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Data movement between memory and processors is a major
bottleneck in modern computing systems. The processing-in-
memory (PIM) paradigm aims to alleviate this bottleneck by per-
forming computation inside memory chips. Real PIM hardware
(e.g., the UPMEM system) is now available and has demonstrated
potential in many applications. However, programming such real
PIM hardware remains a challenge for many programmers.

This paper presents a new software framework, SimplePIM, to
aid programming real PIM systems. The framework processes
arrays of arbitrary elements on a PIM device by calling iter-
ator functions from the host and provides primitives for com-
munication among PIM cores and between PIM and the host
system. We implement SimplePIM for the UPMEM PIM system
and evaluate it on six major applications. Our results show
that SimplePIM enables 66.5% to 83.1% reduction in lines of code
in PIM programs. The resulting code leads to higher perfor-
mance (between 10% and 37% speedup) than hand-optimized
code in three applications and provides comparable performance
in three others. SimplePIM is fully and freely available at
https://github.com/CMU-SAFARI/SimplePIM.

1. Introduction
Processing-in-memory (PIM) [1–4] is a computing paradigm
that places compute units in the memory chip to avoid moving
data between the memory and the CPU cores. This paradigm
has been shown to offer significantly higher memory band-
width and lower memory access latency for a wide variety
of applications, including graph processing [5–9], machine
learning [10–24], database operations [25–30], sparse linear
algebra [9, 31], stochastic computing [32], climate model-
ing [33,34], stencil computations [35], mobile applications [15],
and bioinformatics [36–42]. The UPMEM PIM system [43, 44]
is the first commercially available PIM hardware with general-
purpose cores embedded in the DRAM chip. Prior works
show that the UPMEM PIM system can benefit numerous
applications [10–12, 26, 29, 31, 40, 45–54]. Several other sim-
ilar PIM architectures have also been presented and proto-
typed [13, 25, 55–58].
Programming a real PIM system is a challenging task due

to the complexities involved. For example, the UPMEM PIM
system requires programmers to distribute data across the
DRAM banks, launch PIM kernels on the PIM cores, manage
the transfer of data between the DRAM banks and the PIM
cores, and orchestrate the execution of multiple PIM threads
on each PIM core [59]. This task requires deep knowledge of
PIM hardware and system architecture as well as proficiency in
low-level APIs, which presents a steep learning curve. Suitable
library, programming model, compiler, and tool support is

crucial for adopting PIM in real-world systems, as previously
discussed in the literature [1, 4].
To facilitate the adoption of PIM in real-world systems,

we propose a high-level programming framework called Sim-
plePIM. SimplePIM abstracts the complexities of PIM hardware,
supports multiple important applications such as histogram
and K-means, and delivers high performance.
The PIM systems targeted by our framework resemble dis-

tributed systems, where each PIM core has exclusive access to
a memory region. However, a distributed system typically in-
volves individual machines connected via a network and needs
to handle node crash failures [60–65] or even Byzantine fail-
ures [66–69]. Many distributed systems use voting protocols to
elect coordinator nodes for system management [62–65]. How-
ever, failure handling should not be a concern for PIM since the
PIM cores are not constantly failing and re-joining the system.
In PIM systems, the host CPU is responsible for coordinating
the PIM cores and handling communication between them.
SimplePIM leverages the power of the central host to manage
the entire system, including bookkeeping of the framework
metadata and merging of intermediate results from PIM cores.
Additionally, the host CPU facilitates communication with the
outside world, such as network or I/O operations.

To support PIM systems, SimplePIM provides iterators such
as map, reduce, and zip. These iterators are commonly found
in programming languages (e.g., Python, Haskell) and dis-
tributed frameworks (e.g., MapReduce [61], Spark [70]). Their
purpose is to separate the application logic from the parallel
decomposition of work across cores and threads.
To facilitate communication of data between the host CPU

and the PIM cores, SimplePIM also provides broadcast,
scatter, and gather collective communication techniques
that involve the host CPU as the root node. Communica-
tion primitives among the PIM cores, such as allreduce and
allgather, are also available. The communication interface
is similar to the message-passing paradigm used in MPI [71].
However, unlike MPI, which is homogenous and fully dis-
tributed, in SimplePIM, the host CPU always plays the unique
role of the root node in managing the entire system and merg-
ing the intermediate results from different PIM cores.
We implement and evaluate SimplePIM on a real PIM sys-

tem, UPMEM [43], with six different applications: reduction,
vector addition, histogram, linear regression, logistic regres-
sion, and K-means. These applications have previously been
implemented on UPMEM [10–12, 26], providing a baseline
for comparing performance, correctness, and code complex-
ity. SimplePIM offers a programmer-friendly interface and
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requires 4.4× fewer lines of code, on average, compared to the
best existing open-source hand-optimized implementations. In
addition, we apply several code optimizations to tailor our Sim-
plePIM implementation to the underlying hardware, making
it suitable for UPMEM. Our evaluation results show that Sim-
plePIM performs similarly to hand-optimized implementations
in three applications, and outperforms them in the remain-
ing three, despite its general-purpose design. Specifically, for
vector addition, logistic regression, and K-means, SimplePIM
performs 1.10×, 1.17×, and 1.37× faster than the best prior
hand-optimized implementations in weak scaling tests and
1.15×, 1.22×, and 1.43× faster in strong scaling tests.

Our main contributions are:
• We design and introduce SimplePIM, the first high-level
programming framework tailored to improve programming
productivity in general-purpose PIM architectures. We open-
source SimplePIM at https://github.com/CMU-SAFARI/
SimplePIM to enhance programming accessibility and aid
the adoption of PIM systems.

• We implement SimplePIM on the UPMEM PIM architec-
ture and develop six PIM workloads (reduction, vector ad-
dition, histogram, linear regression, logistic regression, and
K-means) using it. SimplePIM provides a significant reduc-
tion in the number of lines of code ranging from 66.5% to
83.1%, i.e., productivity improvements of 2.98× to 5.93×
compared to the best prior hand-optimized open-source im-
plementations written using the UPMEM SDK.

