For regions, which contain
groups of operations with arguments, we generate simple ones
that perform binary mathematical operations on the function
arguments (specifically, the operations addition, subtraction,
multiplication and division). Region generation is not shown
in Fig. 4, but these are generated in each iteration after the
operator is selected.

We generate a set of all possible candidates by taking the
Cartesian product of sets of operands, attributes and regions.
Candidate Checking. Each candidate in the set is validated
using a series of static checks, ordered by their complexity,
such that the cheapest checks are performed first, and the
expensive checks are performed last. We use MLIR’s type and
shape inference system and built-in verification method chain
to perform these checks.
Equivalence pruning and validating the candidate. If the static
checks succeeded so far, we use MLIR’s execution engine to
just-in-time compile the candidate. We then check ϕobsn by
executing the candidate program f ′ on the set of inputs and
comparing the output value with the output value produced
by the reference function. If ϕobsn is satisfied, we send the
candidate to the outer loop check.

We also check if the candidate is observationally unique
on the inputs used by specObs, that is, there does not exist a



func doitgen(
    %arg0: type1,
    %arg1: type1)
-> type1 {
  ...
}

genAttrs(op1)

func cand(%arg0, %arg1) {
  return %arg0
}
func cand(%arg0, %arg1) {
  return %arg1
}

type1

...

0

func cand(%arg0, %arg1) {
  %0 = op1(%arg0, %arg0, 0)
  return %0
}

op1(
  type1 operand,
  type1 operand,
  type2 attribute
) -> type3

type1

...

Candidate Set C

Input Function

1 ... ...

func cand(%arg0, %arg1) {
  return %arg0
}
func cand(%arg0, %arg1) {
  return %arg1
}
...

type3

op2(
  type3 operand,
  type2 attribute
) -> type4 func cand(%arg0, %arg1) {

  %0 = op1(%arg0, %arg0, 0)
  %1 = op2(%0, 0)
  return %1
}

type1

...

...

type4

type3
...

iteration 1: op1

genAttrs(op2)

[0,1,2][0,1]
[1,0] ...

type2

iteration 2: op2Candidate Set C

[0,1,2][0,1]
[1,0] ...

type2

Candidate Set C
initCandidates()

Fig. 4. Synthesis example showing the enumeration of the candidate set at each iteration. In each iteration, an operator is selected, and the active set
(highlighted in yellow) is chosen based on the types of the operands, and a set of attributes and regions is generated. We enumerate through the cartesian
product until a correct candidate is found. If no correct candidate is found, any observationally unique candidates are added to the candidate set and we start a
new iteration with a new operator.

candidate in the candidate set C that behaves the same as f ′

on all inputs. In other words, if f ′ is observationally unique,
the following formula is valid ̸ ∃fc ∈ C.∀i ∈ Inf

′(i) = fc(i).
If this is the case, we add f ′ to the candidate set C. If not,
we discard the candidate.

This central enumeration process is repeated for each
operation, until either a program matching the specification
ϕobsn is found, or a timeout expires. Once a candidate satisfies
ϕobsn , it is then checked against ϕobsN . If a candidate fails
this check, we can restart the synthesis loop with a new set of
random inputs for ϕobsn .

D. Heuristics

Given the search space, heuristics are essential for se-
lecting a set of operations to enumerate. We implement
two heuristics: polyhedral model-based and dialect-based
heuristics. These heuristics alter the behavior of the func-
tion pickOperations. Polyhedral model-based heuristics
perform a value-based dependence analysis on the reference
function to identify reduction dependencies, which are visible
as cycles in the polyhedral dependence graph. If such reduction
dependencies exist, this heuristic selects reduction operations
in the target dialect. For a more detailed discussion of this see
[24], [57]

Dialect-based heuristics look at the grammar for the target
dialect and the source dialect, and, if an operator is present in
the source function, written in the source dialect, it is prioritized
in the target dialect. For example, if an add operation exists
in the function, this heuristic selects any arithmetic operations
that perform an addition in the target dialect. We evaluate the
impact of heuristics in Section VI-E.