• We explore and implement performance optimization tech-
niques both in general and specific to SimplePIM. The Sim-
plePIM implementation of the evaluated workloads performs
similarly to hand-optimized implementations in three appli-
cations and achieves a speedup of 1.10×-1.43× in the other
three applications.

2. Background
Numerous real PIM architectures have been introduced that
aim to bring compute units closer to memory [13,25,43,44,55–
58]. For example, AxDIMM [13] places an FPGA near DRAM
ranks to accelerate recommendation systems [13] and database
operators [25]. FIMDRAM [55] features vector processing units
near the banks of High Bandwidth Memory (HBM). FIMDRAM
is specifically designed for deep learning applications. SK
Hynix AiM [57] is also designed for deep learning applications.
AiM places vector processing units near the banks of GDDR6
memory. Alibaba HB-PNM [58] glues together one layer of
DRAM and one logic layer with processing elements designed
to accelerate recommendation systems.

Our programming framework implementation in this work
uses the commercially available UPMEM PIM system [43]. Two
major characteristics distinguish UPMEM from other real PIM
systems: (1) it integrates general-purpose processing cores in
DRAM chips, and (2) it is the only commercially available PIM
architecture (as of September 2023).
Previous studies extensively investigate the UPMEM sys-

tem [10–12, 26, 29, 31, 40, 45–54]. Fig. 1 provides a simplified

view of the first-generation UPMEM architecture from a pro-
grammer’s perspective. The UPMEM hardware is connected
to the host system via DRAM DIMM connections. A state-of-
the-art UPMEM server contains up to 20 PIM-enabled DIMMs,
each with 2 ranks of 8 PIM chips. Each PIM chip has eight
64MB DRAM banks, with a programmable PIM core, a 64KB
scratchpad memory, and 24KB instruction memory coupled
to each bank. In total, there are up to 2,560 PIM cores. Data
transfers between the scratchpad memory and the DRAM bank
occur through explicit data transfer commands, with a maxi-
mum bandwidth of 800MB/s per bank. The entire PIM system
provides a maximum bandwidth of 2TB/s for all PIM cores.
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Figure 1: The UPMEM PIM Architecture

The PIM cores operate at 450 MHz and feature an 11-stage
pipeline. They can perform one integer addition/subtraction
per cycle and 32-bit integer multiplication/division in, at most,
32 cycles when the pipeline is fully utilized. However, floating-
point operations may take tens to 2000 cycles to complete, as
explained in [26]. The 2,560 independent PIM cores operate
in parallel, providing a peak compute throughput exceeding 1
TOPS (Tera operations per second). There is no direct commu-
nication mechanism among different PIM cores in hardware.
All communication occurs through memory transfers between
the host DRAM and the PIM DRAM.

Writing a functionally correct PIM program for a system like
the UPMEM PIM architecture is challenging, and optimizing
code for performance requires programmers to have a deep
understanding of the PIM hardware. To program PIM cores,
programmers must manually manage the scratchpad mem-
ory to ensure good performance. Data transfers between the
scratchpad memory and the corresponding PIM DRAM bank
must be 8-byte aligned and not exceed a 2,048-byte limit. For
multithreading, the UPMEM SDK [59] provides barrier syn-
chronization, handshakes, and mutexes. At least 11 software
threads are required to fully utilize the pipeline [26, 53]. On
the host CPU side, programmers allocate/reallocate the num-
ber of PIM cores, load the PIM binary, and explicitly launch
the PIM program using commands provided in the UPMEM
SDK [59]. Communication between the PIM cores and the host
CPU is enabled by gather/scatter, broadcast, parallel and serial
transfer commands, all of which have different performance
implications and data alignment constraints.
Our goal in this work is to design a high-level program-

ming framework for PIM architectures that abstracts these
hardware-specific complexities and provides a clean yet pow-
erful interface for ease of use and high program performance.
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3. The SimplePIM Programming Framework
A software framework is a universal and reusable software
environment that provides a standard abstraction to build and
deploy applications. Our software framework, SimplePIM,
leverages the massive memory bandwidth and parallelism of-
fered by PIM hardware to operate on arrays of arbitrary size
and dimensions. Similar abstractions are widely used in dis-
tributed system frameworks (e.g., Spark [70], MapReduce [61]).
SimplePIM offers three key interfaces to support PIM sys-

tems like UPMEM. The management interface (Section 3.1)
stores metadata for the PIM-resident arrays, which can be ac-
cessed by the programmer and other parts of SimplePIM as
needed. The communication interface (Section 3.2) provides
abstractions for both Host-PIM and PIM-PIM communication
patterns. These patterns are similar to communication pat-
terns in other distributed frameworks such as MPI [71], which
makes it easier for SimplePIM to be adopted. The processing
interface (Section 3.3) leverages PIM’s high memory bandwidth
and parallelism to execute map, reduce, and zip iterators on
PIM arrays. Programmers can combine these iterators to imple-
ment many widely-used workloads ranging from simple vector
addition to complex machine learning model training. Similar
to SimplePIM, systems like Spark [70] provide programmers
with some data transformation operations and iterators for
processing data.

3.1. Management Interface
The SimplePIM Management Interface provides three main
functions: lookup, register and free. These APIs enable
tracking of PIM-resident data, data allocation and data deallo-
cation in the form of continuous arrays. This management is
centralized and takes place on the host CPU.
The management interface defines and uses two data

structures. First, the array_meta_data_t struct contains
several fields that describe the PIM-resident array. These
fields are the ID of the array, its length, data type, and the
physical address of its data in the PIM DRAM. Second, the
simple_pim_management_t struct is responsible for manag-
ing all the PIM-resident arrays registered by the programmer.
It contains an array of array_meta_data_t structs, along with
other hardware information such as the number of PIM cores.
Lookup The lookup function retrieves the struct of
array_meta_data_t containing all relevant information of
an array from the management unit, based on its unique ID.
This function is used by both the communication and process-
ing interfaces to seamlessly access and manipulate the array
with a single ID provided by the programmer.