E. Translation Validation

We use CBMC [36] to perform a post-synthesis check for
the specification ϕδ−eq. CBMC uses symbolic execution to
generate a logical formula that is satisfiable if and only if
the two functions are not equivalent (or, in path-based mode,
multiple logical formulas representing different paths through

TABLE I
DIALECT COVERAGE ACROSS POLYBENCH

Category Benchmark Category Benchmark

datamining correlation blas syrk
covariance syr2k

kernels atax trmm
2mm gemver
3mm symm
doitgen gesummv
mvt gemm
bicg

the program). If the functions are not equivalent, CBMC will
generate a counterexample, in the form of a set of inputs for
which the outputs of the two functions are not identical. If
this were to happen, we could repeat the synthesis process,
using the counterexample input generated as one of the input
examples in specification ϕobsn . If CBMC exceeds a timeout
of 1 hour, we substitute this check with extensive testing of
ϕobsN .

V. EXPERIMENTAL SETUP

This section briefly describes the platforms, benchmarks and
various compilation flows used to compare against mlirSynth.

A. Platforms

All experiments were performed on two multi-core hardware
platforms an Intel i7-8700k and an AMD Ryzen 9 3900X
with multi-threading enabled. We also evaluated on 1 domain
specific accelerator, the Google TPU v3.8.

B. Benchmarks

We evaluated all techniques on those benchmarks from
Polybench that can be represented in either Linalg and/or HLO.
These are shown in Table I. We used Polybench 4.2.1-beta in
the large data size and float configuration.
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C. Compilation flows

We evaluated a number of different compilation flows:
LLVM-O3: General-purpose compiler, used as baseline [37]
Polly: Polyhedral compiler, optimizes LLVM IR for caches
and parallelism [30]
Polygeist: Polyhedral compiler, takes C to Affine IR, then
uses Pluto for cache- and parallelism optimization [42]
MLT: Raises Affine to Linalg IR before invoking a tuned
MLIR Linalg compilation flow [15]
MLT-BLAS: As MLT, replacing named Linalg operations
with BLAS calls after raising [15]
mlirSynth-Linalg: Our approach, raises Affine to Linalg IR
(on tensors) and invokes latest untuned MLIR Linalg compiler
mlirSynth-XLA: Our approach, raises Affine to HLO IR and
then invokes the XLA compiler targeting CPUs
mlirSynth-XLA (TPU): As mlirSynth-XLA, targeting TPU

D. Methodology

All experiments were run 10 times with median end-to-end
execution time reported. To ensure there was no caching, we
ensured a cold start for each experiment, spawning a new
process for each run. To further evaluate our raising ability
we compare against MLT [15] and KernelFaRer [23], which
are state-of-the-art methods for raising to high-level operations
from lower-level code.

mlirSynth-Linalg uses the latest default MLIR lowering
compiler without any tuning or replacement of named linalg
operations with BLAS calls. MLT, however, uses a legacy
version of MLIR tuned for performance (e.g. optimized tile
sizes). To provide a fair comparison, we retain MLT’s use of
this tuned legacy compiler. mlirSynth-Linalg currently targets
the exact same subset of Linalg as MLT to allow side-by-side
comparison. This, however, restricts the number of programs
that can be raised.

While mlirSynth could raise programs to combinations of
target dialects, we are limiting the experiments to individual
ones to allow a more tractable search. We plan to explore
combinations of target dialects in future work.

VI. EVALUATION

This section first summarises the performance achieved by
each approach before examining coverage. This is followed by a
detailed performance comparison and an analysis of mlirSynths
compilation time. It concludes with an validity evaluation.