1 array_meta_data_t* simple_pim_array_lookup(const char* id,
simple_pim_management_t* management);

Register The purpose of the register function is to register
the metadata of an array in the management unit. Typically,
the function is called by the processing and communication
interfaces when a new output array is created. The program-
mer provides a unique ID when calling the interfaces, and

SimplePIM determines other relevant metadata and registers
the output array properly.

1 void simple_pim_array_register(array_meta_data_t* meta_data,
simple_pim_management_t* management);

Free The ID is removed from the management unit, indi-
cating that the array with that ID is no longer available for
processing or communication.

1 void simple_pim_array_free(const char* id,
simple_pim_management_t* management);

3.2. Communication Interface
The SimplePIM Communication Interface serves as a compre-
hensive solution for handling communication between the
host CPU and PIM cores, and among PIM cores. This interface
effectively manages the complexities of data transfer align-
ment, address calculation, and different PIM communication
commands so that programmers need not worry about them.
To support host-PIM communication, SimplePIM provides

three functions. The broadcast function sends the same array
to all PIM cores. The scatter function divides a host array in
equal-sized chunks and distributes them across the PIM DRAM
banks. The gather function reassembles the scattered chunks
into a host array.
To support communication among PIM cores, SimplePIM

includes allreduce and allgather functions used in a variety
of applications (e.g., machine learning).
Host-to-PIM Communication: SimplePIM Broadcast
The broadcast function in SimplePIM transfers a host array
to all PIM cores in the system, ensuring that all PIM cores have
a local copy of the data, as shown in Fig. 2. It then registers the
ID of the array with the management interface so that it can be
referred to by other functions in the SimplePIM interface. This
function can be useful for initializing data or for distributing
data that needs to be accessed by all PIM cores.

In the broadcast function, the arr variable is the source ar-
ray of the communication on the host side and the type_size
variable represents the size of a single element for the array.

1 void simple_pim_array_broadcast(char* const id, void* arr,
uint64_t len, uint32_t type_size, simple_pim_management_t

* management);
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Host	CPU
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Figure 2: SimplePIM Broadcast function (example with two
PIM cores)

Host-to-PIM Communication: SimplePIM Scatter The
scatter function is designed to take an array located on the
host DRAM and divide it into chunks that are distributed to
each PIM core’s DRAM bank (refer to Fig. 3). This division is
performed almost evenly, while taking into account the PIM
system’s alignment constraints. For example, in the UPMEM
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system, data transfers must be aligned to eight bytes. Once
this division is complete, the scatter function registers the ID
of the destination array in the PIM DRAM banks (id) with the
management interface. As in the broadcast function, arr and
type_size are, respectively, the source array and the array
element size.

1 void simple_pim_array_scatter(char* const id, void* arr,
uint64_t len, uint32_t type_size, simple_pim_management_t

* management);

PIM-to-Host Communication: SimplePIM Gather The
gather function is the counterpart of the scatter function, serv-
ing to reassemble a scattered array, as shown in Fig. 3. It works
by taking an identifier that corresponds to the scattered array
and retrieving the relevant information through the memory
management interface. Using this information, the gather
function retrieves the split portions of the array from each
PIM core’s DRAM bank, collects them, and reassembles the
original array on the host. Finally, the gather function returns
a pointer to the gathered array.

1 void* simple_pim_array_gather(char* const id,
simple_pim_management_t* management);
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Figure 3: SimplePIM Scatter and Gather function (example
with two PIM cores)

PIM-PIM Communication: SimplePIM AllReduce The
allreduce function accepts arrays equal length across all PIM
cores. To execute the allreduce operation, the programmer
specifies an accumulative function (i.e., the reduction opera-
tion) and registers it as a function handle. SimplePIM then
combines the arrays in place based on the programmer-defined
function. Fig. 4 shows an example where the accumulative
function is an addition. allreduce is often used for algo-
rithm synchronization, for example in machine learning ap-
plications. Section 3.3 details how a programmer creates a
function handle.

1 void simple_pim_array_allreduce(char* const id, handle_t*
handle, simple_pim_management_t* management);
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Figure 4: SimplePIM AllReduce function (example with two
PIM cores)

PIM-PIM Communication: SimplePIM AllGather The
SimplePIM allgather function retrieves sections of an array
from various PIM cores, combines them, and distributes the

complete array to all PIM cores, as shown in Fig. 5. This results
in a new array with a unique identifier new id.

1 void simple_pim_array_allgather(char* const id, char* new_id,
simple_pim_management_t* management);
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Figure 5: SimplePIM AllGather function (example with two
PIM cores)

3.3. Processing Interface
The SimplePIM Processing Interface provides iterators that
enable the creation of a new array of data after performing
operations on an existing array within the PIM system. These
iterators can be called from the host and are parallelized auto-
matically by the framework to execute across the PIM cores
and threads. Once executed, the resulting output of the iterator
is registered via the management interface for future reference.
Creation of a FunctionHandle In some PIM systems (such
as UPMEM), PIM functions are loaded as independent binaries
from the main program, compiled using a different compiler
that targets the underlying PIM instruction set architecture.
This separation ensures that CPU code does not reference PIM
functions directly, although the CPU code must be able to pass
PIM functions as inputs to SimplePIM’s iterators. To facili-
tate this, the create_handle function reads a file containing
a PIM function, compiles the function, and provides a handle
to the CPU that can be passed as an input to the iterators.
The transformation_type argument specifies which itera-
tor the handle is for. The programmer-defined functions can
execute with a context: the data of size data_size is broad-
cast to all PIM cores, and the programmer-defined functions
receive this data to aid their executions. For example, for the
linear regression workload, the programmer-defined function
requires model weight data to compute gradients, and this data
is provided as context via the data argument.

1 handle_t* simple_pim_create_handle(const char* func_filepath,
uint32_t transformation_type, void* data, uint32_t
data_size);

Array Map The simple_pim_array_map iterator takes a
registered input array and a function handle, applies the
map_func function to every element in the data array, and
generates a new output array with dest_id, as Fig. 6 shows.