A. Overall Summary

Figure 5 shows the average speedups of the various compila-
tion flows on three platforms across the Polybench benchmarks.
Speedups are relative to LLVM-O3. MLT lifting to Linalg
achieves a 1.1x speedup on the AMD platform, and 1.2x on
Intel. Replacing named operations with BLAS routines however
achieves 3.3x improvement on the Intel platform, rising to 4.2x
on AMD. Although significant, MLT-BLAS’s performance is
limited by the number of kernels it can raise. In fact, Polly is
able to achieve greater improvement: 6.4x and 6.1x speedup
on each platform as it can optimize more kernels. Polygeist
is able to exploit the Affine IR representation, achieving 8.1x
and 4.4x speedups. mlirSynth-Linalg is able to synthesize a
larger number of kernels than MLT, which gives a performance
improvement across both CPU platforms. However, MLT-BLAS
uses a tuned MLIR legacy compiler and substituted BLAS
routines gives increased performance. When lifting to HLO
and invoking the XLA compiler, mlirSynth-XLA achieves a
geometric mean speedup of 20.8x on the Intel platform, rising
to a geometric mean of 20.9x on the AMD. This significant
increase is because XLA makes use of vendor-optimized kernel
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libraries. When targeting the TPU, mlirSynth is able to achieve
over 175x improvement, a significant result.

B. Coverage

The performance achieved by raising critically depends on
the number of raised programs. Figure 6 shows the percentage
of programs raised by different approaches for each of the
Polybench categories shown in Table I. KernelFarer [23] is a
robust GEMM detector and is able to detect two routines in the
BLAS and kernel category, but no others due to its hardwired
pattern matching rules. MLT performs better capturing most
of the kernels (5 out of 6) and some of the BLAS (3 out of
7) categories. It is unable to capture any of the data mining

kernels due to its restricted Linalg coverage. When raising to
HLO, mlirSynth is able to raise all candidates except for trmm.
Its computation cannot be represented in HLO operations and
therefore, results in raising to fail.

C. Detailed CPU performance results
Figure 7 shows a more detailed performance evaluation of

different compilation paths relative to LLVM-O3. We show
Polly and Polygeist as the polyhedral compilers, MLT, MLT-
BLAS, finally mlirSynth raising Linalg and XLA operations.

MLT-BLAS is able to improve on Polly on the Intel
platform in 3 cases where large matrix multiplications dominate
execution time, 2mm, 3mmm, gemm. On the AMD platform,
in addition, it performs well on atax. Overall however it
performs less well than Polly as it is unable to raise all the
benchmarks to Linalg.

As mlirSynth-Linalg is able to synthesize a larger number
of kernels than MLT it achieves performance improvement in
seven of the benchmarks. In 2 cases, bicg and gemver MLT
performs better due to its tuned legacy MLIR compiler.

Comparing mlirSynth-XLA to MLT-BLAS, we see MLT-
BLAS is able to achieve comparable performance to mlirSynth-
XLA on matrix-matrix multiply like kernels (2mm, 3mm,
gemm). This is because XLA uses similar BLAS kernel libraries
like MLT, particularly on the Intel platform. On other programs
such as mvt, mlirSynth-XLA is superior as it synthesizes a
more efficient, but computationally equivalent program.

It is clear that raising beyond Linalg to HLO enables
significant performance improvement due to the superior XLA
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TABLE II
SYNTHESIS STATISTICS OF MLIRSYNTH ON HLO IN HEURISTIC MODE. STATIC CHECKS INCLUDE FILTERING BASED TYPE CORRECTNESS AND ADDITIONAL

CHECKS VIA DIALECTS VERIFICATION INTERFACE. THE FINAL COLUMN SHOWS THE LEVEL OF POST-SYNTHESIS GUARANTEES (SECTION VI-F).

Benchmark Enumerated Static filtered Evaluated Equiv filtered Ops (max) Synth time Formal Guarantee

2mm 49067 46504 1043 709 7 (3) 0.65s ϕint−eq

3mm 2484 2409 3 0 3 (1) 0.14s ϕint−eq

atax 18960 17042 1166 763 8 (3) 0.62s ϕδ−eq

bicg 18961 17046 1173 771 8 (3) 0.59s ϕδ−eq

correlation 1420241 1173035 188577 159679 22 (3) 174.11s ϕobsN
covariance 382674 374083 5799 2049 6 (3) 4.21s ϕδ−eq