1 void simple_pim_array_map(const char* src_id, const char*
dest_id, uint32_t output_type, handle_t* handle,
simple_pim_management_t* management);

Array Reduction The simple_pim_array_red iterator
processes each element in an input array src_id, calculates
an index to an output array dest_id and performs a reduc-
tion onto the indexed output array element. This operation
is similar to the general reduction method proposed in the
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Figure 6: SimplePIM Array Map function

FREERIDE middleware [72]. Later, MATE [73] implemented
general reduction and demonstrated its superior performance
compared to MapReduce in a multi-core system. SimplePIM’s
PIM reduction iterator is versatile enough to support various
essential applications such as linear regression, K-means, and
histogram calculation.
To perform the PIM array reduction, the programmer

needs to define three functions. The init_func initializes
all entries in the output array. The map_to_val_func func-
tion transforms an input element to an output element and
determines the corresponding entry in the output array to
accumulate the current output element. Finally, the com-
mutative function acc_func accumulates the output element
that results of the map_to_val_func function onto the corre-
sponding entry in the output array. Fig. 7 shows the usage of
map_to_val_func and acc_func functions. In the histogram
calculation of an image, for example, the init_func initializes
all histogram bins to 0. The map_to_val_func computes for
each image pixel which bin (i.e., an index in the histogram)
it belongs to and returns 1. Finally, the acc_func is a simple
addition that increments the bin count by 1.

1 void simple_pim_array_red(const char* src_id, const char*
dest_id, uint32_t output_type, uint32_t output_len,
handle_t* handle, simple_pim_management_t* management)

…

…1 0 2 0

10 2

map_to_val_func

acc_func

Input	Array
(src_id)

Output	Array	(dest_id)

Figure 7: SimplePIM Array Reduction function

Array Zip The simple_pim_array_zip iterator takes as in-
put the IDs of two registered arrays that are of the same length.
It then generates an output array that combines the elements
of the two input arrays, as Fig. 8 shows. By allowing program-
mers to work with multiple arrays as inputs to the iterators,
this function enables greater flexibility in data processing.

1 void simple_pim_array_zip(const char* src1_id, const char*
src2_id, const char* dest_id, simple_pim_management_t*
management)

…

…

…
zip_func

Input	Array
(src1_id)

Output	Array	
(dest_id)

Input	Array
(src2_id)

Figure 8: SimplePIM Array Zip function

4. UPMEM Implementation and Optimizations
for SimplePIM

PIM cores access memory with higher bandwidth and lower
latency (than CPUs or GPUs), making this architecture more
compute-bound, and highlighting the importance of code opti-
mization for optimal performance. In this section, we provide
detailed information on how we develop and optimize the
SimplePIM interface for the UPMEM system.

4.1. Communication Interface
UPMEM provides basic serial commands for transferring data
between a PIM core and the host, as well as parallel commands
for transferring same-sized continuous data between the host
and different PIM cores. The parallel transfer bandwidth in-
creases with the number of PIM cores and can be orders of
magnitude higher than the serial transfer bandwidth.
In order to use the parallel transfer commands, memory

transfers must be aligned and equal-sized for all PIM cores.
SimplePIM automatically pads the communicated arrays and
determines the transfer size for the parallel commands based on
the array size, data type, and alignment requirements, ensuring
that no array element is split across PIM cores and all alignment
requirements are met. This provides a clean interface to the
programmer, as described in Section 3.2.
SimplePIM leverages parallel data transfers between the

UPMEM PIM cores and the host to implement both PIM-PIM
and PIM-Host communication primitives. Although previous
works such as ABC-DIMM [74] and DIMM-Link [75] demon-
strate the potential benefits of hardware mechanisms for im-
proving PIM-to-PIM communication, programmers currently
do not have access to a physical direct communication chan-
nel among UPMEM PIM cores. In future PIM systems with
more efficient communication among PIM cores enabled by
hardware, SimplePIM could take advantage of these features
to implement PIM-PIM communication more effectively.

4.2. Processing Interface
4.2.1. Array Map. An input array on the host system can be
evenly split among the PIM cores using communication primi-
tives. When the map iterator is called from the host, all relevant
PIM cores are simultaneously invoked to process their respec-
tive local arrays. On each of these PIM cores, 12 PIM threads
are launched by default, as at least 11 threads are required
to fully utilize the pipelined in-order cores of the UPMEM
architecture [26, 53]. While we have chosen 12 threads as a
convenient even number, the programmers have the flexibility
to configure SimplePIM to run any desired number of threads.
In SimplePIM, each PIM thread loads its assigned section of the
input array from the PIM DRAM bank to the 64KB scratchpad
in batches, maximizing the scratchpad-to-DRAM bandwidth.
The thread then applies the map_func to all elements of the
input data and stores the results in the corresponding output
address in batches as well.
4.2.2. Array Reduction. To perform array reduction, Sim-
plePIM activates all PIM cores containing segments of the
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input and launches 12 PIM threads on each core. These threads
operate on the input data in batches, and each PIM core gen-
erates its intermediate reduction result in parallel using the
programmer-defined acc_func PIM function. These interme-
diate results are then gathered to the host and combined using
a host version of acc_func with the help of OpenMP [76].