doitgen 9972 9879 71 18 1 (1) 0.16s ϕint−eq

gemm 607638 572798 13695 6745 4 (3) 7.26s ϕint−eq

gesummv 29221 24566 3919 2333 9 (3) 1.37s ϕδ−eq

mvt 27977 24460 2855 1631 4 (2) 1.09s ϕobsN
symm 5353361 4943595 309752 163310 4 (4) 134.85s ϕint−eq

syr2k 20820281 18547932 1467901 1022725 12 (5) 2438.69s ϕint−eq

syrk 3532229 2954620 433798 297594 7 (5) 467.79s ϕint−eq

compilation flow. On both the CPU platforms, in all cases, it
outperforms the corresponding Linalg implementations. While
it is less performant than polyhedral compilers for small
problems, on average it significantly outperforms them.

D. TPU results

If we consider the domain-specific TPU accelerator, then
HLO enables even greater performance improvement across
the benchmarks, as shown in Figure 8. The XLA compiler
is able to achieve over 3000x speedups in some cases,
performing particularly well on programs containing large
matrix operations.

E. Synthesis time

While mlirSynth is able to raise programs to higher-level
dialects, it requires search-based synthesis which could be ex-
pensive. Figure 9 shows the synthesis time for each benchmark
for each dialect and compares it against a naive synthesizer
that does not restrict the types and the set of operations.

In 7 out of 13 cases, we are able to raise programs in less than
2 seconds. In the 4 more complicated examples, synthesis time
increases to over 2 minutes. The impact of type information
and candidate pruning is significant. Compared to the naive
algorithm, we are able to reduce synthesis time by an order of
magnitude.

Table II provides a more detailed breakdown of the synthesis
process for HLO. The synthesis time is correlated to the largest
synthesis subproblem size, whereas the largest solved one
was 5 high-level operations. While the number of candidates
considered varies from 720 to c. 20 million, over 90% of
these can be discarded based on type and shape filtering. The
remaining candidates are then evaluated, with those that are
found to be equivalent to existing candidates eliminated from
further consideration. The number discarded this way varies
and increases in impact as the number of enumerated candidates
increases: from 0% for 3mm up to 60% for symm.

F. Validity

As described in section IV-E, we employ model check-
ing [36] to determine if our raised program is equivalent to
the original [17]. In our post-synthesis checks, 4 solutions
are proven to be equivalent or δ-equivalent (satisfying ϕδ−eq).
CBMC failed to find any errors within 1 hour when checking
ϕδ−eq for 8 of the remaining HLO solutions, but we were
able to prove that these are equivalent when using integers
and discounting floating-point arithmetic. That is, the speci-
fication ϕint−eq was shown to hold, where ϕint−eq ⇔ ∀x ∈
Xint.fint(x) = f ′

int(x) and Xint is the set of all possible
integers and fint and f ′

int use integer arithmetic throughout. We
are unable to verify the remaining two solutions (correlation and



mvt) due to bugs in CBMC but all solutions passed extensive
testing, i.e., ϕobsN holds. We identify 2 issues:

1) All queries use small input data structures so there is a
risk that bigger floating-point errors will accumulate on larger
data structures. There are also some solutions where CBMC
times out and we default to using integer arithmetic, so there
is a small risk that an error trace for floating point might
exist. These risks are mitigated by testing performed on large
numbers of input examples with variable data structure sizes.

2) The specification ϕδ−eq permits a relative error of
δ = 10−5. δ is chosen to account for subtle differences
introduced by the MLIR and XLA compilers due to the order in
which floating-point operations are performed but this results
in a precise verification tool like CBMC reporting that the
synthesized functions are not equivalent. For practical purposes,
we can thus consider the solutions that are proven to satisfy
ϕδ−eq to be equivalent.

G. Discussion

Enumerative search is able to raise programs to two MLIR
dialects and leverage the pre-existing compiler flows to deliver
portable, high-performance code. In particular, it enables access
to accelerators such as TPU from low-level languages. While
IO testing in practice is sufficient for correct lifting, verification
is needed to guarantee correctness. Existing raising schemes
such as MLT provide no such guarantee. If the compiler writer
inadvertently inserts an incorrect rule, it is not checked. In fact,
we discovered that MLT incorrectly identified an in-place matrix
update as a functional operation and actually gave incorrect
results in one case. Synthesis times for bottom-up enumeration
scales with program complexity. For more complex dialects,
smarter sketch-based or probabilistic schemes will be useful
and the subject of future work.