Since an entry in the output array is accessed once per input
element, a straightforward optimization is to keep the output
array in the 64KB scratchpad memory, if it fits. SimplePIM
offers two variants of in-scratchpad PIM array reduction:
shared and thread-private accumulators.
Shared Accumulator Reduction In this variant, only one
reduction output array is present in the scratchpad memory,
and one lock is preserved per array entry. One thread ini-
tializes this array at the beginning with init_func. Then,
every thread works on its part of the input array and updates
the global output array entries after having acquired the lock
associated with each entry.
Thread-Private Accumulator Reduction In this vari-
ant, every thread initializes its own local output array with
init_func and reduces its input segment to that local output
array with the map_to_val and acc_func functions. Once
all threads finish the reduction, local outputs are merged in
parallel in a ring-reduce manner with acc_func and barriers.
These two implementations have a tradeoff between syn-

chronization overhead and scratchpad capacity utilization. The
framework automatically chooses an appropriate in-scratchpad
reduction variant based on the array sizes and data types. We
evaluate the tradeoff between these two variants in Section 5.4.
4.2.3. Array Zip. The zip iterator is implemented with a lazy
approach to minimize data copying. When the zip iterator is
called, the management interface stores the starting addresses,
data type sizes, and a common length for the two arrays to be
zipped, but does not physically combine them. When a subse-
quent iterator is passed a lazily zipped array, the management
interface extracts the addresses of the two contained arrays
and copies the arrays in batches to the scratchpad. Then, the
batches are zipped in the scratchpad, and the iterator operation
is performed. This approach ensures that data is copied only
once in the same loop, reducing both copying and looping over-
heads. The management interface keeps track of lazily zipped
arrays and determines the behavior of the iterators. Currently,
the laziness in our implementation is one level deep, which
is sufficient for targeting the common case (i.e., multi-input
map and reduce functions). If the zip iterator is called with
an already lazily zipped array as an argument, the arrays are
streamed in batches, combined physically, and stored back to
memory in batches. Our experiments (not plotted in the paper)
show that lazy zipping improves the performance of vector
addition, for example, by more than 2×.

4.3. General Code Optimizations
We implement several code optimization techniques in Sim-
plePIM that are essential for achieving high performance on
UPMEM. Some open-sourced UPMEM applications use only

some of these optimizations, making them potentially slower
than SimplePIM implementations. We list some of the opti-
mizations SimplePIM employs:

1. Strength Reduction: The UPMEM chip lacks native support
for 32/64-bit integer multiplication, which must be emu-
lated by runtime software and can take tens of cycles to
complete. To overcome this challenge, SimplePIM strives to
minimize the use of multiplications in the main loop. This is
especially important for a general-purpose framework like
SimplePIM, where the compiler may not always perform
strength reduction automatically. Although the array data
type is not known at compile time, the sizes of array ele-
ments are often powers of two. SimplePIM takes advantage
of this fact by replacing multiplications with shift opera-
tions in array offset calculations when the array size is a
power of two.

2. Loop Unrolling: We have found that loop unrolling can
improve the performance of vector addition by up to 20%
on UPMEM. We attribute this performance gain to fewer
loop counter increments and loop branches. However, loop
unrolling can also increase the binary size, which may even-
tually not fit into the instruction memory of PIM cores.
Our SimplePIM implementation for UPMEM uses limited
unrolling depth.

3. Avoiding Boundary Checks: Many open-sourced UPMEM
applications check array boundaries inside the main loop
for convenience. In SimplePIM, we evenly pre-partition the
work among threads and then process the trailing part of the
array separately to avoid boundary checks. For example, we
have experienced more than 10% performance degradation
due to boundary checks for the vector addition application.

4. Function Inlining: SimplePIM inlines programmer-defined
functions in the iterator code to avoid the function invo-
cation overhead in the iterator loops. That is, at handle
creation time, the functions are not compiled independently,
but rather, the iterators that use the functions are also com-
piled. Compared to compiling iterators and functions sep-
arately, we have found that inlining improves the perfor-
mance of vector addition by more than 2×.

5. Previous studies have shown that the performance of data
transfers between the PIM core’s scratchpad memory and
the corresponding DRAM bank in UPMEM is highly depen-
dent on the data transfer size [26]. We observe that, in previ-
ously open-sourced implementations, programmers fix the
scratchpad-to-DRAM transfer sizes for convenience, which
results in suboptimal performance. An example is a linear
regression implementation where the input dimensions are
different for different datasets, which would require manual
adjustment of transfer sizes. In contrast, SimplePIM auto-
matically and dynamically adapts the scratchpad-to-DRAM
transfer size to the input data size and type, achieving bet-
ter performance while freeing programmers from applying
low-level optimizations and allowing them to focus on the
application logic.
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5. Evaluation
5.1. Benchmarks
We evaluate SimplePIM using six commonly-used PIM-friendly
applications: reduction, vector addition, histogram, linear re-
gression, logistic regression, and K-means clustering. As a
baseline for comparison, we use hand-tuned implementations
from prior works [10–12, 26, 53]. The baselines for reduction,
vector addition, and histogram are from the PrIM benchmark
suite [26,53,77], while the baselines for the threemachine learn-
ing algorithms, i.e., linear regression, logistic regression, and
K-means, are from [10–12,78]. These prior works develop clean
and high-performance open-source codes for benchmarking
against CPU and GPU implementations. As such, these codes
serve as solid baselines for comparison with our SimplePIM
implementations.
Vector Addition We implement vector addition in Sim-
plePIM by zipping the input arrays and performing element-
wise addition using the map iterator. SimplePIM automatically
optimizes this operation by performing lazy zipping on the
UPMEM device, which results in a high-performance imple-
mentation. We evaluate the runtime of vector addition for
one million 32-bit integer elements per PIM core for weak
scaling and 608,000,000 32-bit integer elements for strong scal-
ing, similar to the reference work that provides the baseline
implementation [26, 53].
Reduction The reduction operation computes the sum of
all elements in an input array. In SimplePIM, we implement
reduction using PIM array reduction with an output ar-
ray of a single element (an accumulator). We select the same
number of input elements for weak scaling and strong scaling
as for the vector addition workload.
Histogram The histogram operation is implemented us-
ing PIM array reduction. We define a programmer-specific
map_to_val function to compute the corresponding bin for
each input element, and a simple addition is used to combine
the element counts for each bin. We conducted experiments
with 1,572,864 elements per PIM core for weak scaling and
956,301,312 for strong scaling, with the number of histogram
bins set to 256 to ensure consistencywith the reference baseline
implementation [26, 53].
K-Means The UPMEM PIM device currently emulates float-
ing point operations in software, resulting in significantly
slower performance than integer operations. To mitigate this
issue, our k-means benchmark employs input data quantiza-
tion to integers, following the approach outlined in [10–12].
We conduct experiments with 10 centroids and 10 feature di-
mensions, using 10,000 elements per PIM core for weak scaling
experiments and 6,080,000 elements for strong scaling experi-
ments.
Linear Regression To address the issue of slow floating
point operations, we rely on the baseline approach pro-
posed in [10–12], which includes several versions of linear
regression using various quantization techniques. For our