VII. RELATED WORK

Pattern matching raising. The raising of LLVM IR to a higher
level MLIR has been investigated in MLT [15]. It develops
a language that describes Affine IR [42] patterns and their
corresponding replacement in Linalg IR. While flexible, it
requires the writing of matching code for each pattern of
interest. Furthermore, the replacement, or builder, code has
to be rewritten for every target and is not scalable with IR
evolution. A similar approach was investigated in [28] where
an external constraint language is used to pattern match LLVM
IR. Unlike MLT it replaces matches with calls to external APIs
and again has to be rewritten for changing targets.

API replacement. Replacing matched code/IR to a fixed API
call [19] is a limited form of raising. KernelFarer [23] works
at the program level and restricts its attention to just GEMM
API targets, but is more robust than IDL matching significantly
more user code. This robustness is extended further in [55],
[40] which uses behavioral equivalence to match code. Such
approaches, however, are intrinsically limited as they focus
on fixed APIs rather than the open-ended nature of DSLs and
their IRs.

Raising with synthesis. Using program synthesis to generate
programs from a specification is a long-studied area [25], [50].
Using a low-level program as the specification and a high
level-one as the target was tacked in [35]. Here appropriate
stencil like loops in FORTRAN are lifted to their equivalent in
Halide [46]. This has been extended to a more generic LLVM
framework [3] based on a common IR. While this has the
potential to allow lifting to multiple targets [5], [4], it requires
the compiler writer to provide a compiler and decompiler from
each potential source and target into the IR which is not scalable.
MLIR-Fuzz [27] offers a fuzzer mlir-enumerate which
enumerates type-correct MLIR programs bottom-up for any
dialect by translating MLIR’s TableGen files into the dialect
definition language IRDL [26].

Example driven synthesis. The use of input/output examples
to synthesize high-level code has been explored in a number
of projects [32], [58], [21], [20]. It has been used to generate
pytorch or tensor-flow code from tensor inputs [49], [43].
TF-coder [49] uses type- constraints and equivalences to
efficiently apply enumerative program search while [43] uses a
DeepCoder [11] style predictive model to guide code generation.
AutoPandas [13] uses a more powerful graph neural network
based model to guide the generation of Panda code. As there
is no ground-truth program to lift, just examples, such schemes
cannot be directly used for IR raising. Furthermore, both source
format and target output are hardwired for each domain.

Polyhedral compilation. The use of polyhedral analysis to drive
program optimization [14] has been extensively explored in
the compilation community [31]. It has been used for driving
systolic code generation [29], memory hierarchy optimization,
parallelization and GPU code generation [10] and forms the
core for many modern tensor algebra compilers. Polly [30] is
able to generate efficient cache optimized and parallel code
directly from LLVM IR.

Low-level loop and memory reference representation in
LLVM IR can make analysis difficult. This has motivated
LLVM IR extensions to facilitate parallelization [52] and
motivated Polygeist, a C to Affine IR compiler [42] that uses
Pluto [14] to generate cache optimized and parallel code. All
of these approaches use polyhedral analysis to lower code,
rather than mlirSynth which uses it to raise dialect levels.

VIII. CONCLUSION AND OUTLOOK

This paper presents a bottom-up, enumerative synthesis
approach to raising dialect levels within MLIR. The retargetable
approach is applied to Affine IR, raising it to Linalg and HLO.
It is applied to PolyBench and when the raised code IR is
compiled to three platforms, it outperforms existing compilation
flows. Future work will raise to multiple target dialects, which
needs a faster and more scalable synthesis algorithm. We plan
to improve the synthesis search by re-using previous program
space explorations, and the full integration of model checking
into the synthesis process. We will also evaluate raising to new
and emerging dialects of MLIR and apply to larger benchmark
suites.
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