experiments, we use the implementation that employs 32-bit
integer operations with bit shifts to prevent integer overflow
and underflow. To ensure a fair comparison, we verify that
our SimplePIM implementation produces identical results to
the baseline approach. We use a feature dimension of ten and
generate 10,000 data points per PIM core for weak scaling tests,
while for strong scaling tests, we generate a total of 6,080,000
data points, similar to those used in the work that provides the
baseline implementation [10–12].

Logistic Regression To enable a fair comparison with
the baseline approach [10–12], we apply the same quanti-
zation technique used in linear regression to logistic
regression. To minimize computational overhead, we adopt
the Taylor series approximation of the sigmoid activation func-
tion [79] that the baseline [10–12] uses. However, since the
runtime of the approximation depends on the input, we ensure
a fair comparison by using the same inputs and initial model
weights for both the baseline code [10–12] and the SimplePIM
implementation. We also verify that the exact same output is
produced. The weak and strong scaling datasets have the same
sizes as for linear regression.

5.2. Productivity Improvement
Efficiently implementing PIM kernels for these applications
requires a significant amount of engineering effort. We mea-
sure the programming complexity by counting the lines of
effective PIM-related code for each application. This excludes
the common code for data loading from a file to the host main
memory, host memory allocation, variable definition, and time
measurements. We only take into account PIM-related data
transfers and PIM kernel execution. Table 1 summarizes the
lines of effective code saved by using SimplePIM for the six
benchmarks. The amount of coding is reduced by a factor of
2.98× to 5.93× with SimplePIM.

SimplePIM Hand-optimized LoC Reduction
Reduction 14 83 5.93×
Vector Addition 14 82 5.86×
Histogram 21 114 5.43×
Linear Regression 48 157 3.27×
Logistic Regression 59 176 2.98×
K-Means 68 206 3.03×

Table 1: Lines of effective PIM-related code for each benchmark.
"LoC Reduction" stands for SimplePIM’s reduction in lines of
code over hand-optimized baselines.

Productivity improvement is not only achieved by reducing
the lines of code, but also by allowing programmers to write
plain and easily understandable C code for an uncommon (PIM)
architecture. Listing 1 shows the code required to implement
a hand-optimized histogram operation on the UPMEM PIM
architecture. In this code, variable declarations, initialization,
as well as code for initializing and computing the histogram
are omitted. To program the PIM system, the programmer is
responsible for addressing the data structures (based on thread
ID or tasklet_id) and must be familiar with architecture-
specific instructions, such as mem_reset (line 5), mram_read
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(line 14), and mram_write (lines 26 & 29). The programmer
needs to read the documentation carefully and understand
the instructions and their low-level properties in detail. For
example, the mram_read and mram_write instructions, used
for DRAM-scratchpad transfers, have an 8-byte alignment re-
quirement and a 2,048-byte transfer limit, and the programmer
needs to handle larger transfers manually, as shown in lines
28-30 of Listing 1. Additionally, the code allocates a 2,048-byte
buffer for input data transfers (line 7). For more complex ap-
plications with variable input element size, such as linear
regression, the programmer needs to handle data transfers
with greater care and effort.

1 ... // Initialize global variables and functions for histogram
2 int main_kernel() {
3 ... // Initialize variables and the histogram
4 if (tasklet_id == 0)
5 mem_reset(); // Reset the heap
6 // Allocate buffer in scratchpad memory
7 T *input_buff_A = (T*)mem_alloc(2048);
8
9 for (unsigned int byte_index = base_tasklet; byte_index < input_size;

byte_index += stride) {
10 // Boundary checking
11 uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (

input_size - byte_index) : 2048;
12
13 // Load scratchpad with a DRAM block
14 mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index),

input_buff_A, l_size_bytes);
15
16 // Histogram calculation
17 histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t));
18 }
19 ...
20 barrier_wait(&my_barrier); // Barrier to synchronize PIM threads
21 ... // Merging histograms from different tasklets into one histo_dpu
22
23 // Write result from scratchpad to DRAM
24 if (tasklet_id == 0) {
25 if (bins * sizeof(uint32_t) <= 2048)
26 mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo,

bins * sizeof(uint32_t));
27 else
28 for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t))

>> 11); offset++) {
29 mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(

mram_base_addr_histo + (offset << 11)), 2048);
30 }
31 }
32 return 0;
33 }

Listing 1: Hand-optimized histogram code using the UPMEM
SDK

Listing 2 illustrates how SimplePIM makes it possible for
programmers to implement histogram without resorting to
any hardware-specific instruction or function calls. The code
is straightforward and can be easily understood and imple-
mented by any C programmer. The process involves defining
application logic functions (lines 2-14) for the iterator in a sep-
arate file (called histo_filepath in this example), creating a
handle (line 17), and running the iterator with only two ad-
ditional lines of code on the host side (lines 20 & 23). Similar
to Listing 1, the code example in Listing 2 does not show the
host-side allocation and data transfers.

In summary, SimplePIM improves programming productiv-
ity for PIM systems. It reduces the number of lines of code

1 // Programmer-defined functions in the file "histo_filepath"
2 void init_func (uint32_t size, void* ptr) {
3 char* casted_value_ptr = (char*) ptr;
4 for (int i = 0; i < size; i++)
5 casted_value_ptr[i] = 0;
6 }
7 void acc_func (void* dest, void* src) {
8 *(uint32_t*)dest += *(uint32_t*)src;
9 }
10 void map_to_val_func (void* input, void* output, uint32_t* key) {
11 uint32_t d = *((uint32_t*)input);
12 *(uint32_t*)output = 1;
13 *key = d * bins >> 12;
14 }
15
16 // Host side handle creation and iterator call
17 handle_t* handle = simple_pim_create_handle("histo_filepath", REDUCE,

NULL, 0);
18
19 // Transfer (scatter) data to PIM, register as "t1"
20 simple_pim_array_scatter("t1", src, bins, sizeof(T), management);
21
22 // Run histogram on "t1" and produce "t2"
23 simple_pim_array_red("t1", "t2", sizeof(T), bins, handle, management);

Listing 2: SimplePIM histogram code

required for an application and abstracts away the underlying
architectural complexities, such as managing a scratchpad or
software-managed cache, synchronizing PIM threads/cores, de-
termining data transfer sizes and alignments, and allocating/de-
allocating PIM cores. By doing so, SimplePIM makes PIM pro-
grammingmore programmer-friendly and accessible to a wider
range of developers.

5.3. Performance Evaluation
To compare the performance of our SimplePIM code to the
baseline code, we conduct experiments on an UPMEM system
with 2,432 PIM cores, and measure weak and strong scaling
results for each workload on 608, 1,216, and 2,432 PIM cores,
as shown in Fig. 9 and Fig. 10, respectively. The number of
elements for each workload is similar to the baseline papers.
The number of elements for strong scaling tests is set to be
equal to the number of elements used for 608 cores in our weak
scaling tests.
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Figure 9: Weak Scaling results for six workloads.

Overall, the experimental results shown in Fig. 9 and Fig. 10
demonstrate that SimplePIM achieves comparable perfor-
mance to the baseline approach for reduction, histogram,
and linear regression, while consistently outperform-
ing the baseline approach for vector addition, logistic
regression, and k-means in both weak and strong scaling
experiments. We attribute these performance gains to the vari-
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Figure 10: Strong Scaling results for six workloads. The num-
bers on each bar represent the speedup over 608 PIM cores.

ous optimization techniques implemented in our framework,
as discussed in Section 4.
In the weak scaling evaluation results shown in Fig. 9, in-

creasing the number of PIM cores linearly with the input
size does not significantly impact the performance of both
SimplePIM and hand-optimized code for all six applications.
Furthermore, on average, SimplePIM outperforms the hand-
optimized implementation in vector addition, logistic
regression, and k-means by 1.10×, 1.17×, and 1.37×.
In the strong scaling evaluation results shown in Fig. 10,

achieving linear speedup with additional PIM cores is not guar-
anteed, as communication overheads can become dominant.
For the reduction workload, which has less kernel execution
and comparatively more communication costs, we observe
only 1.6× and 2.6× speedup for 2× and 4× more PIM cores.
However, for the other five workloads, SimplePIM achieves
more than 1.8× speedup with a 2× increase in PIM cores and
3× speedup with a 4× increase in PIM cores. SimplePIM con-
sistently outperforms the hand-optimized implementations of
all benchmarks, except for reduction with a slight increase
in communication cost. SimplePIM outperforms the hand-
optimized implementations of vector addition, logistic
regression, and k-means by 1.15×, 1.22×, and 1.43× on av-
erage across different numbers of PIM cores. These results
demonstrate the effectiveness of our framework for program-
ming PIM systems in terms of performance.

We note that, while SimplePIM provides speedup over base-
line implementations of some benchmarks, the performance
of hand-optimized code can potentially be equal to or even
better than that generated by SimplePIM. This requires the
programmer to take similar steps as SimplePIM to optimize
the code, as Section 4 describes. Achieving such performance
requires careful consideration and use of various optimization
techniques. SimplePIM frees the programmer from this burden,
thereby making them more productive.

5.4. Evaluation of SimplePIM Variants of Array Re-
duction

SimplePIM provides two variants of PIM array reduction
(Section 4.2.2). One variant uses shared accumulators (i.e., one
shared output array for all threads and one lock per array
entry) and the other one thread-private accumulators (i.e., one
output array per thread). We compare these two versions
of SimplePIM on the histogram benchmark with different

histogram sizes.
Fig. 11 shows the effect of the two versions on the end-to-

end performance of the histogram benchmark as we vary the
number of bins in the histogram. We make several observa-
tions.
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Figure 11: Execution time of SimplePIM’s shared accumulator
version and thread-private version for the histogram bench-
mark. Red and blue lines represent the numbers of active PIM
threads.

First, the thread-private version is faster than the shared
accumulator version for histograms of 256, 512, and 1024 bins.
Since each thread owns a private output array, there is no
need for locks, which avoids the synchronization overhead
of the shared memory version. When 12 threads are active
(for 256-, and 512-bin histograms), the thread-private version
outperforms the shared accumulator version by 1.70×.
Second, the shared accumulator version outperforms the

thread-private version for histograms of 2048 and 4096 bins.
The cause is a reduction in the number of active PIM threads
of the thread-private version (blue line) after 1024 bins. This
reduction relates to the occupancy of the scratchpad mem-
ory. For t threads with private histograms of n bins (each of d
bytes), t × n × d bytes of the scratchpad memory are occupied.
When the scratchpad size (e.g., 64KB in current UPMEM chips)
is not enough for the private histograms (plus buffers for the
input array), we should reduce the number of active threads,
as we observe for 1024-, 2048-, and 4096-bin histograms. The
reduction in the number of active threads causes a linear in-
crease of the execution time, because the pipeline of the PIM
cores is not fully busy [26, 53]. As a result, we observe that the
execution time of the 2048-bin histogram (with 4 threads) is
roughly twice as high as that of the 1024-bin histogram (with
8 threads). Ditto for the 4096-bin histogram (with 2 threads)
versus the 2048-bin histogram.

6. Discussion
While SimplePIM is currently implemented for the UPMEM
PIM architecture [43], it is devised for a broader set of real
PIM architectures (e.g., [13, 25, 43, 55–58]), which have one
or more common characteristics [12, 52]: (1) there is a host
processor with access to standard main memory and PIM-
enabled memory, (2) PIM processing elements (PEs) may need
to communicate via the host processor, and (3) the number of
PIM PEs scales with memory capacity.
With these characteristics in mind, SimplePIM supports

host-PIM communication primitives and its management inter-
face runs on the host. SimplePIM’s PIM-PIM communication
primitives emulate the communication between PIM cores by
transparently handling the communication via the host. Given
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that PIM-PIM communications play a pivotal role in simplify-
ing and enhancing PIM programming for high performance,
we recommend the research and development of more efficient
PIM-PIM communication mechanisms in hardware, e.g., as
proposed in [74, 75, 80–83].

SimplePIM can accommodate a wide range of computation
patterns beyond the current map, reduce, and zip operations.
Other parallel patterns, such as prefix sum and filter [26,53,77],
can be easily incorporated. However, extending support to
more complex patterns such as stencil and convolution would
necessitate a more fine-grained scatter-gather mechanism to
handle halo cells between tiles mapped onto different PIM
cores. Similarly, applications with irregular memory access
patterns, such as tree data structures [84], are also hard to
support due to random access patterns. Future work can extend
SimplePIM’s capabilities by supporting, implementing, and
benchmarking additional communication primitives, iterator
functions, and workloads on a variety of PIM systems.

7. Related Work
To our knowledge, SimplePIM is the first high-level program-
ming framework specifically designed for real PIM systems.
We first review recent studies of real PIM systems. We then dis-
cuss several PIM works that propose programming interfaces
and compilers for PIM architectures.
Studies of Real PIM Systems The UPMEM PIM architec-
ture [43] is the first commercially available PIM hardware.
Several recent works study this architecture and its suitability
to different modern applications. Gómez-Luna et al. [26,53,85]
present a microbenchmark-based analysis of the UPMEM PIM
architecture and a workload suitability study with the PrIM
benchmark suite [77], which contains workloads from dense
and sparse linear algebra, machine learning, bioinformatics,
image processing, graph processing, etc. Nider et al. [48]
analyze the UPMEM PIM system for encryption/decryption,
compression/decompression, hyper-dimensional computing,
and text processing. Other works focus on specific applica-
tions or application domains, such as sparse matrix vector
multiplication [31, 86], bioinformatics [40, 46, 47, 50, 51, 87],
machine learning [10–12, 88], transcendental functions [52],
databases [29, 84, 89–91], homomorphic encryption [54], and
skyline computation [45].
There are also application studies on other real PIM sys-

tems [13, 25, 55–57]. Ke et al. [13] evaluate sparse embed-
ding operators of deep-learning-based recommendation in-
ference [92] on AxDIMM. Lee et al. [25] implement database
scan operations on AxDIMM. Ibrahim and Aga [93] implement
FFT for commercial PIM architectures, such as Samsung HBM-
PIM [55,56] and SK Hynix AiM [57] (but the evaluation is done
with a performance model).
Programming Interfaces for PIM Several works propose
programming interfaces for processing-near-memory archi-
tectures (i.e., PIM architectures with processing elements near
the memory arrays [1]). One approach is to use specialized
PIM instructions (e.g., as in [7, 8]) and integrate them into the

existing general-purpose sequential execution model. This
approach is especially suitable for PIM architectures where
communication across PIM processing elements is not possi-
ble or easy. When the host processor finds a specialized PIM
instruction in the program, it offloads the execution to the PIM
processing elements. Another approach is to use remote func-
tion calls via message passing between different PIM cores (e.g.,
as in [5]). This approach is suitable for coarse-grained PIM
accelerators with multiple PIM cores that can communicate
over an interconnection network.

For processing-using-memory architectures (i.e., PIM archi-
tectures that compute by leveraging the analog operational
properties of memory components [1]), there are several works
that facilitate programming. SIMDRAM [94] provides a frame-
work to generate user-defined operations that are executed
via the simultaneous activation of rows inside DRAM subar-
rays [27, 95]. pLUTo [96] proposes a LUT-based processing-
using-DRAM substrate with a compiler that maps complex
operations onto LUT queries.

Compilers for PIM Several works propose compilers for
simulated PIM architectures. Duality Cache [97] proposes a
compiler that accepts existing CUDA programs and maps the
computation onto a processing-using-SRAM substrate. Infin-
ity Stream [98] proposes an intermediate representation and a
just-in-time compiler for processing-near-memory, processing-
using-memory, and host execution. CHOPPER [99] presents
a bit-serial compiler for processing-using-DRAM substrates.
CINM [100] is a compiler flow for simulated processing-using-
memory architectures and processing-near-memory architec-
tures such as UPMEM. It is based on MLIR [101, 102] and it
supports linear algebra PIM kernels. SimplePIM is the first pro-
gramming framework for real PIM architectures that supports
a wide variety of PIM kernels.

8. Conclusion
We introduce SimplePIM, which is a new high-level program-
ming framework for real PIM systems. SimplePIM is specifi-
cally designed to enable efficient and productive programming.
SimplePIM efficiently leverages the host CPU for data manage-
ment, and incorporates primitives for PIM-host communica-
tion (e.g, scatter, gather, broadcast) and primitives for com-
munication among PIM cores (e.g., allreduce, allgather).
SimplePIM’s easy-to-use interface provides iterators (e.g., map,
reduce, zip) that allow programmers to largely avoid the
complexity of the underlying PIM architecture. Our imple-
mentation of SimplePIM for the UPMEM system enables pro-
grammers to develop PIM programs with 2.98× to 5.93× less
code than hand-optimized programs, while providing equal or
higher performance. SimplePIM frees programmers from deal-
ing with the complexities and idiosyncracies of the low-level
PIM hardware, while also enabling programmer-transparent
code optimizations. We believe that SimplePIM is a mile-
stone to ease the programmability and adoption of current
and future real PIM systems. We hope that more future work
ensues in programming memory-centric systems, and to fa-
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cilitate that we open-source our SimplePIM framework at
https://github.com/CMU-SAFARI/SimplePIM.
